用户名: 密码: 验证码:
镁锡基合金组织调控和几种镁合金中沉淀相晶体学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以相变晶体学为主要指导原则设计了Mg-7.5Sn-2.2Mn(wt.%)合金(TM72),基于对现有Mg合金中析出相晶体学特征的系统调研提出了2条晶体学判据,推测在Mg-Sn-Mn合金中可能有沿Mg的[0001]_α方向择优生长的β-Mn析出相,这种形貌的析出相有利于阻碍位错的基面滑移。对TM72合金时效组织的透射电镜(TEM)研究证实β-Mn是沿[0001]_α生长的棒状相。
     基于对Mg合金成分的系统调研,在Mg-Sn-Zn-Mn合金中加入合金元素Ag,制备了一种新合金,成分是Mg-7Sn-3Zn-1Ag-0.2Mn(TZQM7310)。该合金的时效强化效果明显优于不含Ag的TZM730合金。TZQM7310合金在200C时效,早期析出Mg_(51)Zn_(20)相,该相在时效峰值转变为MgZn_2相,过时效阶段析出Mg_(54)Ag_(17)相。Ag的加入改变了合金的时效析出序列,促进了析出相的形核和弥散分布,从而提高了合金的性能。
     使用TEM对TM72,TZM730,TZQM7310和Mg-6Zn-5Al(wt.%)合金的时效组织进行了系统研究,精确测量了14种新的OR的析出相的晶体学形貌,其中包括Mg2Sn析出相的7种新的OR,MgZn_2析出相的1种新的OR,β-Mn析出相的1种OR,Mg_(54)Ag_(17)析出相的2种OR和τ-Mg_(32)(Al, Zn)_(49)析出相的3种OR。其中,首次对Mg合金中β-Mn、Mg_(54)Ag_(17)和τ-Mg_(32)(Al, Zn)_(49)析出相的晶体学形貌(包括它们与Mg基体的OR和它们的刻面取向)进行了研究。使用g理论和奇异面理论解释了本文观察到的14种新OR中的9种OR对应的析出相的晶体学形貌。在对OR10和OR11型Mg2Sn析出相的研究工作中,推导了刻面满足g//g//g条件时,两相OR的一般解,以及两相中立方相的理想晶格常数解。在对近OR1型Mg2Sn析出相的研究工作中,发展了一种用二次衍射较精确测量OR的小偏角的方法。
     本文所研究的Mg合金中的析出相的晶格常数与Mg的晶格常数差别明显,它们与Mg构成的相变系统是大晶格错配系统。前人报导的OR5型Mg2Sn析出相和本文观察到的第一类τ相皆具有晶体学对称的理主刻面。该种晶体学形貌特征用已有的模型法解释,本文发展了二次强制重位点阵(二次CCSL)模型,合理解释了上述析出相的形貌。
Guided by crystallography of phase transformation, a novel Mg-Sn-based alloywith high Mn content, i.e., Mg-7.5Sn-2.2Mn (wt.%) alloy (TM72), has been designed.According to a comprehensive survey, two crystallographic criteria are proposed topredict precipitates that are likely to grow along [0001]_αof Mg matrix. β-Mn issupposed to be a potential candidate. The existence of rod-like β-Mn precipitates along[0001]_αis confirmed by transmission electron microscopy (TEM) investigation on theaged alloy.
     Another novel Mg-Sn-based alloy has been designed by micro-alloying Ag inMg-Sn-Zn-Mn alloy. The resulted alloy is Mg-7Sn-3Zn-1Ag-0.2Mn (TZQM7310). Theage-hardening effect of TZQM7310is much higher than that of TZM730. As toTZQM7310alloy aged at200C, Mg_(51)Zn_(20)forms at the early aging stage andtransforms to MgZn_2at the aging peak. In the overaging period, metastable Mg_(54)Ag_(17)phase is identified. The element Ag changes the precipitation sequence of the alloy andresults a more uniform dispersion density of the precipitates.
     Crystallography of the precipitates in aged TM72, TZM730, TZQM7310andMg-6Zn-5Al (ZA65) alloys has been quantitatively studied by TEM. Fourteen neworientation relationships (ORs) of different precipitates in Mg alloy have been identified,including7,1,1,2and3ORs for precipitates of Mg2Sn, MgZn_2, β-Mn, Mg_(54)Ag_(17)andτ-Mg_(32)(Al, Zn)_(49), respectively. The ORs of the latter three precipitates are firstinvestigated. Approach based on analysis of g vectors and singularity of interfacialstructures has been employed to interpret interfacial facets of the precipitatescorresponding to9of the14new ORs. The interpretation of the facets of OR10andOR11type Mg2Sn precipitates lead to general solutions of OR and lattice parameters ofcubic phase under the condition of their major facets normal to g//g//g. Moreover, amore precise method has been developed to measure the angular deviation in the OR,and it was used to identify near OR1type Mg2Sn precipitates.
     A new concept of secondary constrained coincidence site lattice (secondary CCSL)and the associated model have been proposed. Its applications provided consistentinterpretation of the morphology and the ORs of the Type τ precipitates and the OR5 type Mg2Sn precipitates.
引文
[1]张津,章宗和.镁合金及其应用.北京:化学工业出版社,2004.
    [2] Mordike B L. Creep-resistant magnesium alloys. Materials Science and EngineeringA,2002,324:103-112.
    [3] Luo A, Perguleryuz M O. Cast magnesium alloys for elevated temperatureapplications. Journal of Materials Science,1994,29:5259-5271.
    [4] Massalski T B. ASM Hand Book. Binary Alloy Phase Diagrams.2nd ed: ASMInternational;1992.
    [5] Bamberger M, Dehm G. Trends in the development of new Mg alloys. Annual Reviewof Materials Research,2008,38:505-533.
    [6] Srinivasan A, Pillai U T S, Swaminathan J, et al. Observations of microstructuralrefinement in Mg–Al–Si alloys containing strontium. Journal of Materials Science,2006,41:6087-6089.
    [7] Zhang J, Zhang D, Tian Z, et al. Microstructures, tensile properties and corrosionbehavior of die-cast Mg-4Al-based alloys containing La and/or Ce. Materials Scienceand Engineering A,2008,489(113-119):113.
    [8] Pettersell G, Westengen H, H&era R, et al. Microstructure of a pressure die castmagnesium-4wt.%aluminium alloy modified with rare earth additions. MaterialsScience and Engineering A,1996,207:115-120.
    [9] Suzuki A, Saddock N D, Jones J W, et al. Structure and transition of eutectic(Mg,Al)2Ca Laves phase in a die-cast Mg-Al-Ca base alloy. Scripta Materialia,2004,51:1005-1010.
    [10] Suzuki A, Saddock N D, Riester L, et al. Effect of Sr additions on the microstructureand strength of a Mg-Al-Ca ternary alloy. Metallurgical and Materials Transactions A,2007,38:420-427.
    [11] Luo A A, Balogh M P, Powell B R. Creep and microstructure ofmagnesium-aluminum-calcium based alloys. Metallurgical and Materials TransactionsA,2002,33:567-574.
    [12] Sturkey L, Clark J B. Mechanism of age-hardening in magnesium-zinc alloys. JournalInstitute of Metals,1959-1960,88.
    [13] Clark J B. Transmission electron microscopy study of age hardening in a Mg-5wt.%Zn alloy. Acta Metallurgica,1965,13:1281-1289.
    [14] Wei L Y, Dunlop G L, Westengen H. Precipitation hardening of Mg-Zn andMg-Zn-RE alloys. Metallurgical and Materials Transactions A,1995,26:1947-1955.
    [15] Gao X, Nie J F. Characterization of strengthening precipitate phases in a Mg-Zn alloy.Scripta Materialia,2007,56:645-648.
    [16] Singh A, Tsai A P. Structural characteristics of β'1precipitates in Mg-Zn-based alloys.Scripta Materialia,2007,57:941–944.
    [17] Zhang J, Zuo R, Chen Y, et al. Microstructure evolution during homogenization of aτ-type Mg-Zn-Al alloy. Journal of Alloys and Compounds,2008,448:316-320.
    [18] Zhang J, Guo Z X, Pan F, et al. Effect of composition on the microstructure andmechanical properties of Mg-Zn-Al alloys. Materials Science and Engineering A,2007,456:43-51.
    [19] Zhang Z, Tremblay R, Dubé D, et al. Solidification microstructure of ZA102, ZA104and ZA106magnesium alloys and its effect on creep deformation. CanadianMetallurgical Quarterly,2000,39(4):503-512.
    [20] Vogel M, Kraft O, Dehm G, et al. Quasi-crystalline grain-boundary phase in themagnesium die-cast alloy ZA85. Scripta Materialia,2001,45:517-524.
    [21] Bourgeois L, Mendis C L, Muddle B C, et al. Characterization of quasicrystallineprimary intermetallic particles in Mg-8wt%Zn-4wt%Al casting alloy. PhilosophicalMagazine Letters,2001,81(10):709-718.
    [22] Wan X F, Sun Y S, Xue F, et al. Effects of Sr and Ca on the microstructure andproperties of Mg-12Zn-4Al-0.3Mn alloy. Materials Science and Engineering A,2009,508:50-58.
    [23] Zou H H, Zeng X Q, Zhai C Q, et al. Effects of Nd on the microstructure of ZA52alloy Materials Science and Engineering A,2005,392(1-2):229-234
    [24] Vogel M, Kraft O, Arzt E. Creep behavior of magnesium die-cast alloy ZA85. ScriptaMaterialia,2003,48:985-990.
    [25] Oh-ishi K, Hono K, Shin K S. Effect of pre-aging and Al addition on age-hardeningand microstructure in Mg-6wt%Zn alloys. Materials Science and Engineering A,2008,496:425-433.
    [26] Buha J. Mechanical properties of naturally aged Mg-Zn-Cu-Mn alloy. MaterialsScience and Engineering A,2008,489:127-137.
    [27] Buha J. Natural ageing in magnesium alloys and alloying with Ti. Journal of MaterialsScience,2008,43:1220-1227.
    [28] Buha J. The effect of Ba on the microstructure and age hardening of an Mg-Zn alloy.Materials Science and Engineering A,2008,491:70-79.
    [29] Buha J. The effect of micro-alloying addition of Cr on age hardening of an Mg-Znalloy. Materials Science and Engineering A,2008,492:293-299.
    [30] Mendis C L, Oh-ishi K, Kawamura Y, et al. Precipitation-hardenableMg-2.4Zn-0.1Ag-0.1Ca-0.16Zr (at.%) wrought magnesium alloy. Acta Materialia,2009,57:749-760.
    [31] Luo Z P, Hashimoto H. High-resolution electron microscopy observation of a newcrystalline approximant W' of Mg-Zn-Y icosahedral quasicrystal. Micron,2000,31:487-492.
    [32] Singh A, Watanabe M, Kato A, et al. Crystallographic orientations and interfaces oficosahedral quasicrystalline phase growing on cubic W phase in Mg-Zn-Y alloys.Materials Science and Engineering A,2005,397:22-34.
    [33] Bae D H, Kim Y, Kim I J. Thermally stable quasicrystalline phase in a superplasticMg-Zn-Y-Zr alloy. Materials Letters,2006,60:2190-2193.
    [34] Shao G, Varsani V, Fan Z. Thermodynamic modelling of the Y-Zn and Mg-Zn-Ysystems. Computer Coupling of Phase Diagrams and Thermochemistry,2006,30:286-295.
    [35] Rao J C, Song M, Furuya K. TEM study of Mg-Zn precipitates in Mg-Zn-Y alloys.Journal of Materials Science,2006,41:2573-2576.
    [36] Xu D K, Liu L, Xu Y B, et al. The influence of element Y on the mechanicalproperties of the as-extruded Mg-Zn-Y-Zr alloys. Journal of Alloys and Compounds,2006,426:155-161.
    [37] Xu D K, Tang W N, Liu L, et al. Effect of Y concentration on the microstructure andmechanical properties of as-cast Mg-Zn-Y-Zr alloys. Journal of Alloys andCompounds,2007,432:129-134.
    [38] Kim D H, Lee J Y, Lim H K, et al. Effect of Al addition on the elevated temperaturedeformation behavior of Mg-Zn-Y alloy. Materials Science and Engineering A,2008,487:481-487.
    [39] Yuan G, Liu Y, Lu C, et al. Effect of quasicrystal and Laves phases on strength andductility of as-extruded and heat treated Mg–Zn–Gd-based alloys. Materials Scienceand Engineering A,2008,472:75-82.
    [40] Liu Y, Yuan G, Lu C, et al. Stable icosahedral phase in Mg-Zn-Gd alloy. ScriptaMaterialia,2006,55:919-922.
    [41] Mordike B L, Ebert T. Magnesium properties-applications-potential. MaterialsScience and Engineering A,2001,302:37-45.
    [42] Mordike B L. Development of highly creep resistant magnesium alloys. Journal ofMaterials Processing Technology,2001,117:391-394.
    [43] Apps P J, Karimzadeh H, King J F, et al. Precipitation reactions in Magnesium-rareearth alloys containing Yttrium, Gadolinium or Dysprosium. Scripta Materialia,2003,48:1023-1028.
    [44] Nie J F, Gao X, Zhu S M. Enhanced age hardening response and creep resistance ofMg-Gd alloys containing Zn. Scripta Materialia,2005,53:1049-1053.
    [45] Nie J F, Oh-ishi K, Gao X, et al. Solute segregation and precipitation in acreep-resistant Mg-Gd-Zn alloy. Acta Materialia,2008,56:6061-6076.
    [46] Gao X, Nie J F. Enhanced precipitation-hardening in Mg-Gd alloys containing Ag andZn. Scripta Materialia,2008,58:619-622.
    [47] Wang J, Meng J, Zhang D, et al. Effect of Y for enhanced age hardening response andmechanical properties of Mg-Gd-Y-Zr alloys. Materials Science and Engineering A,2007,456:78-84.
    [48] Zhu Y M, Morton A J, Nie J F. Improvement in the age-hardening response ofMg-Y-Zn alloys by Ag additions. Scripta Materialia,2008,58:525-528.
    [49] Yamada K, Hoshikawa H, Maki S, et al. Enhanced age-hardening and formation ofplate precipitates in Mg-Gd-Ag alloys. Scripta Materialia,2009,61:636-639.
    [50] Kang D H, Park S S, Kim N J. Development of creep resistant die cast Mg-Sn-Al-Sialloy. Materials Science and Engineering A,2005,413-414:555-560.
    [51] Planken J V D. Precipitation Hardening in Magnesium-Tin Alloys. Journal ofMaterials Science,1969,4:927-929.
    [52] Mendis C L, Bettles C J, Gibson M A, et al. An enhanced age hardening response inMg–Sn based alloys containing Zn. Materials Science and Engineering A,2006,435-436:163-171.
    [53] Sasaki T T, Oh-ishi K, Ohkubo T, et al. Enhanced age hardening response by theaddition of Zn in Mg-Sn alloys. Scripta Materialia,2006,55:251-254.
    [54] Mendis C L, Bettles C J, Gibson M A, et al. Refinement of precipitate distributions inan age-hardenable Mg-Sn alloy through microalloying. Philosophical MagazineLetters,2006,86(7):443-456.
    [55] Liu H, Chen Y, Tang Y, et al. Tensile and indentation creep behavior of Mg-5%Snand M-5%Sn-2%Di alloys. Materials Science and Engineering A,2007,464:124-128.
    [56] Kang D H, Park S S, Oh Y S, et al. Effect of nano-particles on the creep resistance ofMg-Sn based alloys. Materials Science and Engineering A,2007,449-451:318-321.
    [57] Liu H, Chen Y, Tang Y, et al. The microstructure and mechanical properties ofpermanent-mould cast Mg-5wt%Sn-(0-2.6) wt%Di alloys. Materials Science andEngineering A,2006,437:348-355.
    [58] Wei S, Chen Y, Tang Y, et al. Compressive creep behavior of Mg-Sn-La alloys.Materials Science and Engineering A,2009,508:59-63.
    [59] Hort N, Huang Y, Leil T A, et al. Microstructural investigations of the Mg-Sn-xCasystem. Advanced Engineering Materials,2006,8(5):359-364.
    [60] Yang M, Pan F, Cheng L, et al. Effects of cerium on as-cast microstructure andmechanical properties of Mg-3Sn-2Ca magnesium alloy. Materials Science andEngineering A,2009,512:132-138.
    [61] Yang M, Pan F. Effects of Y addition on as-cast microstructure and mechanicalproperties of Mg-3Sn-2Ca (wt.%) magnesium alloy. Materials Science andEngineering A,2009,525:112-120.
    [62] Sasaki T T, Ju J D, Hono K, et al. Heat-treatable Mg–Sn–Zn wrought alloy. ScriptaMaterialia,2009,61:80-83.
    [63] Zhang M, Zhang W-Z, Zhu G Z. The morphology and crystallography of polygonalMg2Sn precipitates in a Mg-Sn-Mn-Si alloy. Scripta Materialia,2008,59:866-869.
    [64] Zhang M, Zhang W-Z, Zhu G Z, et al. Crystallography of Mg2Sn precipitates inMg-Sn-Mn-Si alloy. Transactions of Nonferrous Metals Society of China,2007,17:1428-1432.
    [65] Harosh S, Miller L, Levi G, et al. Microstructure and properties ofMg-5.6%Sn-4.4%Zn-2.1%Al alloy. Journal of Materials Science,2007,42:9983-9989.
    [66] You B-S, Park W-W, Chung I-S. The effect of calcium additions on the oxidationbehavior in magnesium alloys Scripta Materialia,2000,42:1089-1094.
    [67] Nie J F, Muddle B C. Precipitation hardening of Mg-Ca(-Zn) alloys. ScriptaMatetialia,1997,37(10):1475-1481.
    [68] Oh J C, Ohkubo T, Mukai T, et al. TEM and3DAP characterization of anage-hardened Mg-Ca-Zn alloy. Scripta Materialia,2005,53:675-679.
    [69] Larionova T V, Park W-W, You B-S. A ternary phase observed in rapidly solidifiedMg-Ca-Zn alloys. Scripta Materialia,2001,45:7-12.
    [70] Jardim P M, Solórzano G, Sande J B V. Precipitate crystal structure determination inmelt spun Mg-1.5wt%Ca-6wt%Zn alloy. Microscopy and Microanalysis,2002,8:487-496.
    [71] Levi G, Avraham S, Zilberov A, et al. Solidification, solution treatment and agehardening of a Mg-1.6wt.%Ca-3.2wt.%Zn alloy. Acta Materialia,2006,54:523-530.
    [72] Duly D, Zhang W-Z, Audier M. High-resolution electron microscopy observations ofthe interface structure of continuous precipitates in a Mg-Al alloy and interpretationwith the O-lattice theory. Philosophical Magazine A,1995,71:187-204.
    [73] Zhang M-X, Kelly P M. Crystallography of Mg17Al12precipitates in AZ91D alloy.Scripta Materialia,2003,48:647-652.
    [74] Nie J F, Xiao X L, Luo C P, et al. Characterisation of precipitate phases in magnesiumalloys using electron microdiffraction. Micron,2001,32:857-863.
    [75] Celotto S. TEM Study of continuous precipitation in Mg-9wt%Al-1wt%Zn alloy. ActaMaterialia,2000,48:1775-1787.
    [76] Zheng O, Zhou J P, Zhao D S, et al. The crystallography of continuous precipitateswith a newly observed orientation relationship in an Mg-Al-based alloy. ScriptaMaterialia,2009,60:791-794.
    [77] Zhou J P, Zhao D S, Wang R H, et al. In situ observation of ageing process and newmorphologies of continuous precipitates in AZ91magnesium alloy. Materials Letters,2007,61:4707-4710.
    [78] Duly D, Cheynet M, Brechet Y. Morphology and chemical nanoanalysis ofdiscontinuous precipitation in Mg-Al alloys-I. Regular growth. Acta Metallurgica etMaterialia,1994,42:3843-3854.
    [79] Buha J. Reduced temperature (22-100C) ageing of an Mg–Zn alloy. MaterialsScience and Engineering A,2008,492:11-19.
    [80] Gao X, He S M, Zeng X Q, et al. Microstructure evolution in a Mg-15Gd-0.5Zr (wt.%)alloy during isothermal aging at250C. Materials Science and Engineering A,2006,431:322-327.
    [81] He S M, Zeng X Q, Peng L M, et al. Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%)alloy during isothermal ageing at250C. Journal of Alloys and Compounds,2006,421:309-313.
    [82] Honma T, Ohkubo T, Hono K, et al. Chemistry of nanoscale precipitates inMg-2.1Gd-0.6Y-0.2Zr (at.%) alloy investigated by the atom probe technique.Materials Science and Engineering A,2005,395:301-306.
    [83] Nie J F, Muddle B C. Characterisation of strengthening precipitate phases in aMg-Y-Nd alloy. Acta Materialia,2000,48:1691-1703.
    [84] Antion C, Donnadieu P, Perrard F, et al. Hardening precipitation in a Mg-4Y-3REalloy. Acta Materialia,2003,51:5335-5348.
    [85] Zhang M-X, Kelly P M. Morphology and crystallography of Mg24Y5precipitate inMg-Y alloy. Scripta Materialia,2003,48:379-384.
    [86] Kim Y-D, Kang N-H, Jo I-G, et al. Aging behavior of Mg-Y-Zr and Mg-Nd-Zr castalloys. Journal Materials Science Technology,2008,24(1):80-84.
    [87] Socjusz-Podosek M, Litynska L. Effect of yttrium on structure and mechanicalproperties of Mg alloys. Materials Chemistry and Physics,2003,80:472-475.
    [88] Wei L Y, Dunlop G L, Westengen H. Age hardening and precipitation in a castmagnesium rare-earth alloy. Journal of Materials Science,1996,31:387-397.
    [89] Ping D-H, Hono K, Nie J F. Atom probe characterization of plate-like precipitates in aMg-RE-Zn-Zr casting alloy. Scripta Materialia,2003,48:1017-1022.
    [90] Nuttall P A, Pike T J, Noble B. Metallography of dilute Mg-Nd-Zn alloys.Metallography,1980,13:3-20.
    [91] Henes S, Gerold V. Rontgenographishe untersuchungen der Ausscheidungsvorgangein Magnesium-Blei und Magnesium-Zinn-Leguerungen.2. Die Ausscheidung derStabilen Gleichgewichtsphase. Z Metallkde,1962,53:743-748.
    [92] Polmear I J. Light Alloys: Metallurgy of the Light Metals. Lodon: Edward Amold,1981.
    [93] Polmear I J. Light Alloys: From Traditional Alloys to Nanocrystals. Lodon: EdwardAmold,2006.
    [94] Vostry P, Smola B, Stulikova I, et al. Microstructure evolution in isochronally heattreated Mg-Gd alloys. Physica Status Solidi (a),1999,175:491-500.
    [95] Kiehn J, Smola B, Vostry P, et al. Microstructure changes in isochronally annealedalumina fibre reinforced Mg-Ag-Nd-Zr Alloy. Physica Status Solidi (a),1997,164:709-723.
    [96] Zhang M-X, Kelly P M. Crystallogrphy and morphology of widmanst tten cementitein austenite. Acta Materialia,1998,46(13):4617-4628.
    [97] Zhang M-X, Kelly P M, Qian M, et al. Crystallography of grain refinement in Mg-Albased alloys. Acta Materialia,2005,53:3261-3270.
    [98] Zhang M X, Kelly P M. Edge-to-edge matching and its applications-Part I.Application to the simple HCP-BCC system. Acta Materialia,2005,53:1073-1084.
    [99] Zhang M-X, Kelly P M. Edge-to-edge matching and its applications Part II.Application to Mg–Al, Mg–Y and Mg–Mn alloys. Acta Materialia,2005,53:1085-1096.
    [100] Zhang M-X, Chen S-Q, Ren H-P, et al. Crystallography of the Simple HCP-FCCSystem. Metallurgical and Materials Transactions A,2008,39:1077-1086.
    [101] Kelly P M, Ren H-P, Qiu D, et al. Identifying close-packed planes in complex crystalstructures. Acta Materialia,2010,58:3091-3095.
    [102] Bollmann W. Crystal Lattice, Interfaces, Matrices-An Extension of Crystallography:published by the author,1982.
    [103] Zhang W-Z, Yang X-P. Identification of singular interfaces with Δg's and its basis ofthe O-lattice. Journal of Materials Science,2011:in press.
    [104] Bollmann W. Crystal defects and crystalline interfaces. Berlin: Springer,1970.
    [105] Zhang W-Z, Weatherly G C. On the crystallography of precipitation. Progress inMaterials Science,2005,50:181-292.
    [106] Zhang W-Z. Formulas for periodic dislocations in general interfaces. Applied PhysicsLetters,2005,86(12):121919-1-3.
    [107] Zhang W-Z, Purdy G R. O-lattice analyses of interfacial misfit.1.general-considerations. Philosophical Magazine A,1993,68(2):279-290.
    [108] Brandon D G, Ralph B, Ranganathan S, et al. A field ion microscope study of atomicconfiguration at grain boundaries. Acta Metallurgica,1964,12(7):813-821.
    [109] Balluffi R W, Brokman A, King A H. CSL/DSC Lattice model for generalcrystalcrystal boundaries and their line defects. Acta Metallurgica,1982,30(8):1453-1470.
    [110] Bonnet R, Durand F. Study of intercrystalline boundaries in terms of the coincidencelattice concept. Philosophical Magazine A,1975,32:997-1006.
    [111] Sutton A P, Vitek V. On the structure of tilt grain boundaries in cubic metals I.Symmetrical tilt boundaries. Philosophical Transactions of the Royal Society. A,1983,309:1-36.
    [112] Yu R, He L L, Guo J T, et al. Orientation relationship and interfacial structurebetween-Ti5Si3precipitates and-TiAl intermetallics. Acta Materialia,2000,48:3701-3710.
    [113] Lu P, Cosandey F. Dislocation structures at Cu-MgO and Pd-MgO interfaces. ActaMetallurgica et Materialia,1992,40:S259-S266.
    [114] Rong W, Dunlop G L, Kuo K H. An O-lattice interpretation of orientationrelationships between M2C precipitates and ferrite. Acta Metallurgica,1986,34(4):681-690.
    [115] Ye F, Zhang W-Z. Coincidence structures of interfacial steps and secondary misfitdislocations in the habit plane between Widmanstatten cementite and austenite. ActaMaterialia,2002,50:2761-2777.
    [116] Zhang M, Zhang W-Z, Ye F. Interpretation of precipitation crystallography ofMg17Al12in a Mg-Al alloy in terms of singular interfacial structure. Metallurgical andMaterials Transactions A,2005,36:1681-1688.
    [117] Zhang M, Zhang W-Z. Interpretation of the orientation relationship and habit planeorientation of the equilibrium β-phase in an Mg–Y–Nd alloy. Scripta Materialia,2008,59:706-709.
    [118] Bonnet R, Cousineau E. Computation of coincident and near-coincident cells for anytwo lattices-related DSC-1and DSC-2lattices. Acta Crystallographica Section A,1977,33:850-856
    [119] Liang Q, W.T. Reynolds J. Determining interphase boundary orientations fromnear-coincidence sites. Metallurgical and Materials Transactions A,1998,29:2059-2072.
    [120] Ye F, Zhang W-Z, Qiu D. Near-coincidence-sites modeling of the edge facetdislocation structures of a precipitates in a Ti-7.26wt.%Cr alloy. Acta Materialia,2006,54:5377-5384.
    [121] Qiu D, Zhang W-Z. An extended near-coincidence-sites method and the interfacialstructure of austenite precipitates in a duplex stainless steel Acta Materialia,2008,56(9):2003-2014.
    [122] Zhang W-Z, Purdy G R. O-lattice analyses of interfacial misfit.2. systems containinginvariant lines. Philosophical Magazine A,1993,68(2):291-30.
    [123] Zhang W-Z, Qiu D, Yang X-P, et al. Structures in irrational singular interfacesMetallurgical and Materials Transactions A,2006,37(3):911-927.
    [124] Sutton A P, Balluffi R W. Interfaces in crystalline materials. Oxford: OxfordUniversity Press,1995.
    [125] Zhang W-Z, Shi Z-Z. Description of crystallographic morphologies of product phaseswith singularity and Δg distribution. Solid State Phenomena, in press.
    [126] Qiu D, Zhang W-Z. A TEM study of the crystallography of austenite precipitates in aduplex stainless steel Acta Materialia,2007,55(20):6754-6764.
    [127] Ye F, Zhang W-Z. Dislocation structure of non-habit plane of alpha precipitates in aTi-7.26wt.%Cr alloy Acta Materialia,2006,54(4):871-879.
    [128] Zhang W-Z, Ye F, Zhang C, et al. Unified rationalization of the Pitsch and T-Horientation relationships between Widmanstatten cementite and austenite ActaMaterialia,2000,48(9):2209-2219
    [129] Powder Diffraction Files. from JCPDS-International Center for Diffraction Data;2004.
    [130] Antion C, Donnadieu P, Tassin C, et al. Early stages of precipitation andmicrostructure control in Mg-rare earth alloys. Philosophical Magazine,2006,86(19):2797-2810.
    [131] Villars P, Calvert L D. Pearson's handbook of crystallographic data for intermetallicphases Materials Park (OH): ASM International,1991.
    [132]刘楚明,朱秀荣,周海涛.镁合金相图集.长沙:中南大学出版社,2006.
    [133] Kainer K U, Buch F v. Magnesium-alloys and technology. In: Kainer K U, editor.1The current state of technology and potential for further development of magnesiumapplications. Weinheim: WILEY-VCH Verlag GmbH&Co. KG,2003.
    [134] Guan S K, Zhu S J, Wang L G, et al. Microstructures and mechanical properties ofdouble hot-extruded AZ80+xSr wrought alloys. Transactions of Nonferrous MetalsSociety of China,2007,17:1143-1151.
    [135] Yang M, Pan F, Cheng R, et al. Effect of Mg-10Sr master alloy on grain refinement ofAZ31magnesium alloy. Materials Science and Engineering A,2008,491:440-445.
    [136] Geng J, Gao X, Fang X Y, et al. Enhanced age-hardening response of Mg-Zn alloysvia Co additions. Scripta Materialia,2011,64:506-509.
    [137] Milicka K, Pérez P, Dobes F, et al. Creep of high-strength Mg-Ni-Y-RE alloys.Materials Science and Engineering A,2009,510-511:377-381.
    [138] Feng Y, Wang R C, Yu K, et al. Influence of Ga and Hg on microstructure andelectrochemical corrosion behavior of Mg alloy anode materials. Transactions ofNonferrous Metals Society of China,2007,17:1363-1366.
    [139] Jin Q, Eom J-P, Lim S-G, et al. Grain refining mechanism of a carbon addition methodin a Mg-Al magnesium alloy Scripta Materialia,2003,49:1129-1132.
    [140] Yuan G Y, Liu Z L, Wang Q D, et al. Microstructure refinement of Mg-Al-Zn-Sialloys. Materials Letters,2002,56:53-58.
    [141] Mingbo Y, Fusheng P, Renju C, et al. Comparison about effects of Sb, Sn and Sr onas-cast microstructure and mechanical properties of AZ61-0.7Si magnesium alloy.Materials Science and Engineering A,2008,489:413-418.
    [142] Sasaki T T, Ohkubo T, Hono K. Precipitation hardenable Mg-Bi-Zn alloys withprismatic plate precipitates. Scripta Materialia,2009,61:72-75.
    [143] Guo E J, Ma B X, Wang L P. Modification of Mg2Si morphology in Mg-Si alloys withBi. Journal of Materials Processing Technology,2008,206:161-166.
    [144] Gorny A, Bamberger M. High temperature phase stabilized microstructure inMg-Zn-Sn alloys with Y and Sb additions. Journal of Materials Science2007,42:10014-10022.
    [145] Arakcheeva A V, Karpinskii O G, Kolesnichenko V E. Crystal Structure of Ag17Mg54(ε'-phase). Kristallografiya,1988,33:1523-1525.
    [146] Prokof'ev M V, Kolesnichenko V E, Karonik V V. Composition and Structure ofAlloys in the Mg-Ag System near Mg3Ag. Neorganicheskie Materialy,1986,21(8):1332-1334.
    [147] Ben-Hamu G, Eliezer D, Kaya A, et al. Microstructure and corrosion behavior ofMg-Zn-Ag alloys. Materials Science and Engineering A,2006,435-436:579-587.
    [148] Bourgeois L, Muddle B C, Nie J F. The Crystal Structure of the Equilibrium φ Phasein Mg-Zn-Al Casting Alloys. Acta Materialia,2001,49:2701-2711.
    [149] Bergman G, Waugh L T, Pauling L. The Crystal Structure of the Metallic PhaseMg32(Al, Zn)49. Acta Crystallographica Section A,1957,10:254-259.
    [150] Zhang Z, Tremblay R, Dube D. Microstructure and mechanical properties of ZA104(0.3-0.6Ca) die-casting magnesium alloys. Materials Science and Engineering A,2004,385:286-291.
    [151] Wang Y X, Guan S k, Zeng X Q, et al. Effects of RE on the microstructure andmechanical properties of Mg-8Zn-4Al magnesium alloy. Materials Science andEngineering A,2006,416:109-118.
    [152] Balasubramani N, Pillai U T S, Pai B C. Optimization of heat treatment parameters inZA84magnesium alloy. Journal of Alloys and Compounds,2008,457:118-123.
    [153]陈振华.耐热镁合金.北京:化学工业出版社,2006.
    [154] Hardie D, Parkins R N. Lattice spacing relationships in magnesium solid solutions.Philosophical Magazine,1959,4(43):815-825.
    [155] Zhang W-Z. Application of the DSCL in Reciprocal Space for the Study ofCoincidence Boundaries. Scripta Materialia,1997,37:187-190.
    [156] Ikuhara Y, Pirouz P. Orientation relationship in large mismatched bicrystals andcoincidence of reciprocal lattice points. Materials Science Forum,1996,207-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700