用户名: 密码: 验证码:
管用20钢应变时效的演化规律及无损检测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压管道是氨合成、石油加氢裂化和发电等行业中大型工业装置的重要组成部分,管用20钢是其中使用最广泛的钢种之一。近年发生了多起应变时效脆化导致的高压管失效甚至爆炸事故,造成了巨大的经济损失和人员伤亡。据调查,我国目前用于化肥企业的大量管用20钢高压管与事故钢管的制造工艺完全相同,也就是说这些管道存在着与事故管道同样的危险因素。据统计,全国仅氨合成和甲醇这一行业就有管用20钢高压管十万米,这些高压管都潜伏着因管子制作时标准缺陷或要求低和工艺控制不严等所带来的应变时效脆化问题,它们在服役过程中将进一步对材料的服役性能产生影响,所以这些高压管在运行中存在不可预知的风险。因此,对管用20钢制造服役条件与微观组织结构和力学性能三者之间的规律关系与影响机理进行研究,在此基础上提出在役管用20钢钢管应变时效的无损检测方法,对于优化高压管的生产工艺和提高其使用安全性有重要意义。
     高压管应变时效与钢的热处理、冷变形量、时效时间和温度以及钢中的碳氮含量(尤其是氮含量)等有直接关系。通过对管用20钢应变时效的各影响因素分析,提出了模拟可能发生应变时效制造条件的试验方案和不存在应变时效制造条件的试验方案。采用OM、SEM和TEM原位以及非原位多点观察管用20钢应变时效的微观组织演化。根据相关标准均沿钢管轴线方向取样并制备试验试样,测试材料的硬度、室温冲击吸收能量和拉伸性能等力学性能。为完成试样同一观察点加热前后微观组织的原位观察,自制了一套制备原位观察试样时难以加热氧化的氩气保护设备,通过真空泵多次对试样保护罐抽真空和充氩气操作,使罐内达到高纯氩状态。除此而外,还对部分在役管用20钢的力学性能进行了研究和分析。
     对随机抽取的四种氮含量显著不同的管用20钢取样分别进行正火、退火、不完全退火和热轧状态下的显微组织观察,珠光体以层片状为主,且片间距、晶粒等大小不同,极少部分长条状珠光体是由于过冷度过大使得材料在远离共析点处析出。管用20钢在不同前热处理态下分别进行不同应变量的塑性变形或者在此基础上的250℃1h时效,或者无塑性变形时效,微观组织无明显变化。正火前热处理试样原位观察可发现塑性变形时铁素体晶粒上的滑移线和滑移带,珠光体无明显变化,表明塑性变形不均匀。使用TEM观察正火应变时效试样发现衍射图像上氮化铁的超点阵,说明间隙原子呈现长程有序分布,即应变时效会使材料由无序或短程有序变为长程有序态。所研究各种前热处理状态下,发生应变时效材料去应力退火后珠光体中都会有不同程度的球粒化,转化程度取决于前热处理状态和塑性变形程度,尤以正火前热处理状态发生球化的程度最大。前热处理为正火时,即使材料不发生应变时效,去应力退火后珠光体中也会发生球粒化。热轧态去应力退火的珠光体无明显变化。
     在金相观察试样上进行显微维氏硬度测试,获得各种热处理和塑性变形的硬度,对硬度数据的深入分析揭示了硬度的演化规律。分别正火、退火和不完全退火的管用20钢硬度相差较大,冷却速度对硬度的影响明显,氮含量影响较小。塑性变形后材料的硬度会在前热处理态基础上升高,时效后的硬度比塑性变形状态又大幅升高,随应变量和氮含量增大而增大,同时晶粒度对硬度值也有一定影响。而无塑性变形仅时效时硬度与有前热处理状态基本相同,表明时效仅在有应变时对材料硬度有影响;热轧态进行时效后硬度提高表明热轧态存在冷变形,冷变形在热轧态存在则说明钢管的终轧温度低于正火温度。去应力退火使材料应变时效升高的硬度大幅降低,退火温度越高,硬度降低程度越大;去应力退火的硬度、硬度应变时效敏感性系数和退火回复偏差系数与材料氮含量和应变量成正比,而前热处理工艺对硬度几乎无影响。
     对前述各种热处理和塑性变形的管用20钢几乎全部进行了室温夏比V型缺口冲击韧性测试,使用SEM对冲击断口进行观察,部分试样进行了常温拉伸性能测试。试验结果表明,正火态和完全退火态材料都能满足40J的韧度标准要求,热轧态和不完全退火态在温度较低时韧性不能满足标准要求。材料塑性变形后冲击吸收能量与化学成分有关,其值比前热处理态有所降低,仍可能满足标准要求。应变时效后材料几乎都无法满足冲击吸收能量的要求;各种前热处理下10%应变量时效材料都极度脆化;应变时效后随应变量增大屈服强度增加显著,屈强比与塑性变形基本呈线性关系,随应变量变大导致塑性储备变小。时效不单独对材料的强度升高起作用,只有在冷变形后时效材料的强度才会进一步提高。去应力退火后材料的冲击吸收能量都可回复到标准要求的韧度;退火后屈强比下降幅度较大,前热处理对屈服强度有明显影响,而抗拉强度基本不受前热处理影响。各种状态冲击断口启裂区和瞬断区形貌相差甚大,反映了各种状态下力学性能的差异。
     分析说明了材料的微观组织和力学性能以及硬度与冲击和拉伸性能之间存在对应关系,因而可以通过硬度值和微观组织显现的特征来推断其他力学性能,进而对钢管是否应变时效脆化做出判断。根据应变时效的演化规律,对无塑性加工直管、应变脆化钢管和应变时效脆化钢管以及塑性加工后去应力退火回复的弯管各自微观组织特征、硬度和对应的力学性能分析和推论基础上,提出了基于硬度和微观组织变化的在役钢管应变时效脆化的无损检测方法,在两种钢管上的验证结果表明提出的无损检测方法是准确可靠的。
     通过文中的试验结果以及作者所掌握的管用20钢的各种数据,对照我国现行的相关国家标准,对标准中关于氮含量、轧后热处理、弯后热处理和冲击试验等的规定提出了修改建议。
     制造条件、微观组织与力学性能之间的对应关系可对提高高压管用钢冶金质量、改进高压管轧制和成形工艺条件提供参考和指导;文中所提出的检测方法可直接用于在役钢管的检测,可防止由于应变时效脆化以及伴随的氢脆和应力腐蚀等引发的事故,消除了生产中的安全隐患,保证工人的生命和物质财产安全;文中对标准的各项修改建议可完善我国高压管标准,从源头上避免和减少应变时效安全隐患。作者所做工作对金属构件的制备与加工、材料与环境交互作用、材料损伤与失效机制等方面的基础性研究具有重大的理论参考意义和价值。作者提出的无损检测方法可对在役钢管进行定性和半定量分析,但做到定量的判别钢管状态还需要更丰富的数据支持以及更广泛的实践验证。
High pressure pipes is an important part in the large-scale industrial equipments, such as ammonia synthesis industry, petroleum hydrocracking industry and power generation industry, and20steel is one of the most widely used steel for pipes. Pipe failures, even explosion accidents, are caused by the strain aging embrittlement in recent years, resulting in huge economic losses and casualty. According to investigation, the manufacturing technology of in-service20steel pipes widely used in fertilizer enterprises are identical to the incident pipes, which means these pipes have the same risk factors. According to statistics, the total length of high pressure pipes of20steel is about100,000meters in ammonia synthesis industries and ammonia synthesis industries. All these20steel pipes have the strain aging embrittlement problem caused by the manufacturing defect, low requirements, as well as unsuitable process control. Therefore, it is significance to carry the research on the regularity and mechanism among the in-service conditions, microstructure and mechanical properties. Basing on the study results, non-destructive detection method of strain aging is proposed, which has great significance to optimize the production process and improve the using safety of high pressure pipes.
     The strain aging embrittlement of high pressure pipe is directly related to the steel heat treatment, cold deformation, aging time and aging temperature, carbon content and nitrogen content in the steel. Based on the analysis and research on the influencing factors of strain aging, they are determined that manufacturing conditions and other production states of strain aging. The properties of some in service pipes are also studied and analyzed. A set of argon protective equipment is made to prevent the thermal oxidation. Working principles of the equipment is that air is pumped out by a vacuum pump and the argon gas is filled in to keep the argon atmosphere. Then the microstructure at the same position of the sample can be observed before and after heating. The observation and analysis methods are in situ observation and multi-point observation in micro structure change after strain aging with OM, SEM and TEM. The material hardness, impact absorption energy and tensile properties are tested. Test specimens along the pipe axis direction are prepared in accordance with the relevant standards.
     Metallographic samples are made from different composition pipes that suffer normalizing, annealing and under annealing respectively. Lamellar-type pearlite is found. However, the lamellar distance and the grain size are different. The research results show that they are related to the heating temperature and the cooling rate. The microstructure doesn't change with pre-treatment and plastic deformation and strain aging for an hour. The microstructure change is observed in situ. Slip lines and slip bands in pearlite can be observed in plastic deformation state. The microstructure has no obvious change after strain aging. Iron nitride superlattice phase are found in the strain aging embrittlement material through TEM, it shows that interstitial atoms distribute long-range order, that is to say, the material atoms distribution is changed from short-range order into long-range order when the strain aging embrittlement occurs. The stress relief annealing pearlite change from lamellar-type to spherulitic after the strain aging or normalizing. The conversion depends on the heat treatment process and the degree of plastic deformation of materials. The microstructure shows no significant change in manufacture hot rolled state and then stress relief annealing.
     Vickers hardness test is carried on microstructures' samples. Hardness value under every heat treatment and plastic is obtained. Statistical analysis of the hardness shows its evolution law. The hardness varies from each other when normalizing, annealing and under annealing are taken respectively. The cooling rate also affects the hardness a lot, while the material compositions have little effects. The hardness value increases after plastic deformation on the basis of pre-treatment, while the value after strain aging becomes larger than the one after plastic deformation. The value also increases with the increase of the plastic deformation amount and the nitrogen content. The grain size also has effect on the hardness. Comparing to the pre-treatment state, the hardness value is almost the same after strain aging with no plastic deformation and it shows the strain aging affects the hardness only with strain exiting. The hardness of hot rolled material grows larger, and it shows cold deformation exits. This phenomenon also means that the finishing temperature is lower than the normalizing temperature. Annealing can dramatically reduce the increased hardness value caused by the aging. The depressed degree is related to the annealing temperature. The hardness after stress relief treatment is proportional to the nitrogen content and it is also related to the grain size. The pre-treatment process almost has no effect on material hardness.
     Charpy V-notch impact tests are carried on almost all the material mentioned above under room temperature. Parts of these impact fracture surfaces are observed with SEM. Tensile test is also carried out under room temperature. The results show the material of normalizing and annealing meet the standard require value. The hot rolled and the under annealing materials don't meet the standard value. The impact absorption energy is related to the material compositions after plastic deformation and the value is a little lower than the pre-treatment ones. But it still meets the standard requirement. Almost all the material of strain aging doesn't meet the required impact toughness. The material of10%strain aging of every heat pro-treatment is extremely brittle. The yield stress increases with the plastic deformation after strain aging. The yield ratio is proportional to the plastic deformation. The plastic reserve decreases with the increase of plastic deformation. Strain aging doesn't affect the strength increase along, the material strength after aging increases only with the existence of cold deformation. The material impact absorption energy can recover to the standard value after stress relief annealing. The yield ratio decreases a lot after annealing. The pre-treatment has great effect on the yield strength, but has little effect on the tensile strength. Fracture morphology has larger difference, which reflects the difference of the mechanical properties.
     The analysis by the author shows the corresponding relationship between the microstructure and mechanical properties of the hardness, impact properties and tensile properties. Therefore, other mechanical properties except for hardness can be infered with hardness and microstructure, and thus it can be judged whether the strain aging embrittlement overtake. According to the evolution rule of strain aging, non-destructive detection method of in-service20steel pipe strain aging embrittlement is proposed on the basis of analysis and inference on microstructure characteristics, hardness and the other corresponding mechanical properties of straight pipe without plasticity, strain embrittlement pipe, strain aging embrittlement pipe and elbow with plasticity and stress relief annealing. The non-destructive detection method is based on hardness and microstructure changes, and is proved accurate and reliable with the results of applying to two steel pipes.
     Control of test results in the text, as well as a variety of data about20steel pipe mastered by the author and China's national standards, amendment suggestions are proposed to modify the standard rules about nitrogen content, heat treatment after rolling, heat treatment after bending and impact test.
     The corresponding relations among the manufacturing conditions, microstructure and mechanical properties can provide significant guiding value to improve the metallurgical quality of high pressure pipes and the rolling and forming process conditions. The non-destructive detection method proposed in this paper can be directly used for the detection of the in service pipes, which can prevent the accidents caused by the train aging embrittlement and its incidental hydrogen embrittlement and stress corrosion, also can eliminate the hidden danger in dangerous and ensure the life property safety. The proposed modification to the current standard can improve the national standards of high pressure pipes, which would eliminate and reduce the hidden danger caused by the train aging embrittlement at source. The work involved in this paper has great theoretical reference significances and values on material basic research, such as material preparation of metal component, mechanical behavior, environment interaction, injury and failure mechanism. The proposed non-destructive detection method can be used to provide qualitative analysis and semi-quantitative analysis on in service pipes, while it still needs more support data and practical proves to provide quantitative analysis.
引文
[1]王威强,李爱菊,陈鹭滨,等.管用20钢高压管脆断分析[J].机械强度,2004,26(6):683-690.
    [2]LI A J, WANG W Q, WANG X M, et al. Fatigue and brittle fracture of carbon steel process pipeline [J]. Engineering Failure Analysis,2005,12:527-536.
    [3]董雷云,潘缉悌,蒋晓东,等.螺旋焊管脆性开裂失效分析[J].化工机械,2000,(2):90-94.
    [4]王威强,余信诚,曹怀祥,等.山东德齐隆化工有限公司氨分出口至冷交管道失效分析报告[R].2007.
    [5]CUI H C, Wang W Q, Li A J, et al. Failure analysis of the brittle fracture of a thick-walled 20 steel pipe in an ammonia synthesis unit[J]. Engineering Failure Analysis,2010,1359-1376.
    [6]孙忠孝,王金瑞,梁昌乾.电站锅炉钢管应变时效脆化逆反试验研究[J].热力发电,1993,(6):38-.42.
    [7]钱匡武,李效琦,萧林钢,等.金属和合金中的动态应变时效现象[J].福州大学学报(自然科学版),2001,29(6):8-23.
    [8]ERASMUS L A, PUSSEGODA L N. The strain Aging Characteristics of Reinforcing Steel with a Range of Vanadium Contents [J]. Metallurgical Transactions,1980,11(2):231-237.
    [9]吴比,盛光敏,龚士弘,等.钒对HRB400钢筋应变时效及冲击性能的影响[J].钢铁研究,2004,6(3):10-21.
    [10]李锋钢,汤聚法.海洋平台钢应变时效影响因素探讨[J].中国海洋平台,1990,(4):28-30.
    [11]李红英,丁常伟,张希旺,等.冷却速度对热轧钢板应变时效敏感性的影响[J].矿冶工程,2007,27(4):74-76.
    [12]谭启.从铝合金的应变时效内耗考察位错与点缺陷的交互作用[J].物理学报,1994,43(10):1658-1664.
    [13]郭伟国.BCC金属的塑性流动行为及其本构关系研究[D].西安:西北工业大 学,2007.
    [14]严军山.20#无缝管冷弯断裂原因分析[J].四川冶金,2008,30(1):13-15.
    [15]XU G, Yang Y, Zhang X Q. Study of aging behavior of CSP hot bands for cold sheets [J]. Materials Characterization,2008,59 (9):1355-1358.
    [16]丁常伟.材料状态对16MnR钢组织性能的影响[D].长沙:中南大学,2007.
    [17]徐洪庆.正火工艺对20g钢板时效冲击性能的影响[J].山东冶金,1997,19(03):21-24.
    [18]庞国华,李庆吉,王益泉,等.锅炉钢板时效性能试验研究[J].轧钢,1990,(2),1-6.
    [19]孟繁茂,孙卫华.无应变时效倾向20MnSiNb 400MPa级热轧钢筋[C]//中国金属学会特钢分会.98全国低合金钢学术年会论文集.1998:260-266.
    [20]侯建国,安旭文,吴春秋,等.关于钢材的冲击韧性和应变时效敏感性有关问题的讨论[J].建筑钢结构进展,2002,4(1):41-49.
    [21]赖祖涵.金属的晶体缺陷与力学性质[M].北京:冶金工业出版社,1988:124-132,211-216.
    [22]SIMS C E. The behavior of gases in solid iron and steel [J]. Gases in Metals,1952: 130-134.
    [23]HUNDY B B. The strain-age hardening of mild steel [J]. Metallurgia,1956, 53(319):203-211.
    [24]张作梅,李建华.热轧条件对低碳钢时效的影响[J].金属学报,1957,2(3):249-259.
    [25]葛庭燧,容保粹,王业宁.钢铁中碳、氮的扩散、脱溶和沉淀[J].物理学报,1955,11(1):91-106.
    [26]VASUDEVA V, SARNA S K, JHA R C. Nitrogen in steel [J]. Tool Alloy Steels, 1994 (28):385-390.
    [27]ERASMUS L A. Nitrogen in steel [C]//Proceedings of the 1987 Australasian Conference on Materials for Industrial Development, Institute of Metals and Materials Australasia, Victoria, Australia,1987:357-364.
    [28]MAEDA M. Nitrogen transfer in steel [C]//Proceedings of Liquid Metal Processing for Cleanliness, Novel and Conventional Casting, and Novel Process Technologies, Iron and Steel Society, Warrendale, PA, USA,1998:23-27.
    [29]SAU R, RAY A K, JAGANNATHAN K P. Nitrogen removal in steel:critical issues [J]. Transition Indian Institute Metally,1999,52:55-61.
    [30]GOLDSTEIN D A, FRUEHAN R J, OZTURK B. The behavior of DRI in slag-metal systems and its effect on the nitrogen content of steel [J]. Iron Steelmaker,1999,26:49-61.
    [31]PITKALA J, XIA J, JOKILAAKSO A. CFD modeling of nitrogen dissolution into a steel bath during gas purging [C]//Second International Conference on Computational Fluid Dynamics in the Minerals and Process Industries Proceedings, Commonwealth Scientific & Industrial Research Organisation, Victoria, Australia,1999:35-39.
    [32]VYTVYTSKYI V I, TKACHOV V I, HREBENYUK S O. Alloying of steel with a superequilibrium amount of nitrogen from a gaseous atmosphere in the process of electroslag remelting [J]. Materials Science,2000,36:454-457.
    [33]LEE M S, TRIMBLE D J, WIBBERLEY L J. Evaluation of low-grade iron carbide as a reagent for enhanced nitrogen desorption in steel melts [J]. Scandinavian Journal of Metallurgy,2001,30:121-126.
    [34]ANDERSON S H, TROTTER D, VARCOE D, et al. Use of DRI and HBI for nitrogen control of steel products [C]//Proceedings of 60th Electric Furnace Conference, Iron and Steel Society, Warrendale, PA, USA,2002:16-20.
    [35]DOUTHIT T J, TYNE C J. The effect of nitrogen on the cold forging properties of 1020 steel [J]. Journal of Materials Processing Technology,2005,160:335-347.
    [36]TSUCHIDA N, BABA E, NAGAI K, et al. Effects of interstitial solute atoms on the very low strain-rate deformations for an IF steel and an ultra-low carbon steel [J]. Acta Materialia,2005,53:265-270.
    [37]张勇,温耀星,聂庆德.冷热变形对低温钢的影响[J].物理测试,1993,(3):124-128.
    [38]GUI Y P. Effect of carbon and nitrogen on harding and embrittlement of low-carbon steel [J]. Metal Science and Heat Treatment,1976,17(7):553-556.
    [39]刘宗昌.材料组织结构转变原理[M].北京:冶金工业出版社,2006.
    [40]蒋智翔,杨小昭.锅炉及压力容器受压元件强度[M].北京:机械工业出版社,1999:11.
    [41]刘志东,朱燮章.拉伸应变量对时效冲击值的影响[J].物理测试,1987,(5):49.
    [42]侯登义,徐洪庆,陈哗.NVB级船板应变时效敏感性试验[J].钢铁钒钛,2008,29(1):34-37.
    [43]朱燮章,祝正承.20g钢应变时效敏感性[J].物理测试,1988,(2):55-57.
    [44]YOSHIO M, MASATAKA S, CHITOSHI M, et al. A study on fracture toughness properties of strain-aged structural steels [C]// Proceedings of Structural Engineering,1990,36:389-397.
    [45]何武.应变量和应变时效对船体高强钢性能的影响[J].舰船科学技术,1985,(5):64-69.
    [46]苗德华,薛强.时效处理温度对预应变碳素钢疲劳极限的影响[J].力学与实践,2003(6):32-34.
    [47]葛庭燧,容保粹,王业宁.钢铁中碳、氮的扩散、脱溶和沉淀[J].物理学报,1955,11(1):91-106.
    [48]林一坚,GIALANEELA S, CAHN R W.无序态(Co,Fe)3V应变-时效硬化的微观机制[J].金属学报,1992,28(11):506-512.
    [49]HAN N M, ZHANG X M, LIU S D, et al. Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050 [J]. Materials Science and Engineering:A,2011,528:3714-3721.
    [50]SHARMA V M, KUMAR K. S, NAGESWARA R B, et al. Effect of microstructure and strength on the fracture behavior of AA2219 alloy [J]. Materials Science and Engineering:A,2009,502:45-53.
    [51]MAHMOUD C, MOHAMED K, KAROL J, et al. Characterization of the mechanical properties changes in an Al-Zn-Mg alloy after a two-step ageing treatment at 70℃ and 135℃ [J]. Materials & Design,2010,31:3134-3139.
    [52]ALEXANDER A V, LEE H C, NIKOLAY L K. Nature of strain aging stages in bake hardening steel for automotive application [J]. Materials Science and Engineering:A,2008,485:282-289.
    [53]PERELOMA E V, I. TIMOKHINA B, JONAS J J, et al. Fine-scale microstructural investigations of warm rolled low-carbon steels with and without Cr, P, and B additions [J]. Acta Materialia,2006,54 (17):4539-4551.
    [54]PERELOMA E V, TIMOKHINA I B, JONAS J J, et al. Microstructural characterization of warm rolled Cr-containing low carbon steel [J]. Scripta Materialia,2007,56 (6) 521-524.
    [55]KEITH J L, JEREMY T B, STEVEN J Z. Microstructural and mechanical property changes with aging of Mo-41Re and Mo-47.5Re alloys [J]. Journal of Nuclear Materials,2007,366 (3) 369-387.
    [56]鄢建明,崔建忠.对铝-锂合金薄板应变时效的研究[J].铝加工,1994,17(5):21-29.
    [57]SERAJZADEH S, AKHGAR J M. A study on strain ageing during and after warm rolling of carbon steel [J]. Materials Letters,2008,62:946-948.
    [58]STAIGER M P, BROWNRIGG A, HODGSONC P D. Multistage strain aging of low-carbon steels [J]. Materials Science and Engineering,2004, A364:35-47.
    [59]RICHARDS M D, DREXLER E S, FEKETE J R. Aging-induced anisotropy of mechanical properties in steel products:Implications for the measurement of engineering properties [J]. Materials Science and Engineering:A,2011,529(25): 184-191.
    [60]TATSUJIRO M, HIROSHI N, MASAHARU K, et al. Estimation for fatigue limit reliability of a metal with inhomogeneities under stress ratio [J]. International Journal of Mechanical Sciences,2005,47 (2):230-250.
    [61]凌祥,刘桂忠,涂善东.应用微型试验法评价INCONEL718合金时效处理后性能的劣化[J].实验力学,1997,12(4):587-592.
    [62]HUANG F H, HAMILTON M L, WIRE G L. Bend testing for miniature discs [J]. Nuclear Technology,1982,57:234-243.
    [63]艾芒,杨镇,王志文.小冲孔试验法的起源、发展和应用[J].机械强度,2000,22(4):279-282.
    [64]韩浩,王志文,关凯书.小冲杆试验技术测定金属材料强度性能[J].压力容器,2004,21(10):14-17.
    [65]BAIK J M, KAMEDA J, BUCK O. Small punch test evaluation of intergranular embrittlement of an alloy steel [J]. Script Metallurgica,1983,17:1443-1447.
    [66]KAMEDA J. Development of Small Punch Testing Technique and Its Application to Evaluation of Mechanical Properties Degradation [C]// Physical Metallurgy and Materials, Pittsburgh, PA,1993.
    [67]杨镇,王志文.小冲杆试验法及其在评定材料韧性方面的应用[J].华东理工大学学报,2002,28(01):83-87.
    [68]BAIK J M, KAMEDA J, BUCK O. The Use of Small-Scale Specimens for Testing Irradiated Materials [J]. ASTM Specical Technical Publication,1986,8: 88-92.
    [69]MAO X, TAKAHASHI H. Development of a Further-miniaturized Specimen of 3 mm Diameter for TEM Disk (Φ3mm) Small Punch Tests [J]. Journal of Nuclear Materials,1987,150(1):42-48.
    [70]KOHSE G, AMES M, HARLING O K. Progress in developing DBTT determinations from miniature disk bend test [J]. Journal of Nuclear Materials, 1986,141 & 143:513-517.
    [71]MISAWA T, ADACHI T, SAITO M, et al. Small punch tests for evaluation ductile brittle transition behavior of irradiated ferritic steels [J]. Journal of Nuclear Materials,1987,150:194-202.
    [72]MATSUSHITA T, SAUCEDO M L, JOO Y H. DBTT estimation of ferritic low alloy steel in service plant by means of small punch test [C]//Fracture and Strength-1990 Key Engineering Materials, Switzerland:Trans Tech Pub,1990. 259-264.
    [73]BULLOCH J H. Toughness losses in low alloy steels at high temperature:An appraisal of certain factors concerning the small punch test [J]. International Journal of Pressure Vessels and Piping,1998,75:791-804.
    [74]FOULDS J, VISWANATHAN R. Small punch testing for determining the material toughness of low alloy steel components in service [J]. Journal of Engineering Materials and Techno logy,1994,116:457-464.
    [75]KAMEDA J, BLOOMER T E, SUGITA Y, et al. High temperature environmental attack and mechanical degradation of coatings in gas turbine blades [J]. Materials Science and Engineering,1997, A229:42-54.
    [76]严学俭,Hermann I.应用纳米压痕法测试类金刚石薄膜力学性能的研究[J].真空电子技术,2003,(3):22-25.
    [77]FISHE C A. Introduction to Contact Mechanics [M]. Berlin:Springer,2007: 212-214.
    [78]孙渊,王庆明.压痕标定法中弹塑性边界位置影响因素的研究[J].机械设计与研究,2006,22(5):20-22.
    [79]STILLWELL N A, TABOR D. Elastic recovery of conical indentation [J]. Proceedings of the Physical Society,1961,78(2):169-179.
    [80]BULYCHEV S I, ALEKHINV P, SHORSHOROV M K, et al. Determining Young's Modulus from the indenter penetration diagram [J]. Zavod Lab,1975, 41(9):11137-11140.
    [81]PETHICA J B. Microhardness tests with penetration depths than Ion implanted layer thickness in Ion implantation into metals[C]//Third International Conference on Modifieation of Surface Properties of Metals by Ion-implantation. Oxford:Pergammon Press,1982:147-152.
    [82]LOUBET J L, GEORGES J M, MARCHESINI O, et al. Vicker's indentation of Magnesion Oxide [J]. Tribol,1984,106:43-48.
    [83]DOEMER M F, NIX W D. A method of interpreting the data from depth-sensing indentation instruments [J]. Journal of Materials Research.1986,1(4):601-609.
    [84]OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research.1992,7(6):1564-1583.
    [85]王春亮.纳米压痕试验方法研究[D].上海:机械科学研究院上海材料研究所.2007.
    [86]崔航,陈怀宁,林泉洪.材料局部性能的球形压痕评价技术研究进展[J].材料导报,2007,21(9):92-95.
    [87]HAGGAG F M. Field indentation microprobe for structural integrity evaluation: US,4852397 [P].1989-08-01.
    [88]HAGGAG F M, LUCAS G E. Determination of luders strains and flow properties in steels from hardness/microhardness tests [J]. Metallurgical and Materials Transactions A,1983,14(8):1607-1613.
    [89]HAGGAG F M, NANSTAD R K, BRASKI D N. Structural integrity evaluation based on an innovative field indentation microprobe [C]//Proceedings of the ASME 1989 Pressure Vessels & Piping Conference,1989:101-107.
    [90]AHN J H, KWON D. Derivation of plastic stress strain relationship from ball indentations:Examination of strain definition and pileup effect [J]. Journal of Materials Research,2001,16 (11):3170-3178.
    [91]中华人民共和国国家质量监督检验检疫总局.GB/T 21838.1-2008金属材料硬度和材料参数的仪器化压痕试验第1部分:试验方法[S].北京:中国标准出版社,2008.
    [92]中华人民共和国国家质量监督检验检疫总局.GB/T 21838.2-2008金属材料硬度和材料参数的仪器化压痕试验第2部分:试验机的检验和校准[S].北京:中国标准出版社,2008.
    [93]中华人民共和国国家质量监督检验检疫总局.GB/T 21838.3-2008金属材料硬度和材料参数的仪器化压痕试验第3部分:标准块的标定[S].北京:中国标准出版社,2008.
    [94]中华人民共和国国家质量监督检验检疫总局.GB/T 21838.4-2008金属材料硬度和材料参数的仪器化压痕试验第4部分:金属和非金属覆盖层的试验方法[S].北京:中国标准出版社,2008.
    [95]ISO 14577-1:2002 Metallic materials-Instrumented indentation test for hardness and materials parameters-Part 1:Test method[S].2002.
    [96]ISO 14577-2:2002 Metallic materials-Instrumented indentation test for hardness and materials parameters-Part 2:Verification and calibration of testing machines [S].2002.
    [97]ISO 14577-3:2002 Metallic materials-Instrumented indentation test for hardness and materials parameters-Part 3:Calibration of reference blocks [S].2002.
    [98]ISO 14577-4:2007 Metallic materials-Instrumented indentation test for hardness and materials parameters-Part 4:Test method for metallic and non-metallic coatings [S].2007.
    [99]税国双,汪越胜,曲建民.材料力学性能退化的超声无损检测与评价[J].力学进展,2005,35(1):52-68.
    [100]NAGY P B. Fatigue damage assessment by non linear ultrasonic materials characterization [J]. Ultrasonics,1998,36:375-381.
    [101]YOST W T, CANTRELL J H. Materials characterization using acoustic nonlinearity parameters and harmonic generation:engineering materials[C]// Thompson D O, Chimenti D E. Review of Progress in Quantitative Nondestructive Evaluation. New York:Plenum Press,1990:669-1676.
    [102]CANTRELL J H, YOST W T. Non linear ultrasonic characterization of fatigue microstructures [J]. International Journal of Fatigue,2001,23:487-490.
    [103]吴斌,颜丙生,何存富.AZ31镁合金早期力学性能退化非线性超声检测[J].航空材料学报,2011,31(1):87-92.
    [104]JHANG K Y. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material:a review [J]. International Journal of Precision Engineering and Manufacturing,2009,10(1):123-135.
    [105]KIM J Y, JACOBS L J, QU J, et al. Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves [J]. Journal of the Acoustical Society of America,2006,120(3):1266-1273.
    [106]CANTRELL J H. Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals [J]. Proceedings of the Royal Society of London:Series A,2004,460:757-780.
    [107]NAZAROV V E, SUTIN A M. Nonlinear elastic constants of solids with cracks [J]. Journal of the Acoustical Society of America,2006,120(3):1266-1273.
    [108]YOST W T, CANTRELL J H, BREAZEALE M A. Ultrasonic nonlinearity parameters and third-order elastic constants of copper between 300 and 3K [J]. Journal of Applied Physics,1981,51(1):126-128.
    [109]CONTROLL J H. Crystalline structure and symmetry dependence of acoustic nonlinearity parameters [J]. Journal of Applied Physics,1994,76(6):3372-3380.
    [110]HURLEY D C, FORTUNKO C M. Determination of the nonlinear ultrasonic parameter β using a Michelson interferometer [J]. Measurement Science and Technology,1997,8:634-642.
    [111]徐从元,姜文华.疲劳金属材料非线性声学特性的实验研究[J].南京大学学报,2000,36(3):328-335.
    [112]JHANG K Y, KIM K C. Evaluation of material degradation using nonlinear acoustic effect [J]. Ultrasonics,1999,37:39-44.
    [113]HIKATA A, ELBAUM C. Generation of ultrasonic second and third harmonics due to dislocation Ⅰ [J]. Physical Review,1966,144(2):469-477.
    [114]HIKATA A, ELBAUM C. Generation of ultrasonic second and third harmonics due to dislocation Ⅱ [J]. Physical Review 1966,151(2):442-449.
    [115]KANG J, QU J, SAXENA A, et al. On the detection of creep damage in a directionally solidified nickel base super-alloy using nonlinear ultrasound [C]// Thompson D O, Chimenti D E. Review of Progress in Quantitative Nondestructive Evaluation. New York:American Institute of Physics,2004: 1248-1255.
    [116]ACHENBACH J D, PARIKH O K. Ultrasonic analysis of nonlinear response and strength of adhesive bonds [J]. Journal of Adhesion Science and Technology,1991, 5(8):601-618.
    [117]ROTHENFUSSER M, MAYR M, BAUMANN J. Acoustic nonlinearities in adhesive joints [J]. Ultrasonics,2000,38:322-326.
    [118]DELSANTO P P, HIRSEKORN S, AGOSTINI V, et al. Modeling the propagation of ultrasonic waves in the interface region between two bonded elements[J]. Ultrasonics,2002,40:605-610.
    [119]王非,林英.化工设备用钢[M].北京:化学工业出版社,2004:98-99.
    [120]陈惠芬.金属学与热处理[M].北京:冶金工业出版社,2009:139-142,123-129,116-124.
    [121]A.Л.Гупяев.钢的热处理[M].东北工学院金相热处理教研组,译.北京:机械工业出版社,1956:284,290-293.
    [122]Krauss G.钢的热处理原理[M].李崇谟,译.北京:冶金工业出版社,1987:101-108,115-116,127-129.
    [123]全国热处理标准化技术委员会编.金属热处理标准应用手册(第2版)[M].北京:机械工业出版社,2005:210-218.
    [124]王健安.金属学与热处理(热加工专业用)[M].北京:机械工业出版社,1980:63.
    [125]中华人民共和国国家质量监督检验检疫总局.GB/T 16923-2008钢件的正火与退火[S].北京:中国标准出版社,2008.
    [126]鞍山钢铁学校编著.金属学与热处理[M].北京:机械工业出版社,1985:128-132.
    [127]KOJI H, CHITOSHI M, HANG Y. Fracture toughness of cold worked and simulated heat affected structural steel[J]. Engineering Fracture Mechanics,1998, 59(1):17-28.
    [128]樊东黎.热处理工程师手册(第2版)[M].北京:机械工业出版社,2005.
    [129]胡正飞,严彪,何国求.材料物理概论[M].北京:化学工业出版社,2009:186-187.
    [130]林巨才.现代硬度测量技术及应用[M].北京:中国计量出版社,2008:7,11-15,20-21.
    [131]胡光立,谢希文.钢的热处理[M].西安:西北工业大学出版社,2004:70-72.
    [132]石德珂.材料科学基础(第2版)[M].北京:机械工业出版社,2003:143-144.
    [133]赵杰.材料科学基础[M].大连:大连理工大学出版社,2010:35-36.
    [134]戎咏华.分析电子显微学导论[M].北京:高等教育出版社,2006:125.
    [135]DIETER G E. Mechanical Metallurgy (3rd ed.) [M].北京:清华大学出版社,2006:476-483.
    [136]张勇,温耀星,聂庆德.冷热变形对低温钢的影响[J].物理测试,1993,(3):124-128.
    [137]于宁,戢景文. Fe-Nb-C合金中的中温内耗[M].金属学报,2001,37(11):116.
    [138]周惠久,黄明志.金属材料强度学[M].北京:科学出版社,1989:127,128-129,129-131.
    [139]李萍,付千发,李喜孟,等.管用20钢高温时效组织弹性性能的超声无损评价[J].材料热处理学报,2010,31(5):102-106.
    [140]李萍.管用20钢高温时效组织模式识别的UNDE研究[D].大连:大连理工大学,2010:34-35.
    [141]严伟,张国福,丘思晓,等.珠光体球化对20G拉伸力学性能的影响[J].压力容器,2003,20(8):10-13.
    [142]马鸣图,吴宝榕.双相钢物理和力学冶金(第2版)[M].北京:冶金工业出版社,2009:101.
    [143]刘宗昌.珠光体转变与退火[M].北京:化学工业出版社,2007:18-22.
    [144]陈兴,刘世程,王德庆.普通高等教育材料科学与工程专业规划教材热处理工 程基础[M].北京:机械工业出版社,2007:58-59.
    [146]刘宗昌,任慧平著.过冷奥氏体扩散型相变[M].科学出版社,2007:79-80.
    [147]李国成,刘仁桓.压力容器安全评定技术基础[M].北京:中国石化出版社,2007:98-101.
    [148]秦国友.定量金相[M].成都:四川科学技术出版社,1987:300.
    [149]ZHAO J Z, DE A K, DE COOMAN B C. Kinetics of Cottrell atmo-sphere formation during strain aging of ultra-low carbon steels [J]. Materials Letters, 2000,44:37.
    [150]冯端.金属物理学:第三卷金属力学性质[M].北京:科学出版社,1999:138-139.
    [151]王威强,李梦丽,崔好选.通过标准规避高压钢管应变时效脆化的发生[J].压力容器,2010,(11):45-52.
    [152]潘家祯.压力容器材料实用手册-钢铁及合金钢[M].北京:化学工业出版社,2000:146-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700