用户名: 密码: 验证码:
基于离子电流的脉冲爆震发动机压力建模及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲爆震发动机(Pulse Detonation Engine,PDE)作为新一代航空航天推进系统获得国内外的广泛关注。PDE中高温、高压、高冲击的恶劣环境使得传统压力传感器难以长时间持续工作,进而影响PDE基于压力的状态检测与控制。本文围绕着PDE高温压力测量及控制这一主题开展了基于离子电流的脉冲爆震发动机压力建模及控制研究,研究成果主要有:
     在分析一维ZND爆震波结构和碳氢焰中的电离类型及其产生机理的基础上,结合爆震波高速传播等性能特点分析得出爆震波中的电离形式主要为化学电离。基于碳氢焰化学电离机理,分析了离子电流的形成机理,并建立爆震波中离子电流数学模型,给出离子电流的测量原理。依据爆震波中电离机理和所建立离子电流模型,得到离子电流与压力之间的关系,为后续基于离子电流的爆震波压力模型建立奠定理论基础。
     为了测量爆震波中离子电流,设计并制作双极式和单极式两种不同结构的离子探针,对比分析了候选探针极材料的物理、化学及电特性。为了通过试验确定离子探针的最佳方案,构建了两种单次脉冲爆震系统和多循环脉冲爆震系统。通过单次脉冲爆震对比试验确定了离子电流测量中离子探针的结构、极材料、极长度以及探针极间偏置电压。通过多循环脉冲爆震试验实现爆震波传播速度测量。最后得出中心电极材料为钇、镍铬铁或铜的单极短型离子探针可作为离子电流测量的传感器,测量中偏置电压为10V结果最优。
     基于一维ZND结构,分析了爆震管内爆震波传播的不同阶段管内压力成因以及压力变化情况,据此建立爆震波前、波后气体状态的数值计算模型,尤其是爆震波波前和波后压力模型。根据离子电流和爆震波压力之间的线性关系,采用最小二乘法建立基于离子电流衰减速度的爆震波峰值压力模型,模型验证结果表明该线性模型精度达到3.5%。根据离子电流信号和压力传感器信号波形在爆震波阶段的相似性,采用RBF神经网络建立离子电流到爆震波压力之间的映射关系,讨论网络样本的选择、网络结构及网络参数的影响和确定,最终建立基于神经网络的爆震波压力非线性模型,模型校验结果表明该非线性模型精度高、响应快,网络的泛化能力强。
     通过分析确定波后管内压力受到Taylor膨胀波、Taylor膨胀波波后均匀区以及中心膨胀波的影响,依据一维非定常流理论建立Taylor膨胀波压力简化模型和中心膨胀波压力简化模型,依据Taylor膨胀波和波后均匀区之间压力的关系,建立Taylor膨胀波波后均匀区压力简化模型。依据管内压力随时间变化情况以及管内压力的连续性,将爆震波压力非线性模型、Taylor膨胀波压力简化模型、Taylor膨胀波波后均匀区压力简化模型以及中心膨胀波压力简化模型相结合,构建爆震管内某截面的压力混合模型。通过压力传感器所测数据校验压力混合模型,结果表明混合模型具有良好的精度,能够为基于压力的PDE控制提供可靠的压力信号。
     围绕着PDE控制,建立单循环脉冲爆震时PDE平均推力模型,总结现有研究中常见的基于气动阀的脉冲爆震发动机工作过程控制方案,并分析了各种控制方案的特点。利用所建立的脉冲爆震管压力混合模型,提出基于爆震管压力的脉冲爆震发动机工作过程控制方案,分析其控制过程,并开展仿真研究,结果表明基于爆震管压力PDE工作过程控制能够实现的PDE在不同频率下的协调工作,能够产生有效推力且工作频率调节方便。
Pulse detonation engine(PDE) is researched worldwide as a new propulsion system in theaeronautics and astronautics field. The conventional pressure sensor could only work several minutesfor the high-temperature, high-pressure and high-impulse circumstance in the PDE. Furthermore, iteffects the PDE state monitoring and pressure based control. Focusing on the high-temperaturepressure measurement of the PDE, the pressure modeling based on the ion current and the PDEoperation process control are developed. The major work is as follows:
     After analyzing one-dimension ZND structure of the pulse detonaton wave and the ionizationmechanism of the hydrocarbon flame, it is concluded that the main part of ionization in the detonationwave is chemical ionization. Based on the chemical ionization, the mechanism of the ion currentforming is analyzed and the mathematic model of the ion current is established. The measurementcircuit for the ion current is also proposed. Based on the ionization and the ion current model, therelationship between detonation wave pressure and the ion current is proposed. It is the foundation forthe detonation wave pressure modeling.
     In order to measure ion current in the detonation wave, the single-pole probe and the double-poleprobe are designed. The candidate material of the pole is compared with the chemical, physical andelectronic characteristics. The two single-cycle detonation experiment systems and the multi-cycledetonation experiment system are established to determine the selection of optimal probes. Thecompared experiments between the different probe structures, pole materials, pole lengths and the biasvoltages are developed. The multi-cycle detonation experiment is developed for the propagation speedmeasurement of the detonation wave. It is concluded that the single-pole short probe with the polematerial of Y, NiCrFe and Cu is suitable for the ion current measurement and the optimal bias voltage10V.
     The principle and variation of pressure in the PDE are analyzed based on the ZND detonationwave structure. The numerical model of the detonation wave pressure is founded. According to thelinear relationship between the ion current and the detonation wave pressure, the peak pressure modelbased on the decay of the ion current for the detonation wave is founded by least-squares method. Thepeak pressure model is validated by the experiment data. It shows that the model accuracy within3.5%. Because of the similarity between the pressure sensor signals and the ion current signals, theRBF neural network is employed to map the ion current to the detonation wave pressure. Afterdiscussing the training data selection, network structure and the effects of the network parameters, the non-linear model of the detonation wave based on the neural network are founded. The results of themodel validation show that the non-linear model has high accuracy and rapid response and thenetwork has satisfactory generalization.
     By analyzing the effect of the Taylor expansion wave, the uniform region after Taylor wave andthe center expansion wave to the pressure in the PDE, the simplified pressure models of the Taylorwave and the center expansion wave are founded according to the one-dimension unsteady flowtheory. The pressure in uniform region after the Taylor wave is modeled according the relationshipbetween the Taylor wave pressure and the uniform region pressure. Following the pressure continuityin the PDE, the pressure hybrid-model is constructed by combining the detonation wave pressurenon-linear model, the Taylor wave simplified pressure model, the uniform region pressure model andthe center expansion simplified pressure model. The pressure hybrid-model is validated by thepressure sensor measurements. The results show that the pressure hybrid-model has the satisfactoryaccuracy and could provide the reliable pressure signal for the PDE operation process control.
     Aiming at the PDE control, the average thrust model of the PDE is established. The PDE controlschemes based on the aerovalve are reviewed and the characters of the schemes are analyzed. Usingthe output of the pressure hybrid-model, the pressure signal, the PDE operation process controlscheme based on the pressure signal in the PDE are proposed and its performance is studied by thesimulation. The results show that the PDE could operate in the different frequency using the controlscheme base on the PDE pressure signal. The operation frequency is adjusted easily and the PDEcould generate the effective thrust.
引文
[1]严传俊,范玮等.脉冲爆震发动机原理及关键技术.西安:西北工业大学出版社,2005.
    [2] Coleman M. L., Overview of Pulse Detonation Propulsion Technology. CPIA technical Report,2001.
    [3] Kailasanath K., Recent Development in the Research on Pulse Detonation Engines. AIAA2002-0470.
    [4]严传俊,何立明,范玮等.脉冲爆震发动机的研究与发展.航空动力学报,2001,16(3):212-217.
    [5]邱华,严传俊,熊姹.脉冲爆震发动机无阀工作对供给系统影响研究.航空动力学报,2010,25(5):987-992.
    [6] HAN Qi-xiang, WANG Jia-hua, WANG Bo. Investigation of Detonative Combustion Character-istics. Chinese Journal of Aeronautics,2002,15(2):72-76
    [7]张彭岗,何小民,李建中等.爆震管内波与火焰相互作用机理的试验.航空动力学报,2007,22(10):1617-1621.
    [8]范育新,宫继双,齐海帆等.多循环PDE利用壁温蒸发煤油的试验研究.工程热物理学报,2011,32(1):161-164.
    [9]翁春生,王杰,白桥栋等.脉冲爆轰发动机进气压力对爆轰影响的实验研究.弹道学报,2008,20(3):1-4
    [10]彭振,翁春生.等离子体点火对燃烧转爆轰影响的数值计算.燃烧科学与技术,2011,17(1):84-89.
    [11]何立明,严传俊,范玮等.脉冲爆震发动机的可爆范围及内流燃气温度与壁温的试验研究.推进技术,1999,20(3):1-4.
    [12]何立明,曾昊,罗俊等.引射器喉部面积比对脉冲爆震发动机性能的影响.航空发动机,2011,37(2):1-4.
    [13]王春,司徒明,韩肇元.用于爆震引燃的激波聚焦无反应流场数值模拟.推进技术,2003,24(2):156-159.
    [14]李旭东,王春,姜宗林.喷管对脉冲爆轰发动机性能的影响.力学学报,2011,43(1):1-10.
    [15]王云雷;谷满仓;陈宝延等.一种侧向进气的旋转筒脉冲爆震发动机.中国,实用新型专利,CN201696165U,2011,1,5.
    [16] Hao TANG1, Yue HUANG2. Overview of Current Activities on PDE and Pulse DetonationPropulsion in China. AIAA2008-4780
    [17] T. R. Meyer, J. L. Hoke, et al. Experimental study of deflagration-to-detonation enhancementtechniques in an H2-air pulsed-detonation engine. AIAA-2002-3720.
    [18] M. Cooper, S. Jackson, and et al. Direct Experimental Impulse Measurements for Detonationsand Deflagrations. AIAA2001-3812.
    [19] T. M. Helfrich, F. R. Schauer. Ignition and Detonation-Initiation Characteristics of Hydrogen andHydrocarbon Fuels in a PDE. AIAA2007-234.
    [20]范育新,王家骅,李建中等.脉冲爆震发动机工作过程控制和协调试验.推进技术,2004,25(6):538-542.
    [21] N. Nguyen, A.D. Cutler. Pressure and Thrust Measurements of a High-Frequency Pulsed Detona-tion Tube. AIAA2008-4690.
    [22] Robert J. McMillan. Shock Tube Investigation of Pressure and Ion Sensor Used in Pulse Detona-tion Engine Research. AD Report ADA426675,2004.
    [23] D. R. Hopper, P. I. King, J. L. Hoke and F. R. Schauer. Development of a Continuous BranchingPulsed Detonation Engine. AIAA2008-112.
    [24] A. J. Glaser, A. Rasheed, and et al. Measurement of Pressure-Rise in a Pulse Detonation Engine.AIAA2009-857.
    [25]张义宁,王家骅,何小民等.爆震室压力测量可靠性试验.航空动力学报,2007,22(10):1632-1638.
    [26]陈灯,罗俊等.脉冲爆震发动机压力测试与分析.弹箭与制导学报,2008,28(3):163-165,172.
    [27]邱华,严传俊,熊姹.脉冲爆震发动机无阀工作对供给系统影响研究.航空动力学报,2010,25(5):987-991.
    [28] J. Kasahara, K. Takazawa, et al. Experimental Study of Impulse and Heat Transfer on PulseDetonation Engines. AIAA2002-4071.
    [29] Jeffrey S. Zdenek, Ralph A. Anthenien, Ion Based High-Temperature Pressure Sensor. AIAA,2004-470.
    [30]严传俊,刘军,范玮,何立明等.脉冲爆震发动机工作原理与循环分析.推进技术,1996,17(3):56-63.
    [31]范玮,严传俊,何立明等.原理模型脉冲爆震发动机性能参数的实测与分析.航空动力学报,1997,12(4):410-412,420.
    [32]黄希桥,严传俊,范玮等.脉冲爆震燃烧效率的探索性试验研究.航空动力学报,2006,21(6):962-966.
    [33]范育新,王家骅,宫继双.壁温蒸发器对脉冲爆震发动机工作性能的影响.航空学报,2010,31(1):82-87.
    [34]严传俊,范玮,黄希桥等.脉冲爆震发动机性能分析.工程热物理学报,2001,25:217-220.
    [35]范育新,王家骅,宫继双等.壁温蒸发器对脉冲爆震发动机工作性能的影响.航空学报,2010,31(1):82-87.
    [36]李建中,王家骅,王春.共用尾喷管多管脉冲爆震发动机数值模拟研究.空气动力学学报,2008,26(1):96-100.
    [37]邱华,严传俊,范玮.部分充填下脉冲爆震发动机的热力循环性能分析.航空动力学报,2008,23(4):718-723.
    [38]王杰,翁春生.脉冲爆震发动机管外复杂波系的数值计算.推进技术,2008,29(5):545-551.
    [39]郑殿峰,王家骅,张会强等.绕流片对汽油/空气脉冲爆震发动机爆震波压力的影响.推进技术,2004,25(6):549-552.
    [40] H.F. Calcote. Mechanisms for the Formation of Ions in Flames. Combustion and Flame,1957:1385-402.
    [41] A.B., Fialkov. Investigation on Ions in Flames. Prog. Energy Combust. Sci.,1997,23:399-528.
    [42] F. Jurgen, G. Achim, et al. Ion Current Sensoring for Spark Ignition Engines. SAE1999-01-0204,
    [43] D. Schneider. An Experimental Study of correlations between ionic current and operatingparameters in SI engine.[PhD thesis], US, Wayne State University,2000.
    [44] D. Lundstrom, S. Schagerberg. Misfire Detection for Prechamber SI Engines Using IonSensoring and Rotational Speed Measurement. SAE paper,2001-01-0993.
    [45] S. Byttner, T. Rognvaldsson, et al. Estimation of combustion variability using in-cylinderionization measurements. SAE2001-01-3485.
    [46] V. Naoumov, A. Demin, et al. Modeling of Combustion and Non-Equilibrium Ionization in SparkIgnition Engines. SAE2002-01-0009.
    [47] H. Pfeffer H., Bihler P., et al. Influence of Intake Tumble Ratio on General CombustionPerformance, Flame Speed and Propagation at a Formula on Type High Speed Research Engine.SAE Paper,2002-01-0244B.
    [48] Y. Shimasaki, H. Maki, et al. Study on Combustion Monitoring System for Formula One EnginesUsing Ionic Current Measurement. SAE2004-01-1921.
    [49] P. Mehresh, J. Soudera, and et al. Combustion timing in HCCI engines determined by ion-sensor:experimental and kinetic modeling. Proceeding of Combustion Institute,2005,30:2701-2703.
    [50] J. B. Gregory, Jyh-Yuan Chen, and et al. The effects of intake pressure, fuel concentration, andbias voltage on the detection of ions in a Homogeneous Charge Compression Ignition (HCCI)engine. Proceeding of the Combustion Institute,2009,(32):2877-2884.
    [51] S. Saxena, J-Y Chen, and et al. Increasing the signal-to-noise ratio of sparkplug ion sensorsthrough the addition of a potassium acetate fuel additive. Proceeding of the Combustion Institute,2011,(33):3081-3088.
    [52]吴筱敏, Jae-Ou Chae.离子电流法在发动机燃烧室内工作过程检测中的应用.西安交通大学学报,1998,32(9):62-67.
    [53]吴筱敏,王子延.火花塞电极离子电流的初步探讨及其应用研究.内燃机学报,1999,17(2):167-169.
    [54]吴筱敏,汪映,关勇等.汽油机燃烧和失火离子信号的特征分析.燃烧科学与技术,2004,10(4):341-344.
    [55]汪映,周龙保,吴筱敏.离子电流法检测发动机失火和爆震的研究.西安交通大学学报,2002,36(9):895-898.
    [56]吴筱敏,李康,魏若男等.利用离子信号计算已燃质量分数.燃烧科学与技术,2007,13(5):403-406.
    [57]高辉,吴筱敏,高权忠等.盲源分离法在火花塞离子电流信号分离中的应用.西安交通大学学报,2010,11(1):23-26.
    [58]吴筱敏,余鹏等.偏置电压对离子电流信号影响的试验研究.西安交通大学学报,2001,32(5):494-497.
    [59]高忠权,吴筱敏等.电极间隙对离子电流的影响研究.车用发动机,2008,(3):79-81.
    [60]李建文,刘书亮等.点燃式发动机火花塞离子电流的数学模型.天津大学学报,2006,39,增刊:66-70.
    [61]李建文,刘书亮等.点燃式发动机火花塞离子电流稳定性的试验研究.燃烧科学与技术,2004,11(1):52-55.
    [62]李建文,王天友等.外加电场对火花塞离子电流的影响.内燃机学报,2008,26(2):179-182.
    [63]李建文,徐正飞等.空燃比对离子电流信号影响的试验研究.车用发动机,2008,(8):74-76.
    [64]邢建国,许沧粟等.火花塞离子电流信号及其在发动机检测和控制中的应用.内燃机工程,2001,22(3):71-75.
    [65]许沧粟,邢建国.基于火花塞离子电流信号的发动机爆震检测研究.内燃机工程,2002,23(2):12-15.
    [66] R. J. Santoro, V. Yang, J. E. Shepherd, et al. A Multidisciplinary Study of Pulse Detonation Eng-ine Propulsion. ADA409967
    [67] S. T. Sanders, T. P. Jenkins, R. K. Hanson. Diode Laser Sensor System for Multi-ParameterMeasurements in Pulse Detonation Engine Flows. AIAA-2000-3592.
    [68] S. T. Sanders, D. W. Mattison, T. M. Muruganandam. Multiplexed Diode-Laser AbsorptionSensor for Aeropropulsion Flows. AIAA2001-0412.
    [69] S. T. Sanders, J. A. Baldwin, T. Jenkins, et al. Diode-laser sensor for monitoring multiplecombustion. Parameters in pulse detonation engines. Proceeding of the Combustion Institute,2000,28:587-594.
    [70] S. T. Sanders, D. W. Mattison, L. Ma, et al. Diode-Laser Sensors for Pulse Detonation Engines.The Second Joint Meeting of the US Section of the Combustion Institute, Oakland, CA,2001.
    [71] L. Ma, S. T. Sanders, J. B. Jeffries, et al. Monitoring and Control of a Pulse Detonation EngineUsing a Diode-Laser Fuel Concentration and Temperature. Proceeding of the CombustionInstitute,2002,29:161-166.
    [72] Ma, J. B. Jeffries, R. K. Hanson, et al. Characterization of the Fuel Fill Process in a Multi-CyclePulse Detonation Engine Using a Diode-Laser Sensor. AIAA-2005-3834.
    [73] D. W. Mattison, M. A. Oehlschlaeger, J. B. Jeffries, et al. Pulse Detonation Tube Characteriza-tion Using Laser Absorption. AIAA-2003-0713.
    [74] K. M. Hinckley, J. B. Jeffries, R. K. Hanson. A Wavelength Multiplexed Diode Laser Sensor forTemperature Measurements in Pulse Detonation Engine. AIAA-2004-713.
    [75] Time-Resolved Measurements of Fuel-Air Stoichiometry in Pulse Detonation Engines Using aNon-Intrusive Laser Sensor. AIAA-2005-628.
    [76] R. K. Hanson, J. B. Jeffries. Diode Laser Sensors for Grand Testing. AIAA2006-3441.
    [77]范玮, T. P. Jenkins, S. T. Sanders等.激光诊断技术在脉冲爆震发动机研究中的应用.推进技术,2001,22(4):349-352.
    [78]范玮,严传俊,张群等.基于可调二极管激光红外吸收的燃烧诊断技术.推进技术,2003,24(2):186-189.
    [79]熊姹,严传俊,邱华等.脉冲爆震发动机中温度和组分浓度测量技术的发展.航空工业进展,2010,1(3):262-267.
    [80]熊姹,严传俊,王治武等.脉冲爆震发动机尾焰温度测量与数值模拟.工程热物理学报,2008,29(2):335-338.
    [81]张彭岗,何小民,张靖周.光电池测光器在爆震波测量中的应用.航空动力学报,2008,23(2):232-236.
    [82] D. Allgood, E. Gutmark, J. Hoke, et al. Performance Measurements of Multi-Cycle PulseDetonation Engine Exhaust Nozzle. AIAA-2005-222
    [83]黄希桥,严传俊,王治武.爆震频率对脉冲爆震发动机性能影响的试验.西北工业大学学报,2007,25(1):22-25.
    [84] C. Tucker, P. King and F. Schauer. Detonation Wave Speed Measurements with Ion Sensors.28thDayton-Cincinnati Aerospace Science Symposium, Dayton, OH March2003.
    [85]韩启祥,王家骅,王维来.测量爆燃到爆震转捩距离的离子探针技术研究.航空动力学报,2003,18(1):97-100.
    [86]潘慕绚,黄金泉,郭伟等.一种新型离子探针在爆震波传播速度测量中的应用.传感器与微系统,2009,28(11):114~116.
    [87]潘慕绚,黄金泉,郭伟.基于离子电流的脉冲爆震发动机高温压力传感器.传感器与微系统,2008, l27(7):44-46.
    [88]潘慕绚,黄金泉,郭伟,张彭岗.脉冲爆震发动机高温压力测量方法.推进技术,2009,30(3):355-359.
    [89] L. Ma, S. T. Sanders, J. B. Jefferies, et al. Monitoring and Control of a Pulse Detonation EngineUsing a Diode-Laser Fuel Concentration and Temperature Sensor. Proceeding of the CombustionInstitute,2002,29:161-166.
    [90] D. W. Mattison, C. M. Brophy, S. T. Sander, et al. Pulse Detonation Engine Characterization andControl Using Tunable Diode-Laser Sensors. Journal of Propulsion and Power,2003,19(4):568-572.
    [91]张义宁,王家骅,张靖周.频率30~50Hz两相脉冲爆震发动机研究.航空学报,2006,27(6):993-997.
    [92]范育新,王家骅,李建中等.脉冲爆震发动机供油自适应控制优化设计.推进技术,2005,26(1):62-67.
    [93]范育新,王家骅,曹梦源.脉冲爆震发动机供油自适应规律研究.航空动力学报,2007,22(11):1792-1797.
    [94]邱华.脉冲爆震发动机性能分析及调节特性研究.[博士学位论文].西安,西北工业大学,2006.
    [95] Y. B. Zeldovich. On the theory of the propagation of detonations on gaseous system. Zh. Eksp.Teor. Fiz.10:542–568.
    [96] J. von Neumann. Theory of detonation waves. Progress Report to the National Defense ResearchCommittee Div. B, OSRD-549, in Taub, A. H., John von Neumann: Collected Works,1903-1957,6, New York: Pergamon Press.
    [97] W. D ring. On detonation processes in gases. Ann. Phys.43:421–436.
    [98] H.F. Calcote. Mechanisms for the Formation of Ions in Flames. Combustion and Flame,1957:1385-1402.
    [99] T. Kinbara and J. Nakamura. Fifth Symposium (International) on Combustion. P285. Reinhold:New York,1955.
    [100]蒋德明,内燃机燃烧与排放学.西安:西安交通大学出版社,2001.
    [101] T.Kinbara and I. Nakamura. Fifth Symposium on Combustion,1955.
    [102] E. S. Semenov, A. S. Sokolik. Thermal and Chemical Ionization in Flames. Combustion,Explosion, and Shock Wave.1970,6(1):33-43.
    [103] A. Saitzkoff, R. Reinmann, T. Berglind, et al. An Ionization Equilibrium Analysis of the SparkPlug as an Ionization Sensor. SAE960337.
    [104] R. P. Winch. Electricity and Magnetism. Prentice Hall Inc., Englewood Cliffs, New Jersey,1963.
    [105] R. Reinmann, T. Berglind, F. Manss, et al, Local Air-fuel Ratio Measurements Using the SparkPlug as an Ionization Sensor, SAE970856.
    [106]何小民,张彭岗.缓燃向爆震转捩过程中火焰和压力波发展规律试验.航空动力学报,2008,23(11):2036-2042.
    [107]徐学基,诸定昌,气体放电物理.上海:复旦大学出版社,1996.
    [108] L. D. landau, E. M. Lifshitz. Fluid Mechanics.北京:世界图书出版社,1999.
    [109]徐丽娜.神经网络控制.北京:电子工业出版社,2009.
    [110]侯媛彬,杜京义,汪梅.神经网络.西安,西安电子科技大学出版社,2007.
    [111]许东,吴铮.基于Matlab6.x的系统分析与设计——神经网络.西安,西安电子科技大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700