用户名: 密码: 验证码:
碱浸—电解法资源化处理氧化型含锌危险废料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化型含锌危险废物会对环境造成严重的危害,因此无害化、资源化处理氧化型含锌危险废物势在必行,本着改善环境质量,缓解锌需求量急剧增加与锌精矿资源日趋枯竭的矛盾、克服传统湿法提锌工艺的缺陷目的,本论文基于锌的强碱介质选择性浸出、低电解能耗优势,对氧化型含锌危险废物的碱浸—净化—电解—苛化生产金属锌粉技术展开了系统地研究。通过优化浸取条件、彻底净化杂质、高值化电积回收等技术,使碱浸—电解工艺的工业化应用取得良好环境和经济效益,并得到以下主要结论:
     (1)构建了Zn(Ⅱ)-NaOH-H2O体系热力学模型,在强碱性溶液中,锌是以zn(OH)42-和ZnO22-形式存在的,并确定了锌的平衡浓度与碱浓度的关系,用实验进行验证,测得在不同碱浓度下,锌的平衡浓度计算值和实验值相对偏差的绝对平均值为0.1298%,说明热力学模型是正确的。
     (2)氧化型含锌废料强碱浸取时,含锌烟灰原料最佳浸出条件为:NaOH浓度6mol/L、温度90℃、浸出时间120min、液固比10:1、颗粒直径100~160目、搅拌速率为300r/min,锌浸出率可达90%以上:ZnCO3原料最佳浸取条件为:NaOH浓度6mol/L、温度90℃、浸出时间120min、液固比10:1、颗粒直径100~160目、搅拌速率450r/min,锌浸出率超过90%;Zn2Si04原料最佳浸取条件为:NaOH浓度8mol/L、温度90℃、浸出时间240min、液固比8:1、颗粒直径100-160目、搅拌速率450r/min,锌浸出率接近85%。浸取参数对锌浸出影响大小的顺序分别为:ZnO原料,R>T>CNaOH>D>t>V;ZnC03原料,R>T>V>D>CNaOH>t;Zn2Si04原料,t>V>T>R>CNaOH>D。
     (3)含锌烟灰在强碱性溶液中的活化能为42.00kJ/mol、碳酸锌矿的活化能为43.15kJ/mol,表明碱浸取含锌烟尘和碳酸锌矿过程主要受化学反应控制;硅酸锌矿在碱溶液中的浸出过程分为两段,在0~10min内其活化能为13.59kJ/mol,表明在浸取开始段内是受内扩散控制,浸出后端其活化能为31.86kJ/mol,表明浸取后段的过程是受化学反应和内扩散共同控制。
     (4)硫化钠可选择性定量分离强碱性溶液中的铅锌,并发现硫酸铁、硫酸钠、氧化钙对强碱性溶液中的砷、铝等杂质具有一定的净化作用,以此提出了浸出液深度净化工艺:将浸取液升温到70℃,加入硫化钠,硫化钠的加入量为浸取液中铅含量的1.8倍(质量比),搅拌1.5h;加入硅酸钠,硅酸钠的加入量为每升浸取液1.5g,搅拌1h;加入硫酸铁,硫酸铁的加入量为每升浸取液1g,搅拌1h;再加入石灰,石灰的加入量为硫化钠加入量的0.8倍,搅拌1h;静置4h,过滤,输送入陈化池陈化48小时后电解。
     (5)对Zn(Ⅱ)-NaOH-H2O体系中锌电积理论分解电压进行了计算,在强碱性溶液中锌电积的理论分解电压为1.728V,比传统硫酸锌溶液锌电积分解电压低0.352V;其锌电积的最佳工艺条件为:电流密度800~1000A/m2,碱浓度180~200g/L,电解温度30-50℃,锌浓度30-40g/L,电流效率可达99%以上,电能耗为2.38kWh/kg锌粉;锌在阴极板上析出时,增加电流密度、降低溶液温度,锌粉从麦穗状向具有更大比表面积的薄片状转变;增大电解液碱浓度,锌粉从薄片状向层状、石块状转变;电解液锌浓度越大,越易形成粒径较大的锌粉。
     (6)研究了As、Cl-、SiO32-、SO42、CO32-、F-、Al、Pb、 Mg、Fe、Ni、Mn、Ca、Cd、Cr、Cu等对电解金属锌粉的影响,确定电解液中杂质许可的浓度范围。
     (7)提出了废电解液的苛化处理工艺:在废电解液中加入碱,使碱浓度达到350g/L,通过提高碱浓度使碳酸钠和一些杂质结晶生成沉淀。在沉淀中加入洗渣水等废水,控制苛化液的碱浓度在80-100g/L范围内,碳酸钠的浓度在40g/L以上。苛化工艺参数确定为:氧化钙的加入量为理论值的1.5~1.8倍;温度为90℃;苛化时间为30min;废电解液经过苛化处理后,1m3的废电解液可苛化出约28kg碱,废电解液在经过苛化处理后,废液中的铁、铜、镁、锰、镉、铬等重金属的去除率在10-40%左右,对砷的去除率达到62%,废电解液苛化工艺具有较好的除杂效果。
     (8)设计了年处理1万吨氧化型含锌危险废料再生加工厂,对磨矿、浸取、净化、电解、锌粉清洗干燥粉碎工艺段的设备进行了最优化设计。根据设计建成的某锌废料再生加工厂锌浸取率达到90%以上,生产的金属锌粉能达到国家锌粉二级标准,运营状况良好。
     (9)经过碱浸处理的氧化型含锌危险废料变为一般固体废弃物,实现了无害化,对环境的危害大大降低。
     总之,无论从经济效益、环境效益还是社会效益方面含锌危险废物的碱浸—电解—制备金属锌粉工艺比传统锌粉生产方法更具有竞争优势,它可以利用酸法炼锌不能利用的含氟、氯、硅的贫杂氧化锌矿和含锌废料,是氧化型含锌危险废料的全湿法清洁工艺,具有广阔的工业化应用前景。
Zinc oxidation hazardous wastes will be harmful to the environment, so harmless and resource treatment on these materials is necessary.In order to improve the environmental quality,alleviate the demand for increased sharply of zinc resource,overcome the defect of tradition wet mention,so processing zinc oxidation hazardous wastes for zinc production is becoming more attractive. Among possible alternative technologies, the alkaline leaching and electrolysis process deserves attention. The Zn in zinc oxide wastes and ores can be leached selectively in NaOH solution, and then be recovered as metallic zinc by electrowinning which offering a significant energy saving over the conventional sulfate process.
     In this work, the alkaline leaching and electrolysis process was in-depth studied. The leaching parameters were observed and optimized, the impurities in leach solution were removed, Zn recovered as high-value-added metallic zinc powder, and the integrated alkaline process was thus developed, using the oxidized zinc wastes and ores at industrial scale, with a good economic and environmental benefits. The main conclusions were as follows:
     (1) A thermodynamic model of the system of Zn(Ⅱ)-NaOH-H2O was set up, Zn(Ⅱ) is existed as Zn(OH)42-and ZnO22-in the Zn(Ⅱ)-NaOH-H2O system, the molde between the zinc equilibrium concentration of zinc and the concentration of alkaline was constructed. The absolutely average error between experimental values and theoretically calculated values of zinc equilibrium concentration was found to be0.1298%using the solubility test of ZnO in the alkaline solution, showing the model developed should be reliable.
     (2) The effects of sodium hydroxide concentration, phase ratios (v/w), reaction, temperature, leaching time, particle size, stirring speed on leaching rate of zinc in sodium hydroxide solution were investigated. The optimum conditions varied for different raw materials. For the wastes bearing zinc, the optimum conditions were found to be a temperature of90℃, NaOH concentration of6mol/L, phase ratios (v/w) of10:1, and leaching time of120minutes, stirring speed of300r/min; and for smithsonite, to be a temperature of90℃, NaOH concentration of6mol/L, phase ratios (v/w) of10:1, and leaching time of120min, less than0.125mm of particle size, stirring speed of450r/min; while for willemite, to be a temperature of90℃, NaOH concentration of8mol/L, phase ratios (v/w) of8:1, and leaching time of240min, less than0.125mm of particle size, stirring speed of450r/min.
     (3) The leaching reaction kinetics of waste bearing zinc, smithsonite, and willemite in alkaline solution were studied. For waste bearing zinc and smithsonite, the apparent activation energy was obtained to be42kJ/mol and43.15kJ/mol from an Arrhenius plot. For willemite, during the early stage of leaching reaction the apparent activation energy of13.59kJ/mol; while in the later stage, the apparent activation energy of31.86kJ/mol. Thus, it indicated that the leaching mechanism of willemitethe changes from inner diffusion control to mixed control, during the leaching process in alkaline solution.
     (4) In depth purification of leach solution was explored. Sodium sulphide, sodium silicate, ferric sulfate and lime were used as purification agents. When the weight ratio of sodium sulphide/Pb was1.8,1.5g/L sodium silicate,1g/L ferric sulfate and weight ratio of lime/sodium sulphide of0.8were used, a high purity of zinc powder can be electrowon.
     (5) The theoretical voltage of alkaline zinc electrowinning is much lower than acidic electrowinning process. The optimum conditions of electrodeposition was that Current density of800-1000A/m2, NaOH concentration of180-240g/L, temperature of30-50℃, Zn concentration of30-40g/L. The current efficiency was99%and consumption of Power was only2.38kWh/kg Zn under the optimum conditions. The morphology of Zn on cathode changed from grain shape to thin slice if increasing current density and reducing solution temperature, the morphology of Zn changed from thin slice to Layered if increasing alkaline concentration.
     (6) The effects of various cation metal ions and anion ions on the electrowinning of metallic zinc powder from the alkaline solution was studied in detail. It was found that top impurities contents in the electrowinning solution should be controlled so that a high quality of zinc powder can be obtained.
     (7) Causticization of spent zinc electrolyte was conducted, by adding caustic soda into the spent electrolyte to make the concentration of caustic soda to350g/L so that the sodium carbonate and impurity ions can be thus separated from the solution. The precipitates separated from the process was then dissolved using the zinc-powder-washing wastewaters, with the concentrations of NaOH and sodium carbonate in the solution at80-100g/L and above40g/L, as well as at the conditions of temperature of90℃, reaction time of30min, lime1.5-1.8times of the theoretical value. As a result,28kg NaOH can be re-generated from each cubic meter solution, while some Fe、Cu、Mn、Mg、Cr、Cd and As can be removed simultaneously.
     (8) The process developed has been successfully at several plants with a scale of2000tons of metallic zinc powder annually. The long-term industrial operations have been shown that the process can use any raw materials containing Cl, F, Si, Fe, As, Cu, etc., except for zinc sulfides. Hence, the process is quite different to the acidic process and can apply the raw materials that the acidic process is unable to apply.
     (9) Zinc oxidation hazardous wastes change into general solid wastes after alkali extraction and it fulfils the requirement of waste disposal in harmlessness and reuse.
     In a word, whether from the economic benefits, environmental benefits or social benefit the process of alkaline leaching-electrowinning-preparation zinc powder has more competitive advantagea than traditional Zinc powder production methods, it can deal with the materials containing fluorine, chlorine, silicon which acid method can't deal with, it is a wet-cleaner process and has a bright prospects for industrial application.
引文
[1]李勇,王吉坤,任占誉,等.氧化锌矿处理的研究现状[J].矿冶,2009,18(2):57~63
    [2]Jha M K, Kumar V, Singh R J. Review of hydrometallurgical recovery of zinc from industrial wastes[J]. Resources, Conservation and Recycling,2001,33-22
    [3]郭天立,未立清.二次锌资源回收行业的发展方向分析[J].中国有色冶金,2010,(6):56~59
    [4]严海锦.含锌废料种类与回收技术及应用研究[J].广东化工,2010,37(6):283~284
    [5]曾樊华.冶锌工业废渣中铅、锌、铜、镉提取工艺的研究[D].广州:广东工业大学,2003
    [6]Jean S T, Dominique L P. Electrowinning of zinc from alkaline solutions [J]. Journal of Applied Electrochemistry,1986, (16):447-456
    [7]Frenay J. Leaching of oxidized zinc ore in various media[J]. Hydrometallurgy, 1985,15:243-253.
    [8]刘三军,欧乐明,冯其明.氧化锌矿的碱法浸出研究[J].矿产保护与利用,2004(4):39~43
    [9]郭翠香,张承龙,刘清,等.含锌铅废物碱法浸出工艺[J].环境污染与防治,2007,29(9):697~700
    [10]Feng L Y, Yang, X W, Shen, Q F, Xu, M L, Jin, B J. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores[J]. Hydrometallurgy,2007,89 (3-4):305-310
    [11]张承龙,郭翠香,刘清,等.含锌危险废物碱法浸出处理研究[J].铀矿冶,2008,27(1):53~56
    [12]国家环保部,国家质量监督检验检疫总局.GB5085.3~2007.危险废物鉴别标准-浸出毒性鉴别.北京:中国环境科学出版社,2007
    [13]奚甡.世界铅锌资源开发现状及其利用[J].有色金属通报,2009,(37):132~133
    [14]陈喜峰,彭润民.中国铅锌矿资源形势及可持续发展对策[J].有色金属,2008,60(3):129-132
    [15]曹异生.近年铅锌矿业进展及前景展望[J].中国金属通报,2007,(30):31-34
    [16]陈甲斌.铅锌产业链结构状况及海外资源战略[J].地质学刊,2009,33(1): 102-107
    [17]马茁卉.我国锌资源形势分析及可持续利用[J].当代经济,2010,(10):94~95
    [18]胡德勇.金融危机下我国铅锌工业的结构调整[J].中国有色金属,2009,(14):36~39
    [19]葛振华.我国铅锌资源现状及未来的供应形势[J].世界有色金属,2003(9):4-7
    [20]马永刚.铅锌精矿短缺制约我国铅锌工业长足发展[J].世界有色金属,2002,(2):14-15
    [21]奚甡.世界铅锌矿山生产情况及产能变化趋势[J].世界有色金属,2011,(5):21~25
    [22]Fuerstenau M C, Olivas S A, Herrera-Urbina. The surface characteristics and flotation behavior of anglesite and cerussite[J]. International Journal of Mineral Processing 20,1987,73-85
    [23]Fuerstenau M C, Miller J D, Kuhn MC,1985. In:Chemistry of Flotation, Chemistry of Flotation[C]. Society of Mining Engineers, AIME, Littleton, CO, p.177
    [24]Pereira C A, Peres A E C,2005. Reagents in calamine zinc ores flotation[J]. Minerals Engineering 2005,18(2):275-277
    [25]巫銮东,于润存.氧化锌浮选研究进展[J].采矿技术,2008,8(6):96~98
    [26]毛素荣,杨晓军,何剑,等.氧化锌矿浮选现状及研究进展[J].国外金属矿选矿,2007(4):4~6
    [27]Onal G, Bulut G, Giil A, Kangal O, Perek K T, Arslan F. Flotation of Aladag oxide lead-zinc ores[J]. Minerals Engineering,2005,18:279-282
    [28]Liu Y, Wang J k, Wei C, Liu C X, Jiang J B, Wang F. Sulfidation roasting of low grade lead-zinc oxide ore with elemental sulfur[J]. Minerals Engineering,2010,23:563-566
    [29]夏志美,陈艺峰,王宇菲,等.低品位氧化锌矿的湿法冶金研究进展[J].湖南工业大学学报,2010,24(10):9-12
    [30]徐红江,张延安.低品位氧化锌矿冶金进展[J].有色冶金,2009,25(2):28~30
    [31]陈永海,覃文庆,黄红军.高硅氧化锌矿酸浸脱硅过程研究进展[J].湖南有色金属,2005,21(1):14-16
    [32]林柞彦,华一新.高硅氧化锌矿硫酸浸出的工艺及机理研究[J].有色金属(冶炼部分),2003,(5):9-11,23
    [33]彭金辉,刘纯鹏.微波场中FeCl3溶液浸出闪锌矿动力学[J].中国有色金属学报,1992,2(1):46~49
    [34]李运妓,李洪桂,孙培梅,等.湿法炼锌浸出渣的处理[J].中南工业大学学报,1996,27(6):671-675
    [35]Rashehi F, Dashti A, ArabPour-YAzdi M, etal. Anglesite fotation:a study for leading recovery from zine leaeh residue[J]. Minerals Engineering,2005(18): 205-212
    [36]曾樊华.冶金工业废渣中铅、锌、铜、镉提取工艺的研究[D].广州:广东工业大学,2003
    [37]马燕.热镀锌渣电解精炼制取纯锌[D].上海:上海大学,2003
    [38]Kelebek S, Yoruk S, Davis B. Characterization of basic oxygen furnace dust and zinc removal by acid leaching[J]. Minerals Engineering,2004,17(2):285-291
    [39]田永淑.用含锌废渣生产锌盐系列产品[J].中国资源综合利用,2003,(9):12-14
    [40]Turan M D. Recovery of zinc and lead from zinc plant residue[J]. Hydrometallurgy,2004,75:169-177
    [41]Zeydabadi B A, Mowla D. Zinc recovery from blast furnace flue dust[J]. Hydrometallurgy,1997,47:113-125
    [42]杨声海,唐漠堂.由氧化锌烟灰生产高纯锌工艺研究[J].中国有色金属学报,2001,11:110-113
    [43]付一鸣,顾立民,王德全.铅烟化炉氧化锌烟尘选择性氯化焙烧脱氟氯的研究[J].有色矿冶,1998,3:22-25
    [44]唐谟堂,张鹏,何静,等.Zn(Ⅱ)-(NH4)2S04-H20体系浸出锌烟尘[J].中南大学学报(自然科学版),2007,38(5):867-872
    [45]李岚,徐家振,贺家齐,等.氧化锌烟尘脱氯研究[J].中国有色金属学报,1998,8:409-411
    [46]孙永峰.浮选尾矿中锌资源的综合利用试验研究[D],昆明:昆明理工大学,2002
    [47]Clyde S, Brooks.废锌灰的湿法冶金处理[J].四川有色金属,1996,3:19-24
    [48]高保军.锌冶炼技术现状及发展探讨[J].中国有色冶金,2008,(1):12~16
    [49]刘志宏.国内外锌冶炼技术的现状及发展动向[J].世界有色金属,2000,(1):23~26
    [50]孙德堏.国内外锌冶炼技术的新进展[J].中国有色冶金,2004,(3):1-4
    [51]蒋继穆.我国锌冶炼现状及近年来的技术进展[J].中国有色冶金,2006,(5): 19~23
    [52]杨大锦,廖元双,徐亚飞,等.锌冶金工艺概述[J].云南冶金,2002,(12):22-26
    [53]蒋继穆.我国锌冶炼工业进展概况[J].中国有色建设,2007,(2):33-36
    [54]Masahiro T, Harutoshi K. Zinc-lead smelting and refining at Sumitomo Harima Works[J]. Journal of Mining and Metallurgical Institute of Japan,1995,12(1): 77-95
    [55]Masakazu M. Zinc-lead smelting at Hachinohe Smelter[J]. Journal of Mining and Metallurgical Institute of Japan,1995,12(1):39-50
    [56]郭天立,高良宾.当代竖罐锌技术述评[J].中国有色冶金,2007,(1):5-6
    [57]傅志华,蒋绍坚,周乃君.竖罐蒸馏炼锌的节能技术[J].冶金能源,1995,14(2):32~36
    [58]陈志强.论降低长沙锌厂竖罐渣含锌的主要途径[J].湖南有色金属,1999,15(1):26~29
    [59]高良宾.葫芦岛锌厂竖罐炼锌70年回望[J].中国有色冶金,2007,(1):1-4
    [60]Hideo S, Norio T, Hiroki K. Recent operational improvements in the ISP plant[J]. Journal of Mining and Metallurgical Institute of Japan,1996,13(1):154-165
    [61]李夏林.韶冶铅锌密闭鼓风炉系统技术改造实践[J].有色冶炼,2001,(5):12~15
    [62]王志刚.密闭鼓风炉炼铅锌技术改进及展望[J].湖南有色金属2003,19(6):19~22
    [63]藩恒礼,杨尚锋,高永学.葫芦岛锌厂铅锌密闭鼓风炉工程综述[J].中国有色冶金,2007,(2):7-10
    [64]赵晓声.ISP炼锌铅技改清洁生产评价[J].工程设计与研究,2007,(123):11-19
    [65]梅光贵,王德润,等.湿法炼锌学[M].长沙:中南大学出版社,2001
    [66]邱竹贤.有色金属冶金学[M].北京:冶金工业出版社,1988
    [67]兰兴华.硫化锌精矿流化床焙烧过程中的矿物形态变化[J].世界有色金属,2005,(12):20~22
    [68]Elgersma F, Witkamp G J, Van Rosmalen G. Simultaneous dissolution of zinc ferrite and precipitation of ammonium jarosite[J]. Hydrometallurgy,1993, 34(1):23-47
    [69]Dutrizac J E. Effectiveness of jarosite species for precipitating sodium jarosite[J]. Journal of Operations Management,1999,51(12):30-32
    [70]Dutrizac J E. The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite[J]. Hydrometallurgy,1996,42(3):293-312
    [71]赵永,蒋开喜,王德全,等.用针铁矿法从锌焙烧烟尘的热酸浸出液中除铁[J].有色金属(冶炼部分),2005,(5):13~15
    [72]王顺才,张豫.热酸浸出黄钾铁矾工艺的生产实践[J].有色冶炼,2001,(2):19~22
    [73]陈阳.湿法炼锌中铁的行为、作用及控制[J].湖南有色金属,2006,22(3):30~32
    [74]钟竹前,梅光贵,李云瑶,等.高温锌焙砂热酸浸出-亚硫酸锌还原-针铁矿法试验研究[J].有色金属,1981,(1):82-87
    [75]Vakil S. Technological innovation in the zinc electrolyte purification process of a hydrometallurgical zinc plant through reduction in zinc dust consumption [J]. Hydrometallurgy,1996,40 (1):247-262
    [76]郭天立,高良宾.硫酸锌溶液净化技术的现状与展望[J].有色矿冶,2006,22(1):26~28
    [77]V Vander Pas, Dreisinger D B. A fundamental study of cobalt cementation by zinc dust in the presence of copper and antimony additives[J]. Hydrometallurgy, 1996,43(1):187-205
    [78]Raghavan R, Mohanan P K, Verma S K. Modified zinc sulphate solution purification technique to obtain low levels of cobalt for the zinc electrowinning process[J]. Hydrometallurgy,1999,51(2):187-206
    [79]Trina M D, Amy N, George P D, et al. The kinetics of cobalt removal by cementation from an industrial zinc electrolyte in the presence of Cu, Cd, Pb, Sb and Sn additives[J]. Hydrometallurgy,2001,60(2):105-116
    [80]陈敬阳.锌湿法冶炼中高钴矿的处理[J].材料研究与应用,2007,1(1):69~71
    [81]刘芝勇,刘显彬,高良宾.湿法炼锌净化钴渣处理工艺的改进[J].中国有色冶金,2006,35(3):37~38
    [82]周新海.株冶锌Ⅱ系统净化工序的技术改造[J].湖南有色金属,2008,24(6):19~22
    [83]谢维新.湿法炼锌中电解锌溶液除氟的研究[J].广西民族学院学报,1996,9:26-30
    [84]Rashkov S, Dobrev T, Noncheva Z, et al. Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes [J]. Hydrometallurgy,1999,52(3):223-230
    [85]Lupi C, Pilone D. New lead alloy anodes and organic depolarizer utilization in zinc electrowinning[J]. Hydrometallurgy,1997,44(3):347-358
    [86]Petrova M, Noncheva Z, Dobrev T, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behavior of lead alloys in their capacity as anodes during the electroextraction of zinc I Behavior of Pb-Ag, Pb-Ca and Pb-Ag-Ca alloys[J]. Hydrometallurgy,1996,40(3):293-318
    [87]Ivan I. Increased current efficiency of zinc electrowinning in the presence of metal impurities by addition of organic inhibitors[J]. Hydrometallurgy,2004, 72(1):73-78
    [88]Besteti M, Ducati U. Use of catalytic anodes for zinc electrowinning at high current densities from purified electrolytes[J]. Canadian Metallurgical Quarterly, 2001,40:451-458
    [89]Saba A E, Elsherief A E. Continuous electrowinning of zinc[J]. Hydrometallurgy,2000,54(2):91-106
    [90]Liana M, Maurin G, Oniciu L, et al. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte[J]. Hydrometallurgy,1996,43 (1): 345-354
    [91]魏昶,何蔼平,任国民.锌电积过程中杂质行为及其相互反应[J].昆明理工大学学报,1996(21):71~74
    [92]颜炜.湿法炼锌中电解过程添加剂的选择[J].四川有色金属,2004(3):40~42
    [93]Gely R, Corriou J P, Viers P. Thermodynamic and kinetic study of the pressure leaching of zinc sulfide in aqueous sulfuric acid[J]. Hydrometallurgy,1988(21): 85-102
    [94]Harvey T I, Yen W T. Influence of chalcopyrite, galena and pyrite on the selective extraction of zinc from base metal sulphide concentrates [J]. Minerals Engineering,1998,11(1):1-21
    [95]Krysa B D. Zinc pressure leaching at HBMS[J]. Hydromemlurgy,1995,39 (1): 71-77
    [96]Baldwin S A, Demopoulos G P, Papangelakis V G. Mathematical modeling of the zinc pressure leach process[J]. Metallurgical and Materials Transactions, 1995,26(5):1035-1047
    [97]Buban K R, Collins M J, Masters I M. Iron control in zinc pressure leach processes[J]. Journal of Operations Management,1999,51(12):23-25
    [98]Ozberk E, Jankola W A, Vecchiarelli M, et al. Commercial operations of the Sherritt Zinc pressure leach process[J]. Hydrometallurgy,1995,39(1):49-52
    [99]Jankola W A. Zinc pressure leaching at Cominco[J]. Hydrometallurgy,1995, 39(1):63-70
    [100]高良宾,赫冀成,徐红江.硫化锌精矿加压酸浸新工艺研究[J].有色矿冶,2007,23(4):33-36
    [101]Figueiredo J M, Novais A Q, Limpo-Gil J, et al. The CENIM-LNETI process for zinc recovery from complex sulphides[C]. International Symposium World Zinc'93, The Australasian Insittute of Mining and Metallurgy, Hobart,1993: 333-339
    [102]Limpo J L, Figueiredo J M, Amer S, et al. The CENIM-LNETI process:a new process for the hydrometallurgical treatment of complex sulphides in ammonium chloride solutions[J]. Hydrometallurgy,1993,28(2):149-161
    [103]Novais A Q, Figueiredo J M, Medeiros A R. The zinc and copper solvent extraction operations in the CENIM-LNETI process for treatment of complex sulphide concentrates[C]. IV International Symposium on the Polymetalilc Sulphides of the Iberian Pyrite Belt. Lisboa, Portugal,1998
    [104]Amer S, Figueiredo J M, Luis A. The recovery of zinc from the leach liquors of the CENIM-LNETI process by solvent extraciton with di(2-ethylhexyl)phosphoric acid[J]. Hydrometallurgy,1995,37:323-337
    [105]Limpo J L, Luis A, Gomez C. Reacitons during the oxygen leaching of metallic sulphides in the CENIM-LNETI process [J]. Hydrometallurgy,1993, 28:163-178
    [106]Furuya N, Sakakibarat. High speed zinc electrowinning system using a hydrogen anode and a rotating aluminium disc cathode[J]. Journal of Applied Electrochemistry,1996,26(1):58-62
    [107]Allen R J, Foller P C, Vora R J, et al. Full-scale hydrogen anodes for immersed-tank electrowinning[J]. Journal of Operations Management,1993, 45(3):49-53
    [108]Bestetti M, Ducati U, Kelsall G, et al. Zinc electrowinning with gas diffusion anodes:State of the art and future developments [J]. Canadian Metallurgical Quarterly,2001,40(4):459-469
    [109]Babu M N, Sahu K K, Pandey B D. Zinc recovery from sphalerite concentrate by direct oxidative leaching with ammonium, sodium and potassium persulphates[J]. Hydrometallurgy,2002,64(2):119-129
    [110]卢立柱,谢惠琴.协同催化氧化体系中锌精矿的直接浸出[J].有色金属, 1998,50(1).45~50
    [111]钟竹前,梅光贵,蔡传算,等.Zn-MnO2同时电解工艺现状及存在问题[J].有色金属(冶炼部分),1992(3):42~46
    [112]雷云,杨显万.生物湿法冶金与西部矿产资源开发[J].有色金属,2000,52(4):100~103
    [113]樊远鉴,张元福,王绍和,等.硫化锌精悬浮电解一步炼锌新工艺[J].中国专利,CN93105469.9,1994-11-09
    [114]龙小艺,许民.湿法冶锌新浸取技术及其进展[J].江西化工,2004(2):24-28
    [115]杨声海.Zn (Ⅱ)-NH3-NH4Cl-H2O体系制高纯锌理论及应用[D].长沙:中南大学,2004
    [116]李谦.氧化锌矿铵盐浸出动力学的研究[D].贵阳:贵州工业大学,2000
    [117]慕思国,彭长宏,黄虹,等.298K时三元体系MeSO4-(NH4)2SO4-H2O的相平衡[J].过程工程学报,2006,6(1):32-36
    [118]姚耀春,朱云,王平.难选氧化锌矿氨浸过程热力学研究[J].有色金属,2004,56(3):49~51
    [119]王瑞祥MACA体系处理低品位氧化锌矿的理论与工艺研究[D].长沙:中南大学,2009
    [120]Yang S H, Tang M T, etal. Anodic reaetion kineties of electrowinning Zine insystem of Zn(Ⅱ)-NH3-NH4Cl-H2O Trans[J]. Nonferrous Met. Soe. China, 2004,14(3):626-630
    [121]杨声海,唐谟堂,龙运炳,等.一种高纯锌及其制备方法[P].中国专利,CN99115463,2003-10-29
    [122]Gokhan O. Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium[J]. Hydrometallurgy,2005,78:236-245
    [123]C. T. Baroch, R. V. Hilliard, R. S. Lang, The caustic electrolytic-zinc process[J]. Journal of the Electrochemical Society,1953, (4):165-172
    [124]Seham N, Inoue K. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching[J]. Hydrometallurgy,2000,56:269-292
    [125]Dutra A J B, Paiva P R P, Tavares L M. Alkaline leaching of zinc from electric arc furnace steel dust[J]. Minerals Engineering,2006,19:478-485
    [126]Zhao Y C, Stanforth R. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline solution[J]. Journal of Hazardous Materials,2000(80):223-240
    [127]Chenglong Z, Youcai Z, Cuixiang G, et al. Leaching of zinc sulfide in alkaline solution via chemical conversion with lead carbonate[J]. Hydrometallurgy, 2008,90:19-25
    [128]Amine A S. Hydrometallurgical treatment of Egyptian zinc lead oxide ore. Modeling[J], Measurement & Control C,1995,49:1-12
    [129]Chen A L, Zhao Z W, Jia X J, Long S, Huo, G S, Chen X Y. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore[J]. Hydrometallurgy,2009,97:228-232
    [130]Sharifi B, Mojtahedi M, Goodarzi M, Khaki V. Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder[J]. Hydrometallurgy,2009(99):72-76
    [131]Gurmen S, Emre M. A laboratory-scale investigation of alkaline zinc electrowinning[J]. Minerals Engineering,2003,16:559-562
    [132]Frenay J, Elboudjian M. Influence of themain parameters on zinc powder electrowinning in caustic soda medium [C]. Proceedings of the International Symposium on Electrometeallurgical Plant Practice,1990,8:85-99
    [133]Pierre J ST, Piron D L. Electrowinning of zinc from alkaline solutions at high current densities[J]. Journal of Applied Electrochemistry,1990,20:163-165
    [134]Jean ST Pierre, Dominique L. Electrowinning of zinc from alkaline solutions[J]. Journal of Applied Electrochemistry,1986,16:447-456
    [135]Alan P B, Janet H M, Nengping Y. The alkaline electrolytic process for zinc production-a critical[J]. Ind. Eng. Chem. Prod. Res. Dev.,1983,22(2):263-272
    [136]Youcai Z, Robert S. Production of Zn powder by alkaline treatment of smithsonite Zn-Pb ores [J]. Hydrometallurgy,2000(56):237-249
    [137]Youcai Z, Robert S. Selective separation of lead from alkaline zinc solution by sulfide precipitation [J]. Separation Science and Technology,2001,36 (11): 2561-2570
    [138]赵由才,刘清,易天晟.一种用锌粉尘和锌浮渣生产金属锌粉的方法[P].中国专利,200610024601,2006-08-16
    [139]Dean J A. Lange's handbook of chemistry (兰氏化学手册,第13版,尚久方,译)[M].北京:科学出版社,2003,9:65-66
    [140]Barin I, Knacke O. Thermochemical Properties of Inorganic Substance[M]. Berlin:Springer Supplement 1997
    [141]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社, 1993,430-431
    [142]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987
    [143]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998
    [144]Sohn Y, Wadsworth M E等著,郑蒂基译.提取冶金速率过程[M].北京:冶金工业出版社,1984
    [145]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004
    [146]邵琼.从低锌高镉渣中回收有价成分新工艺及其动力学研究[D].昆明:云南师范大学,2004
    [147]Lee H S, Piron D.L., Dominique L. Kinetics of alkaline leaching of roasted zinc concentrate[J]. Chemical Engineering Communications,1998,164:1-12
    [148]Lee H S, Piron DL. Kinetics of alkaline leaching of pure zinc oxide[J]. Chemical Engineering Communications,1995,138:127-143
    [149]Lu P. A study on granulated heap leaching of low graded and highly-mudded oxidized copper ore[J]. Kuangye Yanjiu Yu Kaifa/Mining Research and Development,2001,21(2):32-34
    [150]赵中和,李洪桂,孙培梅等.广泛粒度分布下片状矿物浸出动力学[J].矿业工程,2002,6(2):90-92
    [151]刘清,赵由才,招国栋,等EDTA络合滴定与酸碱滴定联合测定含锌碱性溶液中游离碱、锌和碳酸钠[J].冶金分析,2006,26(6):10~13
    [152]Lewis A E. Review of metal sulphide precipitation[J]. Hydrometallurgy 104, 2010,104:222-234
    [153]李华伦,朱昌洛.含砷碱废水的无害化治理[J].矿产综合利用,2002,8:12-15
    [154]郭翠梨,张凤仙,杨新宇.石灰—聚合硫酸铁法处理含砷废水的试验研究[J].工业水处理,2000,9:27-29
    [155]梁美娜,刘芳,刘海玲,等.氢氧化铁胶体对砷吸附行为的初步研究[J].工业用水与废水,2005,10:36-38
    [156]郭万精,黄光歧.石灰一三氯化铁中和法处理含砷废水的研究[J].有色金属(冶炼部分),1981,3:7-10
    [157]杨佼庸.冰溶液中砷的状态和含砷废水处理[J].有色金属(冶炼部分)1981,3:11-14
    [158]汤学金.氢氧化物共沉法从废水中除砷的研究[J].湖南冶金情报,1981,1:80-90
    [159]Bernner A. Electrodeposition of alloys. New York and London[J], Academic Press,1963,222-235
    [160]Gerischer H. The behavior of the zinc electrode in alkaline solutions[J]. Z. Phys. Chem.,1953,202(2):292-298
    [161]Bockris J O M, Damjanovic Z N A. On the deposition and dissolution of zinc in alkaline solutions[J]. Journal of the Electrochemical Society,1972,119(3): 285-295
    [162]Hendrikx J, Putten A V Der, Visscher W, et al. Electrodeposition and dissolution of zinc and amalgamated zinc[J]. Electrochimica Acta,1984,29 (1):81-89
    [163]王云燕.Zn-Fe合金电镀和Zn-Fe-Ti02复合电镀工艺及基础理论研究[D].长沙:中南大学,2002
    [164]国家环境保护总局.GB5085.3-2007.国家质量监督检验检疫总局.危险废物鉴别标准—浸出毒性鉴别[Z].北京:中国环境出版社,2007
    [165]赵由才,易天晟,朱清渭.金属薄片粉碎装置[P].中国专利,200520100061,2007-05-23
    [166]Frenay J, Ferlay S, Hissel J. Zinc and lead recovery from EAF dusts by caustic soda process[C]. In:Electric Furnace Proc, Treatment Options for Carbon Steel Electric Arc Furnace Dust,43, Iron Steel Soc.1986:171-175
    [167]邱媛媛,张承龙,赵由才.碱浸—电解锌工艺中杂质对锌电积的影响[J].有色金属,2009,60(3):76-79
    [168]《铅锌冶金学》编委.铅锌冶金学[M].北京:科学出版社,2003
    [169]陈家镛.湿法冶金手册[M].北京:冶金工业出版社,2005
    [170]邓听.国外铅锌资源概览[J].世界有色金属,2008,(10):23~25
    [171]曹异生.中国铅锌矿山开发现状及前景预测[J].中国金属通报,2006,(41):1-6
    [172]谭荣和.浅析超细高活性锌粉的制备和用途[J].有色冶炼,2002,(2):11~13
    [173]贺惠生,梁进.超细锌粉的生产与应用[J].有色金属(冶炼部分),1998,(5):41~44
    [174]徐毅.片状锌粉制备研究[D].长沙:中南大学,2004
    [175]黄治家,曾祥镇,朱同华,等.真空蒸馏制活性锌粉的工艺及设备[P].中国专利,91104023,1992-01-01
    [176]吴庆林.一种球形锌粉的制备方法及其产品[P].中国专利,01142256,2003-04-16
    [177]吴庆林.一种无汞锌粉的制备方法[P].中国专利,01136081,2004-10-27
    [178]李清文,努尔买买提,夏熙.碱性介质中电沉积制备锌粉[J].电池,1997,27(1):18~21
    [179]江培海,胡敏,张寅生,等.电解法生产活性锌粉[J].有色金属(冶炼部分),1998(6):14~17
    [180]胡会利,李宁,程瑾宁,等.电解法制备超细锌粉的工艺研究[J].粉木冶金工业,2007,17(1):24~29
    [181]许庆余,李华,刘上武,等.富氧化锌原矿生产合金锌粉的方法和设备[P].中国专利,90107033,1992-02-26
    [182]侯新刚,王胜,王玉棉.超细活性锌粉的制备与表征[P].粉末冶金工业,2004,14(1):10~13
    [183]齐晓霞.超细锌粉的制备技术[P].中国科技信息,2009(1):102-103
    [184]杨欢,卢立柱,谢惠琴,等.表面活性剂对电解锌粉形貌的影响[P].有色金属,2007,59(3):49-51
    [185]谭荣和.浅析超细高活性锌粉的制备和用途[J].有色冶炼,2002(4):11~14
    [186]中国有色金属工业标准计量质量研究所.铅锌质量技术监督手册[M].北京:冶金工业出版社,2002
    [187]《铜铅锌冶炼设计参考资料》编写组.铜铝锌冶炼设计参考资料[M].北京:冶金工业出版社,1978
    [188]《湿法冶金工艺管道设计手册》编写组.湿法冶金工艺管道设计手册[M].北京:原子能出版社,1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700