用户名: 密码: 验证码:
空间桁架浮筏声学设计方法及降噪特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕浮筏隔振系统与圆柱壳体内部结构多点相互作用及振动传递问题,开展了浮筏系统隔振计算建模以及新型空间桁架浮筏设计研究,建立了浮筏系统耦合振动传递计算方法以及桁架浮筏声学设计模型,发展了空间浮筏,提出了浮筏系统引起的圆柱壳体声辐射近似预报方法,为以辐射噪声作为浮筏系统设计的量化指标基础提供了依据,具有明确的工程应用背景和实用价值。主要研究内容如下:
     针对设备→上层隔振器→筏架→下层隔振器→基座等子结构串并联耦合组成的多输入多输出浮筏系统,采用矢量四端网络参数法,建立了浮筏系统振动传递计算方法,为复杂空间浮筏振动传递及隔振效果评估提供了一种技术途径。研究表明:16~1000Hz频率范围内,浮筏各层面振动加速度谱级计算与试验值吻合较好,偏差小于5dB;采用基座输入机械阻抗修正设备振动自由速度测量结果,低频计算误差减小到3dB。分析结果还表明:筏架低频振动传递存在放大现象,影响浮筏系统低频隔振性能;采用功率流落差表征浮筏隔振性能,其值小于加速度振级落差10dB左右。
     计算分析了简单桁架与等质梁的振动传递特性,揭示了桁架结构波型转换、带隙滤波等新隔振机理。结果表明:桁架低频振动刚度大于等质梁;高频结构内出现弯曲波、扭转波和纵波耦合传递,不同波型经由接头发生散射,激励方向振动能量减小。在此基础上,设计一套“摇篮”式桁架浮筏,将平置式浮筏发展为空间浮筏。采用电磁激振机和水泵激励,测量浮筏系统各层面振动响应。计算与试验结果表明:“摇篮”式桁架浮筏比平置式板架浮筏隔振性能提高3~9dB,且桁架筏架改善了200~400Hz振动传递放大特性。研究发现,随着浮筏隔振性能提高,设备空气噪声对基座振动的影响不可忽略。
     针对空间浮筏安装,提出一种高阻抗“月牙”型基座模型,基座沿壳体周向布置,减小了其对壳体径向激励和弯矩作用,计算结果表明:与相近质量的板架基座相比,“月牙”基座表面输入阻抗提高12.6dB,隔振性能增加9dB。当基座阻抗大于上端隔振器阻抗10倍以上时,基座表面输入作用力不随基座阻抗增加而进一步减小。
     发展建立由圆柱壳内机械振动传递到外场声辐射计算方法,可由壳体耦合振动响应计算结果以及圆柱壳与矩形平板辐射效率近似估算声辐射功率,将浮筏设计指标由隔振性能延伸到降噪效果。计算结果表明:桁架浮筏与“月牙”基座组合安装,对比板架浮筏与板架基座组合安装情况,壳体耦合振动减小7.6dB,辐射噪声降低6dB。桁架浮筏有利于采用空间安装方式,增加一倍安装点后,壳体耦合振动减小4.7dB,辐射噪声降低5.8dB。
Taking the interactions and vibration transmission characteristics between floating raftsystem and shell structures as research objective, the primary purpose of this thesis is topresent a qualitative and quantitative account of the complex floating raft system model,whilst simultaneously designing a new truss like floating raft structure to support vibratingmachinery. A method that can be employed to calculate vibration transmissibility ofmulti-input multi-output complex floating raft system is presented and a design model ofspace truss raft system and its installation method are proposed. An approximative calculationmethod for acoustic radiation of floating raft system and hull structure is established. Usingthe radiated noise as the quantitative index of floating raft system is of evident engineeringdemands and great importance of applications. The detailed content lists as follows:
     Base on vectorial four pole parameter model, a method of analyzing the dynamicalbehaviors of the floating raft structure is established, which takes into account the interactionof series and parallel coupled substructures, such as equipments, upper mounts, raft structure,lower mounts and base foundation. This prediction method can be used to calculate thevibration transmission in complicated structures and investigate the vibration isolationefficiency of the floating raft isolator system. The experiment results show that the calculatedvalue of vibration response of base and raft matches the measured value well in the frequencyband of16~1000Hz. The difference between calculated and measured of vibrationacceleration levels with raft output installation points and base input installation pointsm isless than5dB. With freedom velocity modified by equipments fixing side’s input impedancein low frequency range, the predicted results’ precision has been increased. The calculationerror obtained by vectorial four pole parameter model has been reduced to3dB. Thecalculated results exhibit that the transmission vibration of raft structure has been magnifiedin low frequency range. The power level difference of vibration isolation performance is10dB less than acceleration level difference.
     The dynamical behavior of both two-dimensional truss girder and quadrate girder isinvestigated, and the truss raft vibration characteristics of scattering of wave types and a stopband analysis are revealed. The calculated example shows that compared with quadrate girder,the low frequency rigidity of truss structure is comparatively higher and the displacement ofvibration is relatively smaller. With the frequency increasing, compressional wave, torsionalwave and flexural wave energy multiply scatter until a balance of wave types is reached.Wave scattering occurs in the unobstructed struts and the joints. The losses of vibrationenergy due to scattering at joints are significant, that can be used to maximize the decrease ofvibration transmission energy.
     One new cradle type truss raft structure and the foundation setup system are developedusing the truss structure’s vibration attenuating mechanism. The shape of raft structure ischanged from plane to space, and the two-dimensional raft structure is extended to thethree-dimensional raft. The electromagnetic actuator and pump are selected to be the sourceforce, and the vibration of floating raft system is tested. The characteristic of the truss raft’svibration transmission is obtained, by comparing with the plate raft, the acceleration vibrationlevel difference of the truss raft system is3~9dB higher. The anti-vibration performance oftruss raft structure is improved in the200~400Hz frequency range.
     One high impedance crescent foundation model is developed for the truss raft’s setupneed. The foundation is distributed along the circumferential direction,and the vibration ofradial direction is not directly forced. Comparing the plate foundation, the crescentfoundation has the advantage of increasing the performance of raft’s isolation effect anddecreasing the vibration of shell. The numerical calculation shows the surface inputimpedance of foundation increases by12.6dB, and the acceleration vibration level differenceof the raft system is9dB higher than the plate foundation. When the impedance of foundationis10times bigger than that of lower mounts, the force input the base is not changing withfoundation impedance.
     The vibration and acoustic radiation of cylindrical shell in the fluid induced by themechanical vibration is developed. The basic design index of floating raft structure isextended from the vibration isolation effect to the hull’s radiation noise. The calculation results shows that the radiating noise of the crescent foundation coupled with the truss raftsystem is6dB less than the plate foundation condition and plate raft system, the vibration ofcylindrical shell in the fluid is reduced by7.6dB. The truss raft structure has the advantage ofmultiple distribution space setup method comparing with the plate raft structure. Using the32points installation model instead of original16points method, the vibration level of shell isdecreased by4.7dB, and the radiation noise is decreased by5.8dB.
引文
[1].俞孟萨,黄国荣,伏同先.潜艇机械噪声控制技术的现状与发展概述[J].船舶力学,2003,7(4):110-120.
    [2]. CARL Q HOWARD, COLIN H HANSEN, PAN JIAQIANG. Power transmissionfrom a vibrating body to a circular cylindrical shell through passive and activeisolators[J]. Journal of Acoustic Society of American,1997,101(3):1479-1491.
    [3]. KARI L. On the waveguide modelling of dynamic stiffness of cylindrical vibrationisolators. Part I: The model, solution and experimental comparison[J]. Journal ofSound and Vibration,2001,244(2):211-233.
    [4]. KARI L. On the waveguide modelling of dynamic stiffness of cylindrical vibrationisolators. Part II: The dispersion relation solution, convergence analysis andcomparison with simple models[J]. Journal of Sound and Vibration,2001,244(2):235-257.
    [5]. SANDERSON M A. Vibration isolation: moments and rotations included[J]. Journalof Sound and Vibration,1996,198(2):171-191.
    [6]. KIM S, SINGH R. Vibration transmission through an isolator modelled by continuoussystem theory[J]. Journal of Sound and Vibration,2001,248(5):925-953.
    [7]. LI W L, LAVRICH P. Prediction of power flows through machine vibrationisolators[J]. Journal of Sound and Vibration,1999,224(4):757-774.
    [8]. PLAUTA R H, SIDBURYA J E, VIRGIN L N. Analysis of buckled and pre-bentfixed-end columns used as vibration isolators[J]. Journal of Sound and Vibration,2005,283(5):1216-1228.
    [9]. CARRELLA A, BRENNAN M J, WATERS T P. On the design of a high static lowdynamic stiffness isolator using linear mechanical springs and magnets[J]. Journal ofSound and Vibration,2008,315(3):712-720.
    [10]. YILMAZ C, KIKUCHI N. Analysis and design of passive band-stop filter-typevibration isolators for low-frequency applications[J]. Journal of Sound and Vibration,2006,291:1004-1028.
    [11]. CRISTIANO SPELTA, FABIO PREVIDI, SERGIO M SAVARESI. Control ofmagnetorheological dampers for vibration reduction in a washing machine[J].Mechatronics,2009,19:410-421.
    [12]. SEUNG BOK CHOI, SUNG RYONG HONG, KUM GIL SUNG. Optimal control ofstructural vibrations using a mixed-mode magnetorheological fluid mount[J].International Journal of Mechanical Sciences,2008,50:559-568.
    [13]. BOUZIDANE, THOMAS M. An electrorheological hydrostatic journal bearing forcontrolling rotor vibration[J]. Computers and Structures,2008,86:463-472.
    [14]. TANDON, MALLIK A K. Performance characteristics of a vibration isolator withelectro-rheological fluids[J]. Journal of Sound and Vibration,1999,219(3):395-404.
    [15]. BIRMAN VICTOR. Shape memory elastic foundation and supports for passivevibration control of composite plates[J]. International Journal of Solids and Structures2008,45:320-335.
    [16]. SOLIMAN J I, HALLAM M G. Vibration isolation between non-rigid machines andnon-rigid foundations[J]. Journal of Sound and Vibration,1968,8(2):329-351.
    [17]. SCIULLI D, INMAN D J. Isolation design for a flexible system[J]. Journal of Soundand Vibration,1998,216(2):251-267.
    [18]. LI D B, YAN L H. Modal synthesis method for vibration isolation design of massiverotating machines resiliently supported by an elastic structure[J]. Journal of Soundand Vibration,2000,231(1):233-245.
    [19].宋孔杰.设备阻抗和支承结构阻抗对隔振效果的影响[J].噪声与振动控制,1984,6:33-45.
    [20]. GORMAN R M. Design and advantages of a two stages mounting systwm of majormachines in ship's engine rooms[J]. Shock and vibration Bulletin,1966,35(1):116-121.
    [21]. PAN J Q, HANSEN C H. Total power flow from a vibrating rigid to a thin panelthrough multiple elastic mounts[J]. Journal of Acoustic Society of American,1992,92(2):895-907.
    [22].沈荣瀛.船舶轮机振动噪声控制综述[J].机电设备,1999,(3):22-25.
    [23].吴广明,彭旭,沈荣瀛.多层隔振系统功率流研究[J].噪声与振动控制,2004,(3):1-4.
    [24].沈密群,严济宽.舰船浮筏装置工程实例[J].噪声与振动控制,1994,(1):21-23.
    [25].沈密群,严济宽.舰船浮筏装置工程实例(续一)[J].噪声与振动控制,1994,(3):45-48.
    [26].沈密群,严济宽.舰船浮筏装置工程实例(续二)[J].噪声与振动控制,1994,(5):45-48.
    [27].王成刚,张智勇,沈荣瀛.状态空间法在浮筏隔振系统响应分析中的应用[J].噪声与振动控制,1998,5:11-16.
    [28].孟青云.简单浮筏隔振系统隔振器的传递率特性分析[J].柴油机,2005,27(4):36-39.
    [29]. PAN JIE. Total power flow from a vibrating rigid body to a thin panel throughmultiple elastic mounts[J]. Journal of Acoustic Society of American,1992,92(2):895-907.
    [30].宋济平,牛军川,纪琳.复杂机械系统的隔振性能评估研究[J].噪声与振动控制,2006,(4):33-35.
    [31].陈明,陈秀珍,孙新占.大型组合式浮筏减振装置试验研究[J].舰船科学技术,2002,24(6):56-60.
    [32].赵兴锐,徐筱欣,王言正.两种浮筏隔振方案的比较分析[J].噪声与振动控制,2005,(3):18-21.
    [33]. HUI C K, NG C F. New floating floor design with optimum isolator location[J].Journal of Sound and Vibration,2007,303:221-238.
    [34].张关根,郭乃林,李江翔.浮筏减振降噪技术在某型海洋测量船上的应用[J].船舶,2000,(3):29-34.
    [35].温华兵,王国治.船舱浮筏系统的隔振性能及水下声辐射试验[J].船舶,2005,(4):12-16.
    [36].富喜,王国治.多扰动源下的船舶水泵机组隔振浮筏特性研究[J].华东船舶工业学院学报(自然科学版),2005,19(4):19-23.
    [37]. NIU JUNCHUAN, SONG KONGJIE, LIM C W. On active vibration isolation offloating raft system[J]. Journal of Sound and Vibration,2005,285:391-406.
    [38]. SUN YUGUO, SONG KONGJIE, MAO Y H. Dynamic analysis of an active flexiblesuspension system[J]. Journal of Sound and Vibration,2002,249(3):606-610.
    [39]. ZHAO YANYING, XU JIAN. Effects of delayed feedback control on nonlinearvibration absorber system[J]. Journal of Sound and Vibration,2007,308:212-230.
    [40]. LIU YANQING, HIROSHI MATSUHISA, HIDEO UTSUNO. Semi-active vibrationisolation system with variable stiffness and damping control[J]. Journal of Sound andVibration,2008,313:16-28.
    [41]. SUN TAO, HUANG ZHENYU, CHEN DAYUE. Signal frequency-based semi-activefuzzy control for two-stage vibration isolation system[J]. Journal of Sound andVibration,2005,280:965-981.
    [42].赵成,陈大跃.潜艇浮筏隔振系统的半主动模糊滑模控制[J].机械工程学报,2008,44(2):163-169.
    [43].童宗鹏,章艺,尚国清,等.舱筏隔振系统水下振动特性的理论分析与试验研究[J].振动与冲击,2005,24(6):71-74.
    [44].童宗鹏,王俊峰,尚国清,等.舱筏结构动态特性的理论与试验研究[J].噪声与振动控制,2006,(4):29-32.
    [45].钟章贵,余永丰,邓海华,等.整舱浮筏隔振系统功率流理论与试验研究[J].噪声与振动控制,2007,(3):24-27.
    [46].邓海华.整舱浮筏功率流测试初步分析研究[J].舰船科学技术,2006,28增刊(2):81-85.
    [47].余永丰,彭旭,刘远国.整舱浮筏全频段能量传递数值分析研究[J].舰船科学技术,2006,28增刊(2):77-80.
    [48]. TIMOSHENKO S P, YOUNG D H. Theory of Structures[M]. second edition. NewYork: MeGraw-Hill,1965.
    [49].李东旭.大型挠性空间桁架结构动力学分析与模糊振动控制[M].北京:科学出版社,2008.
    [50]. BONDARYK J E. Vibration of truss structures[J]. Journal of Acoustic Society ofAmerican,1997,102(4):2167-2175.
    [51]. KEANE A J, BRIGHT A P. Passive vibration control via unusual geometries:experiments on model aerospace structures[J]. Journal of Sound and Vibration,1996,190(4):602-608.
    [52]. ICHIRO ARIOA, ANDREW WATSON. Dynamic folding analysis for multi-foldingstructures under impact loading[J]. Journal of Sound and Vibration,2007,308:591-598.
    [53]. FLOTOW A H. Disturbance propagation in structural networks[J]. Journal of Soundand Vibration,1986,106(3):433-450.
    [54]. LEUNG R C N, PINNINGTON R J. Wave propagation through right-angled jointswith compliance-flexural incident wave[J]. Journal of Sound and Vibration,1990,142(1):31-46.
    [55]. GUO YUEPING. Effects of structural joints on sound scattering[J]. Journal ofAcoustic Society of American,1993,93(2):857-863.
    [56]. GUO YUEPING. Diffraction of flexural waves at structural joints[J]. Journal ofAcoustic Society of American,1994,95(3):1426-1434.
    [57]. YONG Y, LIN Y K. Dynamic response analysis of truss-type structured networks:Awave propagation approach[J]. Journal of Sound and Vibration,1992,156(1):27-45.
    [58]. MACHENS K, IRA DYER. Energy partitioning in a truss structure[J]. Acustica,1996,(1):1-2.
    [59]. BONDARYK J E, IRA DYER, LEO CHIASSON. Experimental measurements ofvibrational energy and acoustic radiation for a3-D truss (A). in the130th meeting ofAcoustic Society of American, Missouri,1995.
    [60]. NAYFEH S A, VARANASI K K. A model for the damping of torsional vibration inthin-walled tubes with constrained Viscoelastic layers[J]. Journal of Sound andVibration,2004,278:825-846.
    [61]. BINOD P YADAV. Vibration damping using four-layer sandwich[J]. Journal of Soundand Vibration,2008,317:576-590.
    [62]. FRICKE J R, HAYNER M A. Direct global stiffness matrix method for3-D trussdynamics[J]. in ASME15th Biennial Conference on Mechanical Vibration and Noise,Boston,1995.
    [63]. RUZZENE M. Vibration and sound radiation of sandwich beams with honeycombtruss core[J]. Journal of Sound and Vibration,2004,277:741-763.
    [64]. KOHRS TORSTEN, PETERSSON A T. Wave propagation in light weight profileswith truss-like cores: Wavenumber content, forced response and influence ofperiodicity perturbations[J]. Journal of Sound and Vibration,2007,304:691-721.
    [65]. ROMEO FRANCESCO, PAOLONE ACHILLE. Wave propagation in three-coupledperiodic structures[J]. Journal of Sound and Vibration,2007,301:635-648.
    [66]. DU YU, BURDISSO R A. Control of internal resonances in vibration isolators usingpassive and hybrid dynamic vibration absorbers[J]. Journal of Sound and Vibration,2005,286:697-727.
    [67]. ANTHONY D K, ELLIOTT S J. On reducing vibration transmission in atwo-dimensional cantilever truss structure using geometric optimization and activevibration control techniques[J]. Journal of Acoustic Society of American,2001,110(2):1191-1194.
    [68]. VLATTAS G, SONG S E, JOHNSON J. Active vibration control of a space trussusing a lead zirconate titanate stack actuator[J]. Proceeding of the Institution ofMechanical Engineers part: G,2001,215:355-361.
    [69]. LIU WEI, GAO WEICHENG, SUN YI. Optimal sensor placement for spatial latticestructure based on genetic algorithms[J]. Journal of Sound and Vibration,2008,317:175-189.
    [70]. CHATTERJEE S. Vibration control by recursive time-delayed accelerationfeedback[J]. Journal of Sound and Vibration,2008,317:67-90.
    [71]. GARDONIO P, ELLIOTT S J, PINNINGTON R J. Active isolation of structuralvibration on a multiple-degree-of-freedom system,Part I:the dynamics of thesystem[J]. Journal of Sound and Vibration,1997,207(1):61-93.
    [72].廖道训,黄孝成,陆永忠.多层隔振系统的动力学方程[J].中国机械工程,1999,10(12):1321-1324.
    [73].沈顺根,冷文浩,程贯一.带有复合结构的多层隔振系统振动传递及声辐射研究[J].中国造船,1997,(3):49-59.
    [74].关珊珊,陈美霞,陈乐佳,等.基于有限元动力计算的浮筏隔振系统功率流研究[J].舰船科学技术,2007,29(5):132-135.
    [75]. ZHANG KUN, SUN HONGLING. Calculation of vibratory power transmission ofcomplex floating raft system by FEM[J]. Journal university of science and technologyof china,2008,38(5):516-523.
    [76].伍先俊,朱石坚.基于有限元的功率流计算及隔振系统优化设计技术研究[J].船舶力学,2005,9(4):138-145.
    [77].王敏庆.非保守耦合系统的统计功率流理论及其应用[D].陕西西安:西北工业大学,1997.
    [78].柳瑞锋.浮筏隔振系统隔振效果统计能量分析估算方法[J].噪声与振动控制,2010,(2):34-37.
    [79]. SUN JINGCAI, LALOR N, RICHARDS E J. Power flow and energy balance ofnon-conservatively coupled structures[J]. Journal of Sound and Vibration,1987,112(2):321-343.
    [80]. WANG MINGQING, SHENG MEIPING, SUN JINGCAI. The direct and indirectpower flows of three non-conservatively series coupled oscillators[J]. Journal ofSound and Vibration,1998,212(2):231-251.
    [81]. SHENG MEIPING, WANG MINGQING, SUN JINGCAI. Effective internal lossfactors and coupling loss factors for non-conservatively coupled systems[J]. Journalof Sound and Vibration,1998,209(4):685-694.
    [82]. SHENG MEIPING, WANG MINGQING, SUN JINGCAI. Statistical energy analysisfor complicated coupled system and its application in engineering[J]. Journal ofSound and Vibration,2004,274:877-891.
    [83]. TOTARO N, GUYADER J L. SEA substructuring using cluster analysis: The MIRindex[J]. Journal of Sound and Vibration,2006,275:264-289.
    [84]. PARK W S, THOMPSON D J, FERGUSON N S. Variability of the coupling lossfactor between two coupled plates[J]. Journal of Sound and Vibration,2005,279:557-579.
    [85]. GEDLAT P, LALOR N. The role and experimental determination of equivalent massin complex SEA models[J]. Journal of Sound and Vibration,2002,255(1):97-110.
    [86].徐志云,吴崇健,付爱华.浮筏隔振效果估算方法研究[J].舰船科学技术,2006,28(2):64-68.
    [87]. GOYDER H G, WHITE R G. Vibration power flow from machines into built-upstructures I: Introduction and approximate analyses of beam and plate-likefoundations[J]. Journal of Sound and Vibration,1980,68:59-75.
    [88]. GOYDER H G, WHITE R G. Vibration power flow from machines into built-upstructures II: Wave propagation and power flow in beam-stiffened plates[J]. Journal ofSound and Vibration,1980,68:77-96.
    [89]. GOYDER H G, WHITE R G. Vibration power flow from machines into built-upstructures III: Power flow through isolation systems[J]. Journal of Sound andVibration,1980,68:97-117.
    [90]. PINNINGTON R I, WHITE R G. Power flow through machine isolators to resonantand non-resonant beams[J]. Journal of Sound and Vibration,1981,75(2):179-197.
    [91]. PETERSSON B, PLUNT J. On effective mobility in the prediction of structure-bornesound transmission between a source structure and a receiving structure Part I:Theoretical background and basic experimental studies[J]. Journal of Sound andVibration,1982,82(4):517-529.
    [92]. PETERSSON B, PLUNT J. On effective mobility in the prediction of structure-bornesound transmission between a source structure and a receiving structure Part II:Procedures for the estimation of mobility[J]. Journal of Sound and Vibration,1982,82(4):531-540.
    [93]. PINNINGTON R J. Vibration power flow transmission to a seating of vibrationisolated motor[J]. Journal of Sound and Vibration,1987,118(3):515-530.
    [94]. XIONG YEPING, XING J T, PRICE W G. Power flow analysis of complex coupledsystems by progressive approaches[J]. Journal of Sound and Vibration,2001,239(2):275-295.
    [95]. JI L, MACE B R, PINNINGTON R J. Estimation of power transmission to a flexiblereceiver from a stiff source using a power mode approach[J]. Journal of Sound andVibration,2003,268:525-542.
    [96]. GARDONIO P, BRENNAN M J. On the origins and development of mobility andimpedance methods in structural dynamics[J]. Journal of Sound and Vibration,2002,249(3):557-573.
    [97]. CREMER L, HECKL M, PETERSSON B A T. Structure-Borne Sound[M]. SpringerGermany,2005.
    [98]. ZHANG XIAOCI, LI G H, PAN JIANQIANG. Calculation of power flowtransmission for a common floating raft shared by several ship machines[J]. Journalof Ship Researeh,2001,5(3):89-94.
    [99].孙玲玲,宋孔杰.浮筏隔振系统功率流特性分析[J].应用力学学报,2003,20(3):99-102.
    [100].行晓亮,王敏庆,宋代科.弹性基座浮筏的导纳功率流研究[J].机械科学与技术,2005,24(7):761-763.
    [101]. MOLLOY C T. Use of Four-Pole parameters in vibration calculation[J]. Journal of theacoustical society of America,1957,29(7):842-853.
    [102]. SNOWDON J C. Mechanical four-pole parameters and their application[J]. Journal ofSound and Vibration,1971,15(3):307-323.
    [103].刘鹏辉,张勋疆.基于四端参数分析的弹性基础隔振系统的导纳功率流[J].东北电力大学学报,2006,26(6):5-9.
    [104].张冰,宋孔杰,孙玲玲,等.浮筏隔振系统的传递功率流研究[J].噪声与振动控制,2002,(6):3-5.
    [105].冯德振,孙玲玲,宋济平.复杂隔振系统功率流求解策略的研究[J].山东工业大学学报,2002,32(1):19-21.
    [106]. HAK J Y, KIM J. Analysis of mimo mechanical systems using the vectorial four poleparameter method[J]. Journal of Sound and Vibration,1995,180(2):333-350.
    [107]. DICKENS J D. Dynamic model of vibration isolator under static load[J]. Journal ofSound and Vibration,2000,236(2):323-337.
    [108]. DICKENS J D, NORWOOD C J. Universal method to measure dynamic performanceof vibration isolators under static load[J]. Journal of Sound and Vibration,2001,244(4):685-696.
    [109]. ZHANG FENG, BAI ZHENGUO, XU SHUHAO, et al. Investigation of vibrationpower flow in a floating raft isolation system using vectorial four pole parametric[J].The4th international conference on mechanical engineering and mechanics, Suzhou,China,2011.
    [110]. RAYLEIGH, LORD. The theory of sound[M]. Dover Publication, Second edition,New York,1945.
    [111]. JUNGER M C. Vibration sound and their interaction[M]. The MIT Press, Cambridge,Mass,1972.
    [112]. SHELTON E A, JAMES J H. Theoretical acoustics of underwater structures[M].Imperial College Press,1997.
    [113].曾革委.潜艇结构辐射噪声的建模、求解及其声特性研究[D].湖北武汉:华中科技大学,2002.
    [114].谢官模,李军向,罗斌.环肋、舱壁和纵骨加强的无限长圆柱壳在水下的声辐射特性[J].船舶力学,2004,8(2):101-108.
    [115].吴文伟,吴崇健,沈顺根.双层加肋圆柱壳振动与声辐射研究[J].船舶力学,2002,6(1):44-51.
    [116]. YOSHIKAWA S. Vibration of two concentric submerged cylindrical shells coupled bythe entrained fluid[J]. Journal of Acoustic Society of American,1994,95(6):3273-3286.
    [117]. WILLIAMS W. Acoustic radiation from a finite cylinder[J]. Journal of AcousticSociety of American,1964,36(12):2316-2322.
    [118]. BUTLER J L. Solution of acoustical-radiation problems by boundary collocation[J].Journal of Acoustic Society of American,1970,48(1):325-336.
    [119]. STEPANISHEN P R. Radiated power and radiation loading of cylindrical surfaceswith nonuniform velocity distributions[J]. Journal of Acoustic Society of American,1978,63(2):328-338.
    [120]. STEPANISHEN P R. Modal coupling in the vibration of fluid-loaded cylindricalshells[J]. Journal of Acoustic Society of American,1982,71(4):813-823.
    [121]. LAULAGNET B, GUYADER J L. Modal analysis of a shell's acoustic radiation inlight and heavy fluids[J]. Journal of Sound and Vibration,1989,131(3):397-415.
    [122]. GUYADER J L, LAULAGNET B. Structural acoustic radiation prediction:Expanding the vibratory response on a functional basis[J]. App1ied Acoustics,1994,43:247-169.
    [123]. WANG C, LAI J C. The sound radiation efficiency of finite length circular cylindricalshells under mechanical excitation, II: Limitations of the infinite length model[J].Journal of Sound and Vibration,2001,241(5):825-838.
    [124]. MATTEI P O. Sound radiation by a baffled shell: comparison of the exact and anapproximate solution[J]. Journal of Sound and Vibration,1995,188(1):111-130.
    [125].陈美霞,骆东平,陈小宁,等.有限长双层壳体声辐射理论及数值分析[J].中国造船,2003,44(4):59-67.
    [126].白振国,俞孟萨.多层声学覆盖层复合的有限长双层弹性圆柱壳声辐射特性研究[J].船舶力学,2007,11(5):788-797.
    [127]. BURROUGHS C B, HALLANDER J C. Acoustic radiation from fluid-loaded ribbedcylindrical shells excited by different types of concentrated mechanical drives[J].Journal of Acoustic Society of American,1992,91(5):2721-2739.
    [128]. GUO YUEPING. Radiation from cylindrical shells driven by on-surface forces[J].Journal of Acoustic Society of American,1994,95(4):2014-2021.
    [129]. GUO YUEPING, FELSEN L B. Wave-number spectrum and normal mode solutionfor sound scattering from internally loaded cylindrical shells[J]. Journal of AcousticSociety of American,1993,94(2):896-899.
    [130]. GUO YUEPING. Sound scattering from cylindrical shells with internal elasticplates[J]. Journal of Acoustic Society of American,1993,93(4):1936-1946.
    [131]. LI D S, CHENG L, GOSSELIN C M. Analysis of structural acoustic coupling of acylindrical shell with an internal floor partition[J]. Journal of Sound and Vibration,2002,250(5):903-921.
    [132]. GUO YUEPING. Sound scattering from an internally loaded cylindrical shell[J].Journal of Acoustic Society of American,1992,91(2):926-938.
    [133].刘涛.水中复杂壳体的声-振特性研究[D].上海:上海交通大学,2002.
    [134]. CHENG L, NICOLAS J. Free vibration analysis of a cylindrical shell-circular platesystem with general coupling and various boundary conditions[J]. Journal of Soundand Vibration,1992,155(2):231-247.
    [135]. HUANG D T, SOEDEL W. On the free vibration of multiple plates welded to acylindrical shell with special attention to mode pairs[J]. Journal of Sound andVibration,1993,166(2):315-339.
    [136]. CHOI S H, IGUSA T, ACHENBACH J D. Nonaxisymmetric vibration and acoustic ofsubmerged cylindrical shell of finite length containing internal substructures[J].Journal of Acoustic Society of American,1995,98(1):353-362.
    [137]. YU MENGSA, HE ZUOYONG. The vibration and acoustic radiation of a thin elasticstiffened cylindrical shell of finite length[J]. The Chinese Society of NavalArchitecture and Marine Engineering,1990.
    [138].商德江.复杂弹性壳体水下结构振动和声场特性研究[D].黑龙江哈尔滨:哈尔滨工程大学,2000.
    [139]. LINDA P FRANZONI, CHRISTOPHER D PARK. An illustration of analyticalnumerical matching with finite-element analysis for structural vibration problems[J].Journal of Acoustic Society of American,2000,108(6):2856-2864.
    [140]. CHRISTOPHER D PARK, LINDA P FRANZONI, DONALD B BLISS. Analyticalnumerical matching for fluid-loaded structures with discontinuities[J]. Journal ofAcoustic Society of American,2004,116(5):2956-2968.
    [141].邹元杰,赵德有.水下结构声固耦合振动的特征值计算[J].船舶力学,2004,8(2):109-120.
    [142]. LAGIER, STEIEHEN W. Modeling of surface ship noise using FEM and BEM[J].UDT,1992,92:128-133.
    [143]. JOHN T HUNT, MAX R KNITTEL, DON BARACH. Finite element approach toacoustic radiation from elastic structures[J]. Journal of Acoustic Society of American,1974,55(2):269-280.
    [144]. JOHN T HUNT, MAX R KNITTEL, CHARLES S NICHOLS. Finite-elementapproach to acoustic scattering from elastic structures[J]. Journal of Acoustic Societyof American,1975,57(2):287-299.
    [145].杨德森,王三德,时胜国,等.水下复杂壳体的声学相似性研究[J].哈尔滨工程大学学报,2005,26(3):174-178.
    [146].时胜国,杨德森,何元安.水下结构辐射噪声工程估算方法研究[J].哈尔滨工程大学学报,2002,23(1):91-94.
    [147].汤智胤,徐荣武,何琳.水下航行器声隐身状态快速评估方法[J].海军工程大学学报,2011,23(1):77-83.
    [148]. FRANK FAHY, PAOLO GARDONIO. Sound and structural vibration[M]. UK:Elsevier,2007.
    [149].隔振元件机械阻抗测试方法Q/702J4101—2004[S].中船重工集团公司第七0二研究所企业标准,2004.
    [150].汤渭霖,何兵蓉.水中有限长加肋圆柱壳体振动和声辐射近似解析解[J].声学学报,2001,26(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700