用户名: 密码: 验证码:
环缝式电磁搅拌理论与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制金属材料的凝固过程、提高成形材料的冶金质量是材料科学领域研究的重要方向。半固态加工技术就是利用各种熔体处理方法实现对金属熔体凝固过程中固相大小、形貌和分布情况的控制。目前最常用的熔体处理方法是机械搅拌法和电磁搅拌法,机械搅拌法虽然能实现对熔体的强制均匀凝固,但存在污染金属熔体、熔体处理量小等问题。电磁搅拌法不增加机械装置与金属熔体的接触、减少了对金属熔体的污染、可精确控制搅拌参数、容易与其他工艺对接,因而率先实现工业化生产;然而由于存在趋肤效应,熔体受到的电磁力不均匀使得凝固组织整体一致性差,限制该方法在大尺寸铸件的工业应用。针对这一关键技术难题,本文在深入研究电磁搅拌技术的基础上,自行研制出环缝式电磁搅拌连续铸造技术原型,并采用A357合金在该装置上系统研究了工艺参数对宏观物理场和凝固组织的影响,实现了大体积熔体的强制均匀凝固,为拓展电磁搅拌技术在大体积高合金化铝合金铸造的工业应用提供了一种新的方法。
     在原有静态环缝式电磁搅拌装置基础上建立了制备A357铝合金半固态浆料过程宏观物理场的三维耦合计算模型,系统研究了环缝宽度和芯棒位置等几何因素对电磁搅拌过程磁场、流场和温度场的影响规律。发现对熔体的搅拌强度随着环缝宽度的减小而增加;随着芯棒向下移动,熔体下部分的轴向循环流被压缩,而上部分的周向流被扩展;这一现象表明,环缝宽度和芯棒位置在提高电磁搅拌作用,增强熔体紊流性质具有关键作用。进一步的优化实验结果表明,在环缝宽度20mm、芯棒位置0mm、搅拌电流17A、搅拌频率30Hz、搅拌时间10s的条件下,可以获得组织细小均匀的A357合金半固态组织。
     在静态研究基础上,通过建立环缝式电磁搅拌连铸A357铝合金坯料过程宏观物理场的三维耦合计算模型,深入系统地研究了连续冷却条件下,环缝式电磁搅拌对金属熔体的流场和温度场的影响规律,发现在足够的搅拌强度下,芯棒的位置对有效降低液穴高度、控制熔体的凝固过程具有重要的影响。在此基础上自行优化设计和建造了环缝式电磁搅拌连续铸造技术原型装置,其主要技术特征是:采用三相三对极搅拌器;环缝宽度为20-25mm之间,环缝位置处于半径3/4-4/5处,芯棒位置为0mmm。
     采用该装置铸造出直径200mmm、长度1500mm的具有明显半固态组织特征的A357铝合金坯料。对比试验表明,环缝式电磁搅拌连铸能降低坯料中宏观和微观偏析;其显微组织主要由蔷薇状组织和细小的圆形组织组成,初生相晶粒平均尺寸为122.2μ m。而普通电磁搅拌连铸和无电磁搅拌连铸坯的平均晶粒尺寸分别为257.9um和407.2μm。这一结果表明环缝式电磁搅拌连铸工艺技术实现了熔体分散-汇聚-连续均匀凝固一体化控制,在控制大体积熔体的均匀凝固、制备优质铝合金大直径坯料具有显著的技术优势和工业应用价值。
     为深入理解环缝式电磁搅拌对增加熔体结构均匀性、控制有效形核率的作用机理,基于热力学第二定律,分析和讨论了电磁搅拌对形核的影响,建立了电磁搅拌磁感应强度、熔体转速与临界晶核半径的数学模型。分析表明电磁搅拌可以减小临界晶核半径,且随着熔体旋转转数增加临界晶核半径减小;可以降低形核功,且.随着转数增加形核功降低;使形核率增加,且随着转数增加形核率增加;随搅拌转数增加界面浓度减低,晶粒密度增加,晶粒尺寸减小,形状因子变大。关键词:连铸;半固态;环缝式电磁搅拌;A357
To improve metallurgical quality of metal materials by controlling solidification process is an important direction in materials science. The core of semisolid processing technology is to control the size, morphology and distribution of solid phase in the slurry by melt treatment. The most commonly used methods for melt treatment are mechanical stirring and electromagnetic stirring (EMS). Although mechanical stirring method is able to achieve uniform solidification even in a small volume of melt, there is pollution problem occurs due to the stirrer contacted with molten. It is difficult to dock with the follow-up process, and it is not conducive to bulk melt for uniform solidification. Electromagnetic stirring technology has been applied more broadly on a commercial scale due to its non-pollution, easy process control and continuous production. However, it has some shortcomings. For example, stirring force exerted in the slurry is larger in the external part but smaller in the inner one of the slurry because of the skin effect, which leads to inhomogeneous micro structures. In response to this key technical problem, this paper presents an annulus electromagnetic direct chill casting process to achieve bulk melt uniform solidification. The annulus electromagnetic stirring (AEMS) machine were self-designed and built. A series of experiments on casting A357aluminum alloy have been carried out to investigate the effects of AEMS parameters on the microstructure, and the effects of electromagnetic stirring on solidification. The main work and results are as follows:
     In this paper, the calculation models of the electromagnetic field、flow field and temperature field in semi-solid slurry preparation by AEMS were established, and effects of annulus gap width and centre pipe location on electromagnetic field、flow field and temperature field were analyzed. The simulation results showed that with annulus gap width decreases, the stirring intensity increases. As center pipe moves down the axial circulation flow is compressed, while the shear flow was expanded. Optimal match of shear flow and circulate flow is of key importance for realizing uniform temperature of bulk melt. The experiment results indicated that when annulus gap width is20mm, centre pipe location is0mm, stirring current is17A, stirring frequency is30Hz and stirring time is10s, semisolid slurry with high quality can be prepared.
     Based on above research, a comprehensive mathematic model was developed to describe the interaction of the multiple physics fields (electromagnetic field, fluid flow, heat transfer and solidification) during continuous casting with AEMS and optimize the design of continuous casting process with AEMS. Under enough stirring intensity, the location of center pipe can effectively reduce the liquid sump depth and temperature gradient. Technical prototype of continue casting process with AEMS was:three-phase with three pairs of poles (six coils) for stirrer; the annulus gap width of20-25mm; the centre pipe location is Omm and the annulus gap position is3/4-4/5.
     The experimental device was designed and built. The semi-solid ingots of A357aluminum alloy with diameter of200mm and length of1500mm were processed by continue casting with AEMS. The EDS spectrum analysis shows that the ingots with low macro-and micro-segregation were obtained. Comparison test show that average grain size of primary phase is122.2μm by AEMS. The average grain size of DC and EMS are407.2μm and257.9μm respectively. Spreading-Collecting-Whole controlling idea was achieved. The experimental results show that annulus electromagnetic stirring has significant advantages for industrial applications in bulk melt uniform solidification and preparation large diameter high-quality aluminum billet.
     Based on the second law of thermodynamics the effect of electromagnetic stirring on nucleation was investigated. A mathematical model between the magnetic induction intensity, rotation speed and the critical radius was developed. Analysis results show that under electromagnetic stirring, critical radius decrease, critical nucleation work decrease and nucleation rate increase. With rotation speed increase, critical radius decrease, critical nucleation work decrease and nucleation rate increase. With rotation speed increase, grain density increase, grain size decrease and shape factor increase.
引文
[1]Abel Engh T., Principles of Metal Refining (Oxford Science Publications)[M]. Oxford:Oxford University Press,1992
    [2]郭景杰,傅恒志.合金熔体及其处理[M].北京:机械工业出版社,2005
    [3]Butler W. A., Die Casting (Permanent Mold)[J]. Encyclopedia of Materials:Science and Technology,2008,2147-2152
    [4]Ashok S., Evolution of microstructure of Cu-4% Zr alloy formed by spray casting[J]. International Journal of Rapid Solidification,1993,7:283-293
    [5]John C. Slattery, Sangheon Lee. Analysis of melt spinning[J]. Journal of Non-Newtonian Fluid Mechanics,2000,89(3):273-286
    [6]Mohammad Riahi. Surface treatment of cast iron by adding different alloying elements to form a metallic glass structure layer using an industrial carbon dioxide laser[J]. Journal of Materials Processing Technology,1996,58(1):3-12
    [7]G. Wilde, J.L. Sebright, J.H. Perepezko. Bulk liquid undercooling and nucleation in gold[J]. Acta Materialia,2006,54(18):4759-4769
    [8]边秀房,刘相法,马家骥.铸造金属遗传学[M].济南:山东科学技术出版社,1999
    [9]Dobatkin V. I., Eskin G. I. Ingots of aluminum alloys with nondendritic structure produced by ultrasonic treatment for deformation on the semi-solid state[A]. Proceeding of the 4th S2P[C], England,1996:193-196
    [10]徐骏.强制均匀凝固组织精确控制技术[J].中国材料进展,2010,29(11):26-30
    [11]S. JI, Z. FAN. Solidification Behavior of Sn-15 Wt Pct Pb Alloy under a High Shear Rate and High Intensity of Turbulence during Semi solid Processing[J]. Metallurgical and Materials Transactions A,2002,33 A (11):3511-3520
    [12]李涛.半固态显微组织形成演化与流变性的实时观察研究[D].博士论文.西安:西北工业大学,2003
    [13]朱光磊,徐骏,张志峰等.搅拌剪切作用下凝固组织演变过程的数学描述[J].北京科技大学学报,2010,32(6):759-763
    [14]Berke Turgay Gezer, Fatih Toptan, Sibel Daglilar, et al. Production of Al-Ti-C grain refiners with the addition of elemental carbon[J]. Materials & Design,2010, 31 (Supplement 1):S30-S35
    [15]刘丹.铝合金液相线铸造制浆及半固态加工工艺与理论研究[D].沈阳,东北大学,1999
    [16]Xia K, Tausig G. Liquidus Casting of a Wrought Aluminum Alloy 2618 for Thixoforming[J]. Materials Science & Engineering. A,1998,246(1-2):1-10
    [17]Pan Q Y, Findon M, Apelian D. The continuous rheoconversion process (CRP):a novel SSM approach[J]. ibid:2-4
    [18]大野笃美.金属的凝固理论、实践及应用[M].北京:机械工业出版社,1990
    [19]M. C. Flemings. Behavior of Metal Alloys in the Semisolid State[J]. Metallurgical Transactions B,1991,22B (6):269-293
    [20]M. C. Flemings, K. P. Young. Rheocasting. Mater[J]. Sci. Eng.,1976 (25):103-117
    [21]Helawell, J. Pilling. Grain Evolution in Conventional and Rheocasting[A]. Proceeding of the 4th S2P[C], UK,1996:60-65
    [22]J. Pilling, A. Helawell. Mechanical Deformation of Dendrites by Fluid Flow[J]. Metall Mater Trans,1996,27A(1):229-232
    [23]毛卫民.非枝晶AlSi7Mg合金半固态坯料组织形成规律及成形研究[D].博士论文.北京:北京科技大学,1999
    [24]Mao Weimin, Zhao Aimin, Li Yanjun. The Formation Mechanism of Non-dendritic Primary Alpha-Al Phase in Semi-solid AlSi7Mg Alloy[J]. Sci and Tech of Adv Mater,2001,29(1):97-99
    [25]Vogel, B. Cantor. Stability of Spherical Particles Growing from a Stirred Melt[J]. J. of Crystal Growth,1977(37):309-316
    [26]Vogel R. D., Doherty, B. Cantor. Stir-cast Microstructure and Slow Crack Growth[A]. Proceedings of International Conference on Solidification[C], University of Sheffield,1977:518-525
    [27]Pilling J, Hellawell. Mechanical Deformation of Dendrites by Fluid Flow[J]. Matallugical and Meterials Trans.,1996,27A:229-232
    [28]Kiuchi M, Sugiyama S. A new process to manufacture semisolid alloys[J]. ISIJ Tnter.,1995,35(6):790-793
    [29]Kirkwood D H. Semisolid metal processing[J]. Int. Mater. Rev.,1994,39(5): 173-189
    [30]邢书明,陈维视,马静等.搅拌条件下晶体游离模型探讨[J].河北科技大学学报,1999,20(50):41-46
    [31]Asuke. Rheocasting method and apparatus[P]. US Patent:5865240,1999
    [32]Fan Z Y, John B M, Ji S X. Method and apparatus for producing semisolid method slurries and shaped components[P]. US Patent:6745818,2004
    [33]Fan Z Y, Ji S X, John B M. Twin-Screw rheomoulding-a new semi-solid processing technology[A]. Proceedings of the 6th Int. Conf. on Semi-Solid Processing of Alloys and Composites[C], Turin, Italy, September 2000,61-66
    [34]Kang Yonglin, An Lin, Wang Kaikun, et al. Experimental Study on Rheoforming of Semisolid Magnesium Alloys[A]. Proceeding of the 7th S2P[C], Japan,2002: 287-292
    [35]康永林,安林,孙建林.转简式半固态金属浆料制备与成形设备[P].中国专利,01109074.X,2001
    [36]Blais S, Loue W, Pluchon C. Structure control by electromagnetic stirring and reheating at semi-solid state[A]. Proceeding of the 4th International Conference on the Processing of Semi-Solid Alloys and Composite[C]. The University of Sheffield, England,1996.187-192
    [37]Vives C. Elaboration of semisolid alloys by means of new electromagnetic rheocasting process[J]. Metal Trans,1992,23 B (2):189-206
    [38]田战峰,张志峰,徐骏等.半固态浆料复合电磁搅拌连续制备技术研究[J].铸造技术.2006,08:793-796
    [39]GUO S J, LE Q C, ZHAO Z H, et al. Microstructural refinement of DC cast AZ80 Mg billets by low frequency electromagnetic vibration[J]. Mater Sci Eng A,2005, 404(1-2):323-329
    [40]YU JB, JIANG J M, REN Z M, et al. A new method of continuous casting of copper billets by a combination of AC current and magnetic fields[J]. Mater Des, 2009,30(10):4665-4569
    [41]Getselev ZV. Casting in a electromagnetic mold[J]. Journal of Metals,1971,23(10): 38-43
    [42]VIVES C, RICOU R. Experimental study of continuous electromagnetic casting of aluminum alloy[J]. Metallurgical Transactions B,1985,16(2):377-384
    [43]VIVES C. Electromagnetic refining of aluminum alloys by the CREM process. Part I:working principle and metallurgical results[J]. Metallurgical Transactions B, 1989,20(5):623-629
    [44]Mitsuru A, Hiroto S, Yasunori H, et al. Method and apparatus for shaping semisolid metals[P]. European Patent:EP0745694,1996
    [45]Motegi T. Continuous casting of semisolid Al-Si-Mg alloy[A]. Proc. of the ICAA-6[C],1998,297-236
    [46]Grimmig T, Fehlbier M. Approaches to the production of Semi-solid Aluminum in the rheocasting process[A]. Proceedings of the 7th Int. Conf. on Advanced Semi-Solid processing of Alloys and Composites[C], Tsukuba, Japan, September 2002,789-794
    [47]Haga T, Kapranos P. Thixoforming process using ingot cast by a cooling slope and low super heat casting[A]. Proceedings of the 7th Int. Conf. on Advanced Semi-Solid processing of Alloys and Composites[C], Tsukuba, Japan, September 2002,795-800
    [48]Young K, Eisen P. SSM(Semi-solid metal) technological alternatives for different applications[A]. Proceedings of the 6th Int. Conf. on Advanced Semi-Solid processing of Alloys and Composites[C], Turin, Italy, September 2000,97-102
    [49]Wahlen A, Fragner W. Optimisation of the new rheocasting processs using cellular automata[J]. ibid:635-641
    [50]Doutre D, Langlais J, Roy S. The SEED process for semi-solid forming[A]. Proceedings of the 8th Int. Conf. on Semisolid processing of alloys and composites[C], Limassol, Cyprus,2004,10-2
    [51]Nafisi S, Ghomashchi R, Charette A. The influence of grain refiner on the micro structural evolution of Al-7%Si and A356 in the swirled enthalpy equilibration device (SEED) [J]. ibid:8-2
    [52]蔡卫华,杨湘杰.斜管法流变制浆设备工艺参数的研究[J].南昌大学学报(工科版),2003年9月.25(3):13-17
    [53]M. C. Flemings. Behavior of Metal Alloys in the Semisolid State[J]. Metallurgical Transactions B,1991,22B (6):269-293
    [54]M. C. Flemings, K. P. Young. Rheocasting. Mater[J]. Sci. Eng.,1976 (25):103-117
    [55]陈嵩生.半固态铸造[M].北京:国防工业出版社,1978
    [56]谢水生,黄声宏.半固态金属加工技术及其应用[M].北京:冶金工业出版社,1999
    [57]康永林.金属材料半固态技工理论与技术[M].北京:科学出版社,2004
    [58]毛卫民.半固态成形技术[M].北京:机械工业出版社,2004
    [59]管仁国,马伟明.金属半固态成形理论[M].北京:冶金工业出版社,2005
    [60]赵祖德,罗守靖.轻合金半固态成形技术[M].北京:化学工业出版社,2007
    [61]Z. Fan. Semisolid metal processing[J]. International Materials Reviews,2002,47(2): 49-85
    [62]H. Wang, C. J. Davidson, D. H. StJohn. Semisolid Microstructural Evolution of AlSi7Mg Alloy during Partial Remelting[J]. Materials Science and Engineering A, 2004 (368A):159-167
    [63]M. C. Flemings.SSM:Some Thoughts on Past Milestones and on the Path Ahead[A]. Proceeding of the 6th S2P[C], Italy,2000:11-14
    [64]R. Kopp, H. Shimahara. State of S&D and Future Trends in Semi-solid Manufacturing [A]. Proceeding of the 7th S2P[C], Japan,2002:57-66
    [65]Apelian. Semi-solid Processing Routes and Microstructure[A]. Proceeding of the 7th S2P[C], Japan,2002:25-30
    [66]Rathindra DasGupta. Industrial Application-The Present Status and Challenges We Face[A]. Proceeding of the 8th S2P[C], Cyprus,2004
    [67]罗守靖,姜巨福,杜之明.半固态成形研究的新进展、工业应用及其思考[J].机械工程学报,2004,39(11):52-60
    [68]Kyonka. Status of Semi-Solid Metal Working at Alumax[C]. The 4th Int. Conf. on Semi-Solid Processing of Alloys and Compositions, D.H. Kirkwood and P. Kapranos, Editors.1996.6:Sheffiedld, UK.256-259
    [69]Midson S P, Kilbert R K, Beau S E, et al. Guidelines for producing magnesium thixomolding semi-solid components used in structural applications[C]. Proceedings of the 8th Int. Conf. on Semisolid processing of alloys and composites, Limassol, Cyprus, September 2004,10-11
    [70]R.D. Gupta. Industrial applications-the present status and challenges we face[C]. Proc. of 8th Int.Conf. on Semi-Solid Processing of Alloys and Composites, A. Alexandrou, D. Apelian, and G. Georgiou, Editors.2004.9:Limassol, Cyprus
    [71]H. Kaufmann, H. Wabusseg, P.J. Uggowitzer. Casting of light metal wrought alloys by new rheocasting[C]. Proc.7th Int.Conf.Advnaced Semi-Solid processing of Alloys and Composites.2002.9:Tsukuba, Japan.457-462
    [72]G. Wallace, A.P.Jackson, S.P.Midson, et al. High-quality aluminum turbocharger impellers produced by thixocasting[J]. Transactions of Nonferrous Metals Society of China,2010,20(9):1786-7191
    [73]LUO Shou-jing, KEUNG W C, KANG Yong-lin. Theory and application research development of semi-solid forming in China[J]. Transactions of Nonferrous Metals Society of China,2010,20(9):1805-1814
    [74]赵大志,路贵民.半固态成形轻合金的发展状况[J].铸造,2007,06:572-577
    [75]杨弋涛,邵光杰,张恒华等.铝合金半固态成形基础与应用研究的十年回顾[J].特种铸造及有色合金.2008,05:367-372
    [76]张小立,李廷举,谢水生等.半固态加工制浆技术的研究进展[J].特种铸造及有色合金,2008,S1:36-40
    [77]张志峰,徐骏.轻合金及其复合材料半固态成型技术研究与应用[J].新技术新工艺,2009,2:19-22
    [78]Getselev ZV. Casting in a electromagnetic mold[J]. J Met,1971,23(10):38-43
    [79]Wang K K, Peng H, Wang N et al. Method and Apparatus for Injection Molding of Semi-Solid Metals. US Patent 5501266,1996
    [80]韩至成.电磁冶金学[M].北京:冶金工业出版社,2001
    [81]Meyer, Jean-Luc. Method of producing thixotropic metallic products by continuous casting with polyphase current electromagnetic agitation[P]. US Patent:5219018, 1993
    [82]Midson S P. The commercial status of semi-solid casting in the USA. idbd:251-255
    [83]Zillgen Z, Hirt G. Microstructure effect of electromagnetic stirring in continuous casting of various aluminium alloys. idbd:180-186
    [84]Niedermaier F, Langgartner J, Hirt G, et al. Horizontal continous casting of SSM billets[A]. Proceedings of the 5th Int. Conf. On Semi-Solid Processing of Alloys and Composites[C], Golden, Colorado, USA, Colorado School of Mines,1998, 407-414
    [85]LUO Shou-jing, KEUNG W C, KANG Yong-lin. Theory and application research development of semi-solid forming in China[J]. Transactions of Nonferrous Metals Society of China,2010,20(9):1805-1814
    [86]Zhang B J, Cui J Z, Lu G M. Effect of Electromagnetic Frequency on Microstructures of Continuous Casting Aluminum Alloys[J]. Journal of materials science and technology,2002,18(5):1-3
    [87]Zhang B J, Cui J Z, Lu G M.Effect of electromagnetic field on macrosegregation of continuous casting 7075 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China,2002,12(4):545-548
    [88]Beijiang Zhang, Jianzhong Cui, Guimin Lu. Effects of low-frequency electromagnetic field on microstructures and macrosegregation of continuous casting 7075 aluminum alloy[J]. Materials Science and Engineering A,2003,355: 325-330
    [89]张北江,崔建,路贵民等.电磁场频率对电磁铸造7075铝合金微观组织的影响[J].金属学报,2002,38(2):215-218
    [90]Yu J B, Jiang J M, Ren Z M, et al. A new method of continuous casting of copper billets by a combination of AC current and magnetic fields[J]. Mater Des,2009, 30(10):4665-4569
    [91]谢建新,石力开.高性能金属材料的控制凝固与控制成形[J].中国材料进展,2010(5),29:58
    [92]陆文华,李隆盛,黄良余.铸造合金及其熔炼[M].北京:机械工业出版社,2008
    [93]王文清,李魁盛.铸造工艺学[M].北京:机械工业出版社,2009
    [94]左铁镛.有色金属材料可持续发展与循环经济.中国有色金属学报,2008,18(5):755-763
    [95]谢水生,朱琳.高效、节能、短流程加工技术在有色金属加工中的应用.中国机械工程,2002,13:1631-1633
    [96]谢水生.有色金属加工过程中的减量技术.有色金属再生与利用,2006,1:12-13
    [97]聂祚仁,高峰,崔素萍等.材料环境协调性评价的发展及在节能减排中的应用.新材料产业,2007,12:47-50
    [98]曾怡丹.熔体分散混合法制备铝合金半固态浆料的理论与工艺研究[D].北京:北京有色金属研究总院,2008
    [99]BAI Y L, XU J, ZHANG Z F, et al. Annulus electromagnetic stirring for preparing semisolid A357 aluminum alloy slurry[J]. Transactions of nonferrous metals society of china,2009,19(5):1104-1109
    [100]ZHU G L, XU J, ZHANG Z F, et al. Annular electromagnetic stirring-a new method for the production of semi-solid A357 aluminum alloy slurry [J]. Acta Metallurgica Sinica (English Letters),2009,22(6):408-414
    [101]陈兴润.电磁搅拌法制备半固态金属浆料系统的数值模拟[D].北京:北京有色金属研究总院,2010
    [102]戴干策.传递现象导论[M].北京:化学工业出版社,2008
    [103]贾光霖,庞维成.电磁冶金原理与工艺[M].沈阳:东北大学出版社,2003
    [104]阎照文ANSYS10.0工程电磁分析技术与实例祥解[M].北京:中国水利水电出版社,2006
    [105]许洋,党沙沙,胡仁喜ANSYS11.0/FLOTRAN流场分析实例指导教程[M].北京:机械工业出版社,2009
    [106]邓凡平ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007
    [107]Dugnol Alvarez, J.L. Fernandez Martinez, M.L. Garzon Martin, et al. Mathematical modelling of the process of continuous casting of aluminium and its alloys[J]. Finite Elem. Anal. Des.1999,33:43-59
    [108]于海岐,朱苗勇.圆坯结晶器电磁搅拌过程三维流场与温度场数值模拟[J].金属学报,2008,44(12):1465-1473
    [109]张艳菊,毛卫民,赵振铎等.半固态A356铝合金的稳态流变性能[J].金属学报,2006,42(2):163-166
    [110]Besson, J. Bourgeois, P.A. Chevalier, et al. Touzani. Numerical modelling of electromagnetic casting processes[J]. J. Comput. Phys,1991,92:482-507
    [111]张志峰.钢电磁连续铸造技术的研究[D].大连:大连理工大学,2001
    [112]贾丹.电磁搅拌半固态浆料制备三维多物理场耦合数值模拟[D].沈阳:沈阳理工大学,2009
    [113]唱鹤鸣,杨晓平,张德惠等.感应炉熔炼与特种铸造技术[M].北京:冶金工业出版社,2002:1-8
    [114]高泽生.铝合金晶粒细化剂的试验方法(1)[J].轻金属,1999,(2):53-57
    [115]AA TP-1-1990, Standard test procedure for aluminium alloy grain refiners (TP-1)[S]. Washington:The Aluminium Association,1990
    [116]Spencer D, Flemings M C. Rheological Behavior of Sn-15%Pb in the Crystallization Range [J], Metall. Trans.,1972,3(7):1925-1932
    [117]李培杰.铝硅合金熔体的物性及结构遗传[D]哈尔滨:哈尔滨工业大学,1995
    [118]弭光宝,王晶,何良菊等.电磁搅拌对Al-Si合金流动性及凝固组织的影响[J].铸造,2010,59(1):16-21
    [119]王伟民.Al-Si合金熔体的微观结构及Si原子集团的演变行为[D].济南:山东工业大学,1998
    [120]陈翔燕.凝固过程中外场对流动控制的研究[D].西安:西北工业大学,2007
    [121]B.E.Launder, D.B.Spalding. Lectures in Mathematical Models of Turbulence[M]. Academic Press, London,1972
    [122]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008
    [123]Lan X K, Khodadadi J M, Shen N F. Evaluation of sixk ε turbulence model predictions of flow in a continuous casting billet-mold water using laser Doppler velocimetry measurements. Metall Mater Trans B,1997,28B:321-332
    [124]Lee Jung-Eui, Han Heung Nam, OH Kyu Hwan, et al. A fully coupled analysis of fluid flow, heat transfer and stress in continuous round billet casting[J]. TSIJ International,1999,39(5):435
    [125]刘和平,仇圣陶,干勇.连铸过程中湍流传输和两相区凝固的数值模拟.钢铁研究学报,2003,15(2):68-73
    [126]张红伟,王恩刚,赫冀成.方坯连铸过程中钢液流动、凝固及溶质分布的耦合数值模拟.金属学报,2002,38(1):99-104
    [127]Choudnary S K, Mazumda D, Ghosh A. Mathematical Modeling of Heat Transfer Phenomena in Continuous Casting of Steel[J]. ISIJ International,1993, (33): 151-156
    [128]杨代伦.基于质心的二维和三维插值算法[J].计算机工程与应用,2004(12):77-78
    [129]WECKMAN D C, NIESSEN P. A numerical simulation of the D.C. continuous casting process including nucleate boiling heat transfer [J]. Metallurgical and Materials Transactions B,1982,13(4):593-602
    [130]Drezet J M, Rappaz M, Grun G. U., et al. Determination of thermophysical properties and boundary conditions of direct chill-cast aluminum alloys using inverse methods[J]. Metall, Trans. A,2000, (31B):1627-1633
    [131]Grandfield J F, Hoadley A., Instone S. Water cooling in direct chill casting (Part 1): boiling theory and control[A]. Light Metals 1997[C], Warrendale, PA:TMS,1997: 692-699
    [132]ASM. ASM Handbook:volume 3:Alloy Phase Diagrams[M]. Cleveland:ASM International,1992
    [133]毛卫民,杨平,陈冷.材料织构分析原理与检测技术[M].北京:冶金工业出版社,2008
    [134]杨平.电子背散射技术及其应用[M].北京:冶金工业出版社,2007
    [135]郭俊清,李庆春.环境做功对金属凝固过程形核的影响[J].金属科学与工艺,1985,4(4):46-53
    [136]Yen C T, Tiller W A. Incorporating convection into one-dimensional solute redistribution during crystal growth from the melt. The steady-state solution[J]. Journal of Crystal Growth,1992,118(1-2):259-267
    [137]Cochran W G, Goldstein S. The flow due to a rotating disc[J]. Mathematical Proceeding of the Cambridge Philosophical Society,1934,30(3):365-375
    [138]Wu S, Wu X, Xiao Z. A model of growth morphology for semi-solid metals[J]. Acta Materialia,2004,52(12):3519-3524

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700