用户名: 密码: 验证码:
Mn-Si-Cr系超高强钢的超塑性及性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以Mn-Si-Cr系超高强钢为对象,系统研究了该系超高强钢的超塑性变形行为﹑性能优化方案及工程应用实例。
     在研究超塑性变形行为时,首先通过小试样变形模拟得到应变速率敏感性系数(m值),而后按照所设计的变形工艺路线利用小型轧机进行轧制获得变形后板材,从板材上取板式拉伸样进行拉伸实验,得到延伸率,再结合m值和延伸率来评价Mn-Si-Cr系超高强钢的超塑性变形能力。在进行小试样变形模拟时,由于温变形过程中存在组织演变,首次提出了“双m值”测定方法,即在温变形初期和后期分别利用速率突变过程(Backofen法)来测定温变形初期和后期的m值,进而分析组织演变对超塑性变形能力的影响。
     论文成功利用Mn-Si-Cr系中高碳钢设计了三种获得等轴细晶(铁素体+球状碳化物)复相组织的工艺,并深入研究了各工艺过程及超塑性变形过程中的组织演变。研究表明,适当的Mn-Si-Cr合金化和工艺过程可有效提高超高强钢的超塑性变形能力。Mn-Si-Cr系超高碳钢在1023K时延伸率可达900%。在大量实验的基础上,论文还首次提出了“超塑性潜能”的概念,并解释了该“潜能”在Mn-Si-Cr系超高强钢的超塑性变形中的实现机制。研究还发现,马氏体温变形过程中在较小的应变量下(真应变0.7)可形成晶粒尺寸的动态平衡,动态平衡时稳定的第二相可抑制基体晶粒长大。在不同的变形温度下可形成有利于超塑性的不同形态的动态平衡组织,如等轴细晶的(铁素体+球状碳化物)复相组织和(奥氏体+铁素体)复相组织。其中,(奥氏体+铁素体)复相组织中的奥氏体是形变诱导产生的,在超塑性变形后冷却过程中可以转变为马氏体,从而保证了高强度。由此我们为设计较为简易的超塑性变形工艺路线提供了思路。
     通过Mn-Si-Cr合金化,显著提高了超高强钢的淬透性,油淬生产的直径为170mm的1600MPa级液压支架铰接轴表面和心部的硬度差仅为HRC5。研究发现,Mn-Si-Cr系超高强钢中的粒状组织不具有回火脆性,这在很大程度上有利于简化回火工艺,同时保证了较佳的强韧性配合。此外,结合V微合金化开发了屈服强度高于1200MPa的Mn-Si-Cr系超高强钢筋,屈强比低,使用安全。
The paper studied the superplastic behavior﹑performance optimization andengineering applications of Mn-Si-Cr series ultrahigh strength steels systematically.
     The superplasticity of Mn-Si-Cr series ultrahigh strength steels was evaluated bythe strain rate sensitivity index (i.e. m value) and elongation obtained through smallspecimen thermomechanical testing and plate-shape tensile testing respectively. In orderto study the effect of microstructure evolution on superplastic characteristics duringsmall specimen thermomechanical testing, a “double m value” method was firstly putforward by introducing the strain rate change method at the initial and later stages ofwarm deformation.
     The paper successfully developed three technologies to obtain equiaxed and fine(ferrite+spherical carbides) duplex microstructures in Mn-Si-Cr series medium andhigh carbon steels. The microstructure evolution during the technologies andsuperplastic deformation was intensively studied. It was found that appropriateMn-Si-Cr alloying and technology improved the superplasticity of ultrahigh strengthsteels effectively. The Mn-Si-Cr series ultrahigh carbon steel could exhibit superplasticcharacteristics and high elongations (~900%at1023K). Based on repeated lab tests, wepresented a new concept of “superplastic potential” and explained the realizationmechanism of the “potential” during superplastic deformation of Mn-Si-Cr seriesultrahigh strength steels. Study also showed that a dynamic equilibrium of grain sizecould be reached at a low strain (~0.7) during warm deformation of martensite and thestable second phase in this equilibrium suppressed the growth of matrix grains. Duringwarm deformation at different temperatures, the dynamic equilibrium microstructureswith different morphologies (e.g. equiaxed and fine (ferrite+spherical carbides) duplexmicrostructures and (austenite+ferrite) duplex microstructures) were obtained. Theaustenite in the (austenite+ferrite) duplex microstructures was formed bystrain-induced transformation and could transform to martensite during cooling afterwarm deformation. As a result, an ultrahigh strength was ensured. Based on this, wepresented an idea for designing relatively simple superplastic deformation schemes.
     Through Mn-Si-Cr alloying, the hardenability of the designed ultrahigh strength steels was greatly improved. The hardness difference between the surface and center of1600MPa oil-quenched articulated shafts of hydraulic support in a diameter of170mmis only HRC5. The granular structure of Mn-Si-Cr series ultrahigh strength steels doesnot exhibit temper brittleness. Therefore, the tempering used for the performanceoptimization can be simplified to a great extent. In addition, combined with Vmicroalloying, Mn-Si-Cr series ultrahigh strength finished rolled rebars with relativelylow yield ratio were developed.
引文
[1]王向成.新一代钢铁材料研究的进展.武钢技术,2004,42(2):38-43.
    [2] Sherby O D. Ultrahigh carbon steels, Damascus steels and ancient blacksmiths. ISIJ Int,1999,39(7):637-648.
    [3] Sherby O D, Walser B, Young C M, et al. Superplastic ultrahigh carbon-steels. Scr Metall,1975,9(5):569-573.
    [4]刘冬雨,方鸿生,白秉哲,等.碳化物贝氏体/马氏体复相钢的强韧性.机械工程学报,2003,39(8):27-31.
    [5]杨福宝,白秉哲,刘冬雨,等.碳化物贝氏体/马氏体复相高强度钢的组织与性能.金属学报,2004,40(3):296-300.
    [6] Zhang H, Bai B, Fang H. A Mn-series of oil-quenched super-strength bainitic steel with highhardenability. J Iron Steel Res Int,2010,17(5):38-43.
    [7]方鸿生,冯春,郑燕康,等.新型锰系空冷贝氏体钢的创制与发展.热处理,2008,23(3):2-18.
    [8]杨柳,方鸿生,孟至和. Fe-C-Mn-B合金奥氏体等温分解动力学及Mn的再分配.金属学报,1992,28(1):16-20.
    [9] Liu D, Bai B, Fang H, et al. Effect of tempering temperature and carbide free bainite on themechanical characteristics of a high strength low alloy steel. Mater Sci Eng A-struct,2004,371:40-44.
    [10] Pearson C E. The viscous properties of eutectic alloys of Pb-Sn and Bi-Sn. J Inst Metals,1934,54:111-124.
    [11] Underwood E E. A review of superplasticity and related phenomena. J Metals,1962,14(12):914-925.
    [12] Polakows N H, Backofen W A, Disantis J A. Discussions-superplasticity in an Al-Zn alloy.ASM Trans Quart,1965,58(4):752-758.
    [13] Sherby O D, Wadsworth J. Superplasticity-Recent advances and future directions. Prog MaterSci,1989,33(3):169-221.
    [14]万菊林.非理想组织材料超塑性变形的研究[博士学位论文].北京:清华大学材料系,1995.
    [15] Backofen W A, Murty G S, Zehr S W. Evidence for diffusional creep with low strain ratesensitivity. Trans Metall Soc AIME,1968,242(2):329-338.
    [16] Gifkins R C. Superplasticity during creep. J Inst Met,1967,95(12):373-377.
    [17] Ashby M F, Verrall R A. Diffusion-accommodated flow and superplasticity, Acta Metall,1973,21(2):149-163.
    [18] Chaudhari P. Deformation behavior of superplastic Zn-Al alloy. Acta Metall,1967,15(12):1777-1786.
    [19] Mukherjee A K. Rate-controlling mechanism in superplasticity. Mater Sci Eng,1971,8(2):83-89.
    [20] Giffkins R C. Grain-boundary sliding and its accommodation during creep and superplasticity.Metall Trans A,1976,7(8):1225-1232.
    [21] Lee D. Structural changes during the superplastic deformation. Metall Trans,1970,1(1):309-316.
    [22] Chaudhari P. Dislocation cascade mechanism in superplasticity. Metall Trans,1974,5(7):1692-1693.
    [23] Giffkins R C. Grain rearrangements during superplastic deformation. J Mater Sci,1978,13(9):1926-1936.
    [24] Ariel A, Mukherjee A K. A model for the rate-controlling mechanism in superplasticity. MaterSci Eng,1980,45(1):61-70.
    [25] Langdon T G. The significance of grain boundary sliding in creep and superplasticity. MetalsForum,1981,4(1-2):14-23.
    [26] Ball A, Hutchison M M. Superplasticity in the aluminum-zinc eutectoid. J Metals Sci,1969,3:1-7.
    [27] Gittus J H. Theory of superplastic flow in two-phase materials-roles of interphase-boundarydislocations, ledges, and diffusion. J Eng Mater Tech,1977,99(3):244-251.
    [28] Lin D, Shan A, Li D. Superplasticity in Fe3Al-Ti alloy with large grains. Scr Metall Mater,1994,31(11):1455-1460.
    [29] Li D, Shan A, Liu Y, et al. Study of superplastic deformation in an FeAl based alloy with largegrains. Scr Metall Mater,1995,33(4):681-685.
    [30] Liu Y, Li D, Lin D, et al. The microstructural evolution during superplastic deformation inFeAl intermetallic compound. Scr Mater,1996,34(7):1095-1100.
    [31] Lin D, Lin T L, Shan A, et al. Superplasticity in large-grained Fe3Al alloys. Intermetallics,1996,4(6):489-496.
    [32] Chu J P, Liu I M, Wu J H, et al. Superplasic deformation in coarse-grained Fe-23Al alloys.Mater Sci Eng A-struct,1998,258:236-242.
    [33]谷月峰,林栋梁,单爱党,等.晶粒尺寸为10-30μm的Ni3Al基合金的超塑行为.金属学报,1997,33(3):325-329.
    [34]刘震云,林栋梁,谷月峰,等. NiAl和Ni3Al双相合金的超塑性变形.金属学报,1996,32(11):1139-1143.
    [35] Hales S J, Mcnelley T R. Microstructural evolution by continuous recrystallization in asuperplastic Al-Mg alloy. Acta Metall,1988,36(5):1229-1239.
    [36] Gudmundsson H, Brooks D, Wert J A. Mechanisms of continuous recrystallization in anAl-Zr-Si alloy. Acta Metall Mater,1991,39(1):19-35.
    [37] Liu J, Chakrabarti D J. Grain structure and microtexture evolution during superplastic formingof a high strength Al-Zn-Mg-Cu. Acta Mater,1996,44(12):4647-4661.
    [38]白秉哲. LC9铝合金热扭转晶粒细化.金属热处理学报,1995,16(1):18-24.
    [39]万菊林,孙新军,顾家琳,等. Al-Zn-Mg-Cu-Cr合金连续动态再结晶机制的研究.金属学报,1999,35(10):1031-1035.
    [40] Kaibyshev O A, Lutfullin R Y, Salishchev G A. Microstructural changes during heat treatmentand hot deformation of titanium alloy VT9with platelike structure. Phys Met Metall,1985,59(3):150-155.
    [41] Kaibyshev O A, Lutfullin R Y, Salishchev G A. Influence of superplastic deformationconditions on transformation of platelike microstructure in titanium alloy VT9. Phys MetMetall,1988,66(6):109-117.
    [42] Kaibyshev O A, Lutfullin R Y, Salishchev G A. Transformation from platelike to equiaxialmicrostructure in titanium alloy VT9. Phys Met Metall,1988,66(5):124-130.
    [43] Salishchev G A, Mazurskiy M I, Levin I E. Influence of phase disequilibrium onglobularization of platelike microstructure in a titanium alloy during hot deformation. Phys MetMetall,1990,70(6):147-149
    [44] Nieh T G, Wadsworth J, Sherby O D. Superplasticity in Metals and Ceramics. New York:Cambridge University Press,2005.
    [45] Hart E W. Theory of tensile test. Acta Metall,1967,15(2):351-355.
    [46] Backofen W A, Turner I R, Avery D H. Superplasticity in an Al-Zn alloy. Trans ASM Quart,1964,57(6):980-990.
    [47] Backofen W A. Ductility, ASM.Seminar. Ohio: Metals Park,1969:279-310.
    [48]李旭红,刘兴秋,刘庆,等.温轧态Al-Mg-Zr合金超塑变形过程中力学行为和微观组织相关性研究.材料研究学报,1995,9(1):25-28.
    [49]刘润广,蒋浩民,姜勇,等.2214铝合金超塑变形机制.金属学报,1996,32(12):1244-1247.
    [50] Gandhi C, Raj R. A model for subgrain superplastic flow in aluminum alloys. Acta MetallMater,1991,39(4):679-688.
    [51]刘志义,崔建忠,白光润.脉冲电流对2091合金的超塑性及断裂行为的影响.金属学报,1993,29(2): A90-92.
    [52] Conrad H, Cao W D, Lu X P, et al. Effect of electricfield on cavitation in superplasticaluminum alloy7475. Mater Sci Eng A-struct,1991,138:247-258.
    [53]丁桦,张凯峰.材料超塑性研究的现状与发展.中国有色金属学报,2004,14(7):1059-1067.
    [54]王桂松,张杰,耿林,等.金属基复合材料的高速超塑性.宇航材料工艺,2001(2):13-18.
    [55] Watanabe H, Mukai T, Higashi K. Low temperature superplastic behavior in ZK60magnesiumalloy. Mater Sci Forum,1999,304-306:303-308.
    [56] Kaneko J, Sugamata M, Hisara N. Superplastic properties of rapidly solidified Mg-Al-Zn alloys.Mater Sci Forum,1999,304-306:85-90.
    [57] Mohri T, Mabuch M, Nakamura M, et al. Microstructural evolution and superplasticity of rolledMg-9Al-Zn. Mater Sci Eng A-struct,2000,290:139-144.
    [58] Tsao L C, Wu C F, Chuang T H. Evaluation of Superplastic formability of the AZ31magnesium alloy. Z Metall,2001,92(6):572-577.
    [59] Kim W J, Chung S W, Chung C S, et al. Superplasticity in thin magnesium alloy sheets anddeformation mechanism maps for magnesium alloys at elevated temperatures. Acta Mater,2001,49(16):3337-3345.
    [60] Takuda H, Enami T, Kubota K, et al. The formability of a thin sheet of Mg-8.5Li-1Zn alloy. JMater Process Tech,2000,101(1-3):281-286.
    [61]白秉哲,杨鲁义. Ti-6Al-4V和Ti-10V-2Fe-3Al合金超塑性变形中各向异性研究.塑性工程学报,1996,3(4):7-13.
    [62] Kim J S, Kim J H, Lee Y T, et al. Microstructural analysis on boundary sliding and itsaccommodation mode during superplastic deformation of Ti-6Al-4V alloy. Mater Sci EngA-struct,1999,263(2):272-280.
    [63] Salishchev G A, Galiyev R M, Valiakhmetov O R, et al. Development of Ti-6Al-4V sheet withlow temperature superplastic properties. J Mater Process Tech,2001,116(2-3):265-268.
    [64] Salishchev G A, Valiakhmetov O R, Galiyev R M. Formation of submicrocrystalline structurein the titanium alloy VT8and its influence on mechanical properties. J Mater Sci,1993,28(11):2898-2902.
    [65] Frommeyer G, Czarnowskl P V. High strain rate superplasticity and strength properties oftwo-phase titanium-intermetallic Ti-12Co-5Al and Ti-12Ni-5Al alloy. Z Metall,1990,81(10):756-760.
    [66]张津徐,葛红林,程晓英,等.一种可在低温高应变速率下超塑成形的钛合金研究及开发.稀有金属材料与工程,2000,29(2):105-108.
    [67]李世春. Zn-Al共晶合金的超塑性.东营:石油大学出版社,1998:16-17.
    [68] Valitov V A, Kaibyshev O A, Mukhtavov S K, et al. Low temperature and high temperaturerate superplasticity of nikel base alloys. Mater Sci Forum,2001,357-359:417-424.
    [69]刘润广,蒋浩民,韩雪,等.718合金的超塑性.金属热处理学报,1998,19(2):16-20.
    [70]吕宏军,贾新朝,张凯锋,等.超细晶化对高温合金GH4169性能的影响.材料科学与工艺,2002,10(3):268-271.
    [71]姚祖斌,吴洛平,姚天长,等.供应态HPv59-1黄铜超塑性压缩的实验研究.热加工工艺,1993,1:5-9.
    [72] Kim W J, Taleff E M, Sherby O D. Superplastivity of fine-grained Fe-C alloys prepared byingot and powder-processing routes. J Mater Sci,1998,33(20):4977-4985.
    [73] Xu C H, Gao W, Yang Y L. Superplastic boronizing of a low alloy steel-microstructural aspects. J Mater Process Tech,2001,108(3):349-355.
    [74] Patankar S N, Lim C T, Tan M J. Superplastic forming of duplex stainless steel. Metall MaterTrans A,2000,31(9):2394-2396.
    [75] Zhang J G, Yan B, Zhang H, et al. Superplastic ultrahigh carbon steels processed by sprayforming. Mater Sci Forum,2003,426-432:919-924.
    [76] Walser B, Sherby O D. Mechanical behavior of superplastic ultrahigh carbon steels at elevatedtemperature. Metall Trans A,1977,10A:1461-1471.
    [77]杜兴蒿,郭建亭,周彼得.单相组织金属间化合物的超塑行为.钢铁研究学报,2001,13(6):52-55.
    [78] Ding H, Song D, Zhang C B, et al. Superplastic behavior of a θ-forged Ti3Al-Nb alloy. MaterSci Eng A-struct,2000,281:248-252.
    [79]王殿梁,丁桦,宋丹.锻态Ti3Al合金超塑压缩的力学行为及组织演变.稀有金属材料与工程,2001,30(6):444-447.
    [80] Kajihara K, Yoshizawa Y, Sakuma T. The enhancement of superplastic flow in tetragonalzirconia polycrystals with SiO2-doping. Acta Metall Mater,1995,43:1235-1242.
    [81] Langdon T G. Grain boundary sliding revisited: Developments in sliding over four decades. JMater Sci,2006,41(3):597-609.
    [82] Gleiter H. Nanocrystalline materials. Prog Mater Sci,1989,33(4):223-315.
    [83] Weertman J R. Hall-Petch strengthening in nanocrystalline metals. Mater Sci Eng A-struct,1993,166:161-167.
    [84] Erb U, El-Sherik A M, Palumbo G, et al. Synthesis, structure and properties of electroplatednanocrystalline materials. Nanostruct Mater,1993,2:383-390.
    [85] Koch C C, Cho Y S. Nanocrystals by high energy ballmilling. Nanostruct Mater,1992,1:207-212.
    [86] Valiev R Z, Krasilnikov N A, Tsenev N K. Plastic deformation of alloys withsubmicron-grained structure. Mater Sci Eng A–struct,1991;137:35-40.
    [87] Segal V M, Reznikov V I, Drobyshevskiy A E, et al. Plastic working of metals by simple shear.Russian Metall,1981;19(1):99-105.
    [88] Segal V M. Materials processing by simple shear. Mater Sci Eng A-struct,1995;197(2):157-164.
    [89] Zhilyaev A P, Nurislamova G V, Kim B K, et al. Experimental parameters influencing grainrefinement and microstructural evolution during high-pressure torsion. Acta Mater,2003;51:753-765.
    [90] Sitdikov O, Sakai T, Goloborodko A, et al. Effect of pass strain on grain refinement in7475Alalloy during hot multidirectional forging. Mater Trans,2004;45:2232-2238.
    [91] Varyutkhin V N, Beygelzimer Y Y, Synkov S, et al. Application of twist extrusion. Mater SciForum,2006;503-504:335-339.
    [92] Richert J, Richert M. A new method for unlimited deformation of metals and alloys.Aluminium,1986;62:604-607.
    [93] Richert M, Liu Q, Hansen N. Microstructural evolution over large strain range in aluminiumdeformed by cyclic-extrusion-compression. Mater Sci Eng A-struct,1999;260(1-2):275-283.
    [94] Chu H S, Liu K S, Yeh J W. Study of6061-Al2O3pcomposites produced by reciprocatingextrusion. Metall Mater Trans A,2000;31(10):2587-2596.
    [95] Chu H S, Liu K S, Yeh J W. Aging behavior and tensile properties of6061Al-0.3μm Al2O3pparticle composites produced by reciprocating extrusion. Scr Mater,2001;45(5):541-546.
    [96] Huang J Y, Zhu Y T, Jiang H, et al. Microstructures and dislocation configurations innanostructured Cu processed by repetitive corrugation and straightening. Acta Mater,2001;49(9):1497-1505.
    [97] Zhu Y T, Jiang H, Huang J, et al. Microstructures and mechanical properties ofultrafine-grained Ti foil processed by equal-channel angular pressing and cold rolling. MetallMater Trans A,2001;32:1559-1562.
    [98] Shin D H, Park J J, Kim Y S, et al. Constrained groove pressing and its application to grainrefinement of aluminum. Mater Sci Eng A-struct,2002(1-2);328:98-103.
    [99] Zhao X, Jing T F, Gao Y W, et al. A new SPD process for spherical cast iron. Mater Lett,2004;58(19):2335-2339.
    [100] Saito Y, Tsuji N, Utsunomiya H, et al. Ultra-fine grained bulk aluminum produced byaccumulative roll-bonding (ARB) process. Scr Mater,1998;39(9):1221-1227.
    [101] Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Mater,1999;47(2):579-583.
    [102] Rhodes C G, Mahoney M W, Bingel W H, et al. Effects of friction stir welding onmicrostructure of7075aluminum. Scr Mater,1997;36(1):69-75.
    [103] Mishra R S, Ma Z Y. Friction stir welding and processing. Mater Sci Eng R,2005;50(1-2):1-78.
    [104] Hofmann D C, Vecchio K S. Submerged friction stir processing (SFSP): An improved methodfor creating ultra-fine-grained bulk materials. Mater Sci Eng A-struct,2005;402(1-2):234-241.
    [105] Segal V M, Reznikov V I, Drobyshevskii A E, et al. Left bracket plastic metal working bysimple shearright bracket. Metally,1981;1:115-123.
    [106] Valiev R Z, Korznikov A V, Mulyukov R R. Structure and properties of ultrafine-grainedmaterials produced by severe plastic deformation. Mater Sci Eng A-struct,1993;168:141-148.
    [107] Iwahashi Y, Wang J, Horita Z, et al. Principle of equal-channel angular pressing for theprocessing of ultrafine-grained materials. Scr Mater,1996;35(2):143-146.
    [108]魏伟,陈光. ECAP等径角挤压变形参数的研究.兵器材料科学与工程,2002;25(6):61-63.
    [109] Furukawa M, Iwahashi Y, Horita Z, et al. The shearing characteristics associated withequal-channel angular pressing. Mater Sci Eng A-struct,1998;257(2):328-332.
    [110] Furukawa M, Horita Z, Langdon T G. Factors influencing the shearing patterns inequal-channel angular pressing. Mater Sci Eng A-struct,2002;332(1-2):97-109.
    [111] Ishi K O, Horita Z, Furukawa M, et al. Optimizing the rotation conditions for grain refinementin equal-channel angular pressing. Metall Mater Trans A,1998;29(7):2011-2013.
    [112] Nakashima K, Horita Z, Nemoto M, et al. Influence of channel angle on the development ofultrafine grains in equal-channel angular pressing. Acta Mater,1998;46(5):1589-1599.
    [113] Torre F D, Lapovok R, Sandlin J, et al. Microstructures and properties of copper processed byequal channel angular extrusion for1-16passes. Acta Materialia,2004;52(16):4819-4835.
    [114] Ferrasse S, Segal V M, Kalidindi S R, et al. Texture evolution during equal channel angularextrusion: Part I. Effect of route, number of passes and initial texture. Mater Sci Eng A-struct,2004;368(1-2):28-40.
    [115]王红霞,梁伟,阴耀鹏,等.等通道转角挤压制备超细晶Mg15Al双相合金组织与性能.塑性工程学报,2009;16(3):161-166.
    [116] Berbon P B, Furukawa M, Horita Z, et al. Influence of pressing speed on microstructuraldevelopment in equal-channel angular pressing. Metall Mater Trans A,1999;30(8):1989-1997.
    [117] Yamashita A, Yamaguchi D, Horita Z, et al. Influence of pressing temperature onmicrostructural development in equal-channel angular pressing. Mater Sci Eng A-struct,2000;287(1):100-106.
    [118] Chen Y C, Huang Y Y, Chang C P, et al. The effect of extrusion temperature on thedevelopment of deformation microstructures in5052aluminium alloy processed by equalchannel angular extrusion. Acta Mater,2003;51(7):2005-2015.
    [119] Stolyarov V V, Lapovok R, Brodova I G, et al. Ultrafine-grained Al-5wt%Fe alloy processedby ECAP with backpressure. Mater Sci Eng A-struct,2003;357(1-2):159-167.
    [120] Oruganti R K, Subramanian P R, Marte J S, et al. Effect of friction,backpressure and strainrate sensitivity on material flow during equal channel angular extrusion. Mater Sci EngA-struct,2005;406(1-2):102-109.
    [121] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severeplastic deformation. Prog Mater Sci,2000;45(2):103-189.
    [122] Musalimov R S, Valiev R Z. Dilatometric analysis of aluminium alloy with submicrometregrained structure. Scr Metall Mater,1992;27:1685-1690.
    [123]谢子令,武晓雷,谢季佳,等.高压扭转铜试样的微观组织与压缩性能.金属学报,2008;44(7):803-809.
    [124] Sakai G, Horita Z, Langdon T G. Grain refinement and superplasticity in an aluminum alloyprocessed by high-pressure torsion. Mater Sci Eng A-struct,2005;393(1-2):344-351.
    [125] Rentenberger C, Waitz T, Karnthaler H P. Formation and structures of bulk nanocrystallineintermetallic alloys studied by transmission electron microscopy. Mater Sci Eng A-struct,2007;462(1-2):283-288.
    [126] Tokunaga T, Kaneko K, Sato K, et al. Microstructure and mechanical properties of aluminumfullerene composite fabricated by high pressure torsion. Scr Mater,2008;58(9):735-738.
    [127] Imayev M F, Daminov R R, Reissner M, et al. Microstructure, texture and superconductingproperties of Bi2212ceramics, deformed by torsion under pressure. Physica C,2007;467:14-26.
    [128] Imayev R M, Imayev V M, Salishchev G A. Formation of submicrocrystalline structure inTiAl intermetallic compound. J Mater Sci,1992;27:4465-4471.
    [129] Salishchev G A, Imayev R M, Senkov O N, et al. Formation of a submicrocrystalline structurein TiAl and Ti3Al intermetallics by hot working. Mater Sci Eng A-struct,2000;286(2):236-243.
    [130] Belyakov A, Tsuzaki K, Kimura Y, et al. Comparative study on microstructure evolution uponunidirectional and multidirectional cold working in an Fe-15%Cr ferritic alloy. Mater Sci EngA-struct,2007;456(1-2):323-331.
    [131] Takayama A, Yang X, Miura H, et al. Continuous static recrystallization in ultrafine-grainedcopper processed by multi-directional forging. Mater Sci Eng A-struct,2008;478(1-2):221-228.
    [132] Tsuji N, Saito Y, Utsunomiya H, et al. Ultra-fine grained bulk steel produced by accumulativeroll-bonding (ARB) process. Scr Mater,1999;40(4):795-800.
    [133] Kitazono K, Sato E, Kuribayashi K. Novel manufacturing process of closed-cell aluminumfoam by accumulative roll-bonding. Scr Mater,2004;50(4):495-498.
    [134]刘华赛,张滨,张广平.累积叠轧焊制备Al/AZ31多层复合材料及其强度.稀有金属,2009;33(2):285-289.
    [135] Ivanisenko Y, Wunderlich R K, Valiev R Z, et al. Annealing behaviour of nanostructuredcarbon steel produced by severe plastic deformation. Scr Mater,2003;49(10):947-952.
    [136] Kaspar R, Fluess P, Pawelski O. Improving properties of a low-carbon microalloyed steel bymeans of accelerated cooling of dynamically recrystallized austenite. Steel Res,1989;60(12):566-570.
    [137] Hodgson P D, Hickson M R, Gibbs R K. Ultrafine ferrite in low carbon steel. Scr Mater,1999;40:1179-1184.
    [138] Mabuchi H, Hasegawa T, Ishikawa T. Metallurgical features of steel plates with ultrafinegrains in surface layers and their formation mechanism. ISIJ Int,1999;39(5):477-485.
    [139] Yang Z M, Wang R Z. Formation of ultra-fine grain structure of plain low carbon steelthrough deformation induced ferrite transformation. ISIJ Int;2003,43:761-766.
    [140] Hickson M R, Hurley P J, Gibbs R K, et al. The production of ultrafine ferrite in low-carbonsteel by strain-induced transformation. Metall Mater Trans A,2002;33:1019-1026.
    [141] Hong S C, Lim S H, Lee K J, et al. Effect of undercooling of austenite on strain induced ferritetransformation behavior. ISIJ Int,2003;43:394-399.
    [142] Matsumura Y, Yada H. Evaluation of ultrafine-grained ferrite in hot deformation. ISIJ Int,1987;27:492-498.
    [143] Tsuji N, Matsubara Y, Saito Y. Dynamic recrystallization of ferrite in interstitial free steel. ScrMater,1997;37(4):477-484.
    [144] Murty S V S, Torizuka S, Nagai K, et al. Dynamic recrystallization of ferrite during warmdeformation of ultrafine grained ultra-low carbon steel. Scr Mater;2005;53(6):763-768.
    [145] Song R, Ponge D, Raabe D, et al. Microstructure and crystallographic texture of an ultrafinegrained C–Mn steel and their evolution during warm deformation and annealing. Acta Mater;2005;53(3):845-858.
    [146] Song R, Ponge D, Raabe D. Improvement of the work hardening rate of ultrafine grainedsteels through second phase particles. Scr Mater;2005;52(11):1075-1080.
    [147] Song R, Ponge D, Raabe D. Mechanical properties of an ultrafine grained C–Mn steelprocessed by warm deformation and annealing. Acta Mater;2005;53(18):4881-4892.
    [148] Jong M D, Rathenau G W. Mechanical properties of iron and some iron alloys whileundergoing allotropic transformation. Acta Metall,1959;7:246-253.
    [149] Oyama T, Sherby O D, Wadsworth J, et al. Application of the divorced eutectoidtransformation to the development of fine-grained, spheroidized structures in ultrahigh carbonsteels. Scr Metall,1984;18:799-804.
    [150] Sherby O D, Oyama T, Kum D W, et al. Ultrahigh carbon steels. J Met,1985;37(6):50-56.
    [151] Tsuzaki K, Sato E, Furimoto S, et al. Formation of an (α+θ) microduplex structure withoutthermomechanical processing in superplastic ultrahigh carbon steels. Scr Mater,1999;40(6):675-681.
    [152] Tsuji N, Ueji R, Minamino Y, et al. A new and simple process to obtain nano-structured bulklow-carbon steel with superior mechanical property. Scr Mater,2002;46(4):305-310.
    [153] Ohmori A, Torizuka S, Nagai K. Strain-hardening due to dispersed cementite for low carbonultrafine-grained steels. ISIJ Int,2004;44:1063-1071.
    [154] Okitsu Y, Takatab N, Tsuji N. A new route to fabricate ultrafine-grained structures in carbonsteels without severe plastic deformation. Scr Mater,2009;60(2):76-79.
    [155] Zhang H, Zhang L, Cheng X, et al. Superplastic behavior during warm deformation ofmartensite in medium carbon steel. Scr Mater,2010;62:798-801.
    [156] Zhang H, Cheng X, Zhang L, et al. An ultrahigh strength steel with ultrafine-grainedmicrostructure produced through superplastic forming. Mater Sci Eng A-struct,2010;527:5430-5434.
    [157]项程云.合金结构钢.北京:冶金工业出版社,1999:2.
    [158]张树松,仝爱莲.钢的强韧化机理与技术途径.北京:兵器工业出版社,1995:7.
    [159] Tomita Y, Okabayashi K. Improvement in lower temperature mechanical properties of0.40pct C-Ni-Cr-Mo ultrahigh strength steel with the second phase lower bainite. Metall Trans,1983;14A:485-492.
    [160] Tomita Y, Okabayashi K. Heat treatment for improvement in lower temperature mechanicalproperties of0.40pct C-Cr-Mo ultrahigh strength steel. Metall Trans,1983;14A:2387-2393.
    [161]方鸿生,郑燕康,周欣.中碳贝氏体/马氏体复相组织强韧性的研究.金属热处理学报,1986,7(1):10-18.
    [162]松山晋作.遲れ破壞.東京:日刊工業新聞社,1989:67.
    [163] Yu Y, Gu J, Bai B, et al. Very high cycle fatigue mechanism of carbide-free bainite/martensitesteel micro-alloyed with Nb. Mater Sci Eng A-struct,2009;527:212-217.
    [164]万翛如,许昌淦.高强度及超高强度钢.北京:机械工业出版社,1988:98.
    [165] Irvine K J, Pickering F P. The physical properties of martensite and bainite. Iron Steel Inst,1958;188:101-112.
    [166] Pickering F P. Physical metallurgy and the design of steels. London: Applied sciencepublishers Ltd,1980:36.
    [167]方鸿生,杨业元,姜忠良,等.贝氏体钢磨球与我国磨球材料.兵器材料科学与工程,1993;16(5):1-10.
    [168]方鸿生,郑燕康等. Mn-B系空冷贝氏体钢的新近进展.金属热处理,1997;4:9-12.
    [169]方鸿生,邓海金.低碳Fe-Mn-B钢粒状贝氏体的组织及其强韧性.机械工程材料,1981;5(1):5-14.
    [170] Sandvik B P J, Nevalainen H P. Structure-property relationship in commercial low-alloybainitic-austenitic steel with high strength, ductility, and toughness. Metal Technol,1981;8(6):213-220.
    [171] Miihkinen V T T, Edmonds D V. Microstructural examination of two experimentalhigh-strength bainitic low-alloy steels containing silicon. Mater Sci Technol,1987;3(6):422-431.
    [172] Miihkinen V T T, Edmonds D V. Tensile deformation of two experimental high-strengthbainitic low-alloy steels containing silicon. Mater Sci Technol,1987;3(6):432-440.
    [173] Miihkinen V T T, Edmonds D V. Fracture toughness of two experimental high-strengthbainitic low-alloy steels containing silicon. Mater Sci Technol,1987;3(6):441-449.
    [174] Bhadeshia H K D H, Edmonds D V. Bainite in silicon steels: new composition-propertyapproach, Part1. Met Sci,1983;17(9):411-419.
    [175] Bhadeshia H K D H, Edmonds D V. Bainite in silicon steels: new composition-propertyapproach, Part2. Met Sci,1983;17(9):420-425.
    [176]王笑天.金属材料学.北京:机械工业出版社,1987:49.
    [177] Steven W, Mayer G. Continuous-cooling transformation diagrams of steels. Iron Steel Inst,1953;174(1):33-45.
    [178]张弛,方鸿生,杨志刚,等.锰硅系贝氏体/马氏体复相钢中贝氏体精细结构的研究.金属学报,2001;37(6):561-566.
    [179]杨福宝,白秉哲,刘东雨,等.碳化物贝氏体-马氏体复相高强度钢的组织和性能.金属学报,2004;40(3):296-300.
    [180]郑燕康,方鸿生,陈秀云.中碳空冷贝氏体/马氏体复相组织精细结构及强韧性的研究.清华大学学报,1986;26(2):34-43.
    [181]黄进峰,方鸿生,徐平光,等.稀土、钛变质对贝氏体铸钢成分偏析及强韧性的影响.金属热处理学报,2001;25(6):1-6.
    [182]陈颜堂,方鸿生,白秉哲,等. Si对高强度高韧性贝氏体钢冲击磨损性能的影响.金属热处理,2001;26(8):5-7.
    [183] Tomita Y, Okawa T. Effect of modified heat treatment on mechanical properties of300M steel.Mater Sci Technol,1995;11:245-251.
    [184]方鸿生,刘东雨,常开地,等.1500MPa级经济型贝氏体/马氏体复相钢的组织与性能.钢铁研究学报,2001;13(3):31-36.
    [185] Fang H, Yang F, Bai B, et al. Recent development of Mn series air-cooled bainitic steels. JIron Steel Res Int,2002;9(1):1-10.
    [186]赵沛,刘正才.新一代钢铁材料基础研究的进展和体会.材料导报,2001;15(3):1-3.
    [187]王新华.提高钢纯净度生产更高质量钢材是近20年来钢铁制造技术发展趋势.首钢科技,2000;3:1-10.
    [188] Walser B, Sherby O D. Mechanical behavior of superplastic ultrahigh carbon steels at elevatedtemperature. Metall Trans A,1979;10:1461-1471.
    [189]黄青松,李龙飞,杨王玥,等.共析钢的过冷奥氏体动态相变和组织超细化.金属学报,2007;43(7):724-730.
    [190] Hu X H, Houtte P V, Leibeherr M, et al. Modeling work hardening of pearlitic steels byphenomenological and Taylor-type micromechanical models. Acta Mater,2006;54(4):1029-1040.
    [191] Shin D H, Kim Y S, Lavernia E J. Formation of fine cementite precipitates by static annealingof equal-channel angular pressed low-carbon steels. Acta Mater,2001;49(13):2387-2393.
    [192] Ivanisenko Y, Lojkowski W, Valiev R Z, et al. The mechanism of formation of nanostructureand dissolution of cementite in a pearlitic steel during high pressure torsion. Acta Mater,2003;51(18):5555-5570.
    [193]李箭,孙福玉.奥氏体形变对先共析铁素体等温形成孕育期的影响.金属学报,1990;26(6):10-14.
    [194]周玉,武高辉.材料分析测试技术—材料X射线衍射与电子显微分析.哈尔滨:哈尔滨工业大学出版社,2000:92.
    [195]陈国安,杨王玥,孙祖庆,等.中碳钢过冷奥氏体形变过程中碳的分布与扩散.金属学报,2007;43:785-790.
    [196] Zheng C W, Xiao N M, Hao L H, et al. Numerical simulation of dynamic strain-inducedaustenite–ferrite transformation in a low carbon steel. Acta Mater,2009;57(10):2956-2968.
    [197] Wilde J, Cerezo A, Smith G D W. Three-dimensional atomic-scale mapping of a cottrellatmosphere around a dislocation in iron. Scr Mater,2000;43(1):39-48.
    [198] Ohmori A, Torizuka S, Nagai K, et al. Effect of deformation temperature and strain rate onevolution of ultrafine-grained structure through single-pass large-strain warm deformation in alow carbon steel. Mater Trans,2004;45(7):2224-2231.
    [199] Poorganji B, Yamaguchi T, Maki T, et al. Formation of ultrafine grained ferrite by warmdeformation of tempered lath martensite in low alloy steels. Mater. Sci. Forum,2007;558–559:557-562.
    [200] Furuhara T, Yamaguchi T, Furimoto S, et al. Formation of (ferrite plus cementite)microduplex structure by warm deformation in high carbon steels. Mater. Sci. Forum,2007;539–543:155-160.
    [201] Poorganji B, Miyamoto G, Maki T, et al. Formation of ultrafine grained ferrite by warmdeformation of lath martensite in low-alloy steels with different carbon content. Scr Mater,2008;59(3):279-281.
    [202] Krauss G. Deformation, Processing and Structure. Ohio: Metals Park,1984:201-205.
    [203] Chokshi A H. Superplasticity in Advanced Materials. Switzerland: Transtec Publications Ltd,1997:191-196.
    [204] Lin Y C, Chen M S, Zhong J. Effect of temperature and strain rate on the compressivedeformation behavior of42CrMo steel. J Mater Process Tech,2008;205:308-315.
    [205] Murty S V S, Torizuka S, Nagai K, et al. Grain boundary diffusion controlled ultrafine grainformation during large strain-high Z deformation of coarse (200μm) grained ultra-low carbonsteel. Mater Sci Eng A-struct,2007;457:162-168.
    [206]王猛,李龙飞,孙祖庆,等.渗碳体粒子尺寸对低碳钢铁素体动态再结晶的影响.金属学报,2007;43(10):1009-1014.
    [207] Xu S W, Matsumoto N, Kamodo, et al. Dynamic microstructural changes in Mg-9Al-1Zn alloyduring hot compression. Scr Mater,2009;61:249-252.
    [208]李龙飞,夏杨青,孙祖庆,等.中碳钢回火马氏体热变形过程中的铁素体动态再结晶.金属学报,2010;46(1):19-26.
    [209]陈伟,李龙飞,孙祖庆,等.马氏体温变形超细化过共析钢.金属学报,2009;45(6):697-703.
    [210] Kramer J J, Pound G M, Mehl R F. The free energy of formation and the interfacial enthalpyin pearlite. Acta Metall,1958;6:763-771.
    [211] Stuart H, Ridley N. Thermal expansion of cementite and other phases. J Iron Steel Inst,1966;204:711-717.
    [212] Swartz J C. The solubility of graphite and cementite in (Alpha, Delta) iron. Trans Metall SocAIME,1969;245:1083-1092.
    [213] Liu D, Bai B, Fang H, et al. Effect of tempering temperature and carbide free bainite on themechanical characteristics of a high strength low alloy steel. Mater Sci Eng A-struct,2004;371(1-2):40-44.
    [214] Wadsworth J, Sherby O D. Influence of chromium on superplasticity in ultra-high carbonsteels. J Mater Sci,1978;13:2645-2649.
    [215] Ghosh A K, Ayres R A. On reported anomalies in relating strain-rate-sensitivity (m) toductility. Met Trans A,1976;7:1589-1591.
    [216] Wen C, Lin J, Zhou Y. Effects of retained austenite on duplex microstructure of martensiteand lower bainite. Acta Metall Sin,1996;9(1):59-64.
    [217] Tomita Y, Okawa T. Effect of microstructure on mechanical properties of isothermallybainite-transformed300M steel. Mater Sci Eng A-struct,1993;172:145-151.
    [218] Xu P, Fang H, Bai B, et al. New duplex microstructure of grain boundary allotriomorphicferrite/granular bainite. J Iron Steel Res Int,2002;9(2):33-38.
    [219] Woodford D A. Strain rate sensitivity as a measure of ductility. Trans ASM,1969;62:291-299.
    [220] Wakai F, Nagano T. The role of interface-controlled diffusion creep on superplasticity ofYttria-stabilized tetragonal ZrO2polycrystals. J Mater Sci Lett,1988;7:607-609.
    [221] Steven W, Haynes A J. The temperature of forming martensite and bainite in low-alloy steels.J Iron Steel Inst,1956;183:349-359.
    [222]方鸿生,王家军,杨志刚,等.贝氏体相变.北京:科学出版社,1999:7.
    [223] Sandvik C B P J. The bainite reaction in Fe8Si8C alloys:The primary stage. Metall Trans,1982;13A:777-781.
    [224] Bhadeshia H K D H. The lower bainite transformation and the significance of carbideprecipitation. Acta Metall,1980;28(8):1103-1114.
    [225]白玉光,刘春明,任海鹏,等.高强度精轧螺纹钢筋的组织与性能.东北大学学报,2003;24(3):3-11.
    [226] Baker T. Processes, microstructure and properties of vanadium microalloyed steels. Mater SciTechnol,2009;25(9):1083-1107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700