用户名: 密码: 验证码:
耐火钢中Mo的强化机理及其替代研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着市场需求的加大以及对建筑品质的要求越来越高,迫切需要加快研发具有高强度的低Mo系列低成本耐火钢,以期实现钢结构建筑的低成本、轻量化,达到节约原材料、节能减排的低碳经济目的。本文设计了一系列Mo含量为0-0.9wt.%的简化耐火钢成分的Fe-Mo-C模型钢,利用两种热处理工艺制度使Fe-Mo-C钢获得铁素体和铁素体+贝氏体两种组织,分离并定量解析Mo的各种高温强化机理,得出Mo的主要高温强化机理,并基于此提出利用Nb、V、Ti的沉淀强化和贝氏体相变强化共同强化低Mo高强耐火钢的设计思想。根据此设计思想,成功开发出Mo含量小于0.15wt.%,室温屈服强度为488.7-508.9MPa,达到Q500级别的低成本高强耐火钢。相对目前常规耐火钢,Mo含量降低70%以上,每吨钢合金成本降低约1550元,屈服强度提高42%以上。此外,还根据上述研究结果提出抗拉强度级别从490-790MPa的低成本耐火钢设计中Mo含量、贝氏体体积分数和微合金元素添加量与高温屈服强度的关系式。主要研究内容和成果如下。
     利用电子显微探针(EPMA)和透射电子显微镜(TEM)分析得出Mo元素在Fe-Mo-C钢不同组织中的分布。铁素体组织:Mo<0.3wt.%时,Mo基本固溶在铁素体中;Mo≥0.3wt.%时,Mo会以Mo2C的形式析出。珠光体和贝氏体组织:Mo首先固溶在珠光体和贝氏体组织的铁素体基体中;当铁素体基体达到饱和时,多余的Mo会与Fe、C形成复合的合金渗碳体。
     通过分离并定量解析Mo的固溶强化、沉淀强化和贝氏体相变强化对耐火钢高温强度的影响,得出Mo在耐火钢中主要高温强化机理为固溶强化和沉淀强化:Mo<0.3wt.%时,为固溶强化;Mo≥0.3wt.%时,为固溶强化和沉淀强化。Mo≤0.5wt.%时,其固溶强化和沉淀强化效果明显,每添加0.1wt.%的Mo,600oC的屈服强度增量为14.76MPa(σss+σppt=147.6CMo+54.76);Mo>0.5wt.%后,其强化效果减弱。
     贝氏体相变强化对耐火钢的高温强度有重要影响,每增加1vol.%的贝氏体,600oC的屈服强度增量为1.655MPa(σBs=8.833+1.655fB)。
     铁素体晶粒尺寸对耐火钢高温强度的影响不明显。铁素体晶粒尺寸从18.2μm增加到26.3μm,600oC的屈服强度仅增加4.3MPa。
     低Mo(<0.3wt.%)高强耐火钢的设计思想为:通过Nb、V、Ti的沉淀强化和贝氏体相变强化替代Mo的固溶强化从而降低Mo含量。
     通过控制终轧后冷却速度和Nb、V、Ti微合金化,成功开发了Q345(Mo:约0.3wt.%)和Q500(Mo:约0.15wt.%)两种强度级别的低成本高强耐火钢。两种强度级别耐火钢具都有低的屈强比(<0.634)、较好的延伸率(>22.3%)与冲击韧性(0oC冲击功>35J)和高的强度,其中Q500级别耐火钢的室温屈服强度到达488.7-508.9MPa。两种强度级别耐火钢均有良好耐火性能,其YS(600oC)/YS(RT)均超过2/3。
     经验证,本文得出关于Mo的固溶强化和贝氏体相变强化对耐火钢的高温屈服强度强化效果的定量关系式是可靠的。由此还推导出了抗拉强度级别从490-790MPa的低成本耐火钢设计中Mo含量(CMo,wt.%)、贝氏体体积分数(fB,vol.%)和微合金元素添加量(析出相体积分数fppt,vol.%)与高温屈服强度(YS(600oC))的关系式:YS(600oC)=σ0+147.6CMo+1.655fB+296.27f ppt。
     微合金元素Nb的沉淀强化对耐火钢高温强度的影响可以分成两个阶段:首先热轧过程中析出粒子的钉扎作用使耐火钢中的位错结和位错密度明显增加,强化软相铁素体基体;其次在拉伸过程中,特别是高温拉伸中,析出粒子可以阻碍位错攀移和位错的回复,从而可以有效提高耐火钢的室温和高温强度。
With the increasing market demand and the increasingly high demand for qualityconstruction, there is an urgent need to develop a low-cost fire-resistant steel with low Moaddition and excellent strength. In the present investigation, a series of simplifiedFe-Mo-C steels with Mo addition from0to0.9wt.%have been prepared. Two heattreatments were carried out on Fe-Mo-C steels for obtaining either ferrite microstructuresor ferrite-bainite microstructures to separate the high-temperature strengtheningmechanisms of Mo in fire-resistant steel. And quantitative analysis is made to reveal thedominant high-temperature strengthening mechanism of Mo addition. The results in thiswork proposed a new design of the low-Mo high-strength fire-resistant steels based on acombination of bainite strengthening and the precipitation strengthening of Nb, V, and Ti.Thus, a low-Mo (about0.15wt.%) fire-resistant steel with high strength (yield strength:488.7-508.9MPa) and low yield ratio (0.634) has been successfully developed. Comparewith conventional fire-resistant steel, the Mo content was reduced more than70%, thealloy cost was reduced about1550yuan per ton of steel, and the yield strength wasincreased more than42%. Moreover, the results also established a relation between Mocontent, bainite volume fraction, the additive amount of microalloying elements addition,and high-temperature yield strength in the development of a series of low-costfire-resistant steels with UTS from490to790MPa. The main achievements are expressedbelow.
     Mo distribution in different microstructures of Fe-Mo-C steels is identified by usingelectron probe micro-analysis (EPMA) and transmission electron microscope (TEM). Theresults show that almost all Mo atoms are in solid-solution in ferrite microstructure whenMo content is less than0.3wt.%, and the precipitates Mo2C were formed in ferritemicrostructure when Mo more than or equal to0.3wt.%. Moreover, in bainite and pearlite microstructures, Mo atoms are first in solid-solution in the ferrite matrix, and the alloycementites consisting of Mo, Fe, and C were formed when the ferrite matrix Mo-saturated.
     Quantitative analysis indicates that the dominant high-temperature strengtheningmechanisms of Mo in fire-resistant steel are solid-solution strengthening (dominant whenMo less than0.3wt.%) and precipitation strengthening (both dominant when Mo morethan or equal to0.3wt.%), and these strengthening effects improve the yield strength at600oC by a significant147.6MPa/wt.%when Mo less than or equal to0.5wt.%(σss+σppt=147.6CMo+54.76), but these strengthening effects become relatively weak whenMo content is more than or equal to0.5wt.%.
     Bainite strengthening plays an important role in improving the high-temperaturestrength of fire-resistant steel, and it improve the yield strength at600oC by a significant1.655MPa/vol.%(σBs=8.833+1.655fB).
     Ferrite grain size has less effect on high-temperature strength of fire-resistant steel.The yield strength at600oC only increases about4.3MPa with the variation of the ferritegrain size from18.2to26.3μm.
     Results also provide that a low-Mo (Mo less than0.3wt.%) fire-resistant steels withexcellent strength can be designed by bainite strengthening and the precipitationstrengthening of Nb, V, and Ti.
     Two low-cost high-strength (Q345and Q500) fire-resistant steels with two Moaddition levels (about0.15and0.3wt.%) have been successfully developed by controllingcooling rate and microalloying with Nb, V, and Ti in combination. Two low-costhigh-strength fire-resistant steels have low yield ratio (below0.634), good ductility(elongation: more than22.3%and the charpy energy at0oC: above35J), and highstrength. The room-temperature yield strength of Q500class fire-resistant steels withabout0.15wt.%Mo addition are488.7-508.9MPa. It is possible to obtain two-thirds ofroom-temperature yield strength at600oC in two low-cost high-strength fire-resistantsteels.
     The results in this work verified that the quantitative expressions relating Mo content,bainite volume fraction, and the high-temperature yield strength of fire-resistant steel arereliable. Moreover, the results also proposed an expression (YS(600oC)=σ0+147.6CMo+1.655fB+296.27f ppt) relating Mo content (CMo, wt.%), bainite volume fraction (fB, vol.%), the amount of microalloying elements addition (precipitate volume fraction fppt,vol.%), and high-temperature yield strength (YS(600oC)) in the development of a seriesof low-cost fire-resistant steels with ultimate tensile strength from490to790MPa.
     There exist two stages of precipitation strengthening by microalloying with Nb on thehigh-temperature strength of fire-resistant steel. First, the dislocation tangle anddislocation density of fire-resistant steel increases during hot rolling due to the pinningeffect of Nb(C, N) precipitates, and the strength of ferrite matrix remarkably improves.Second, the precipitates have effects on retarding the climb motion and recovery ofdislocation during tensile tests, especially during high-temperature tensile tests. Thus, thehigh-temperature strength of steels shows a remarkable improvement。
引文
[1]张永权,杨才福.建筑用钢的发展.钢铁(增刊),2001,36:5-9.
    [2]李龙.580MPa级低屈强比高强度建筑用耐火钢的实验研究.东北大学硕士论文,2003.
    [3] ISO-834(1992) Part1. Fire resistance tests dements of building construction. Switzerland:International Organization for Standardization,1992.
    [4] I. D. Bennetts, K. A. M. Moinuddin, C. C. Goh, I. R. Thomas. Testing and factors relevant to theevaluation of the structural adequacy of steel members within fire-resistant elevator shafts. FireSafety Journal,2005,40:698-705.
    [5]陈晓,刘继雄,董汉雄,邹德辉,童明伟,熊家锦,师华,郑卫东,肖利鹏.高性能耐火耐候建筑用钢的高温性能及耐火性能.中国有色金属学报,2004,14:231-236.
    [6]张华霞.高强度耐火耐候H型钢开发.东北大学硕士论文,2003.
    [7]刘志勇.建筑用耐火钢性能与组织的研究.昆明理工大学硕士论文,2005.
    [8] R. Chijiiwa, H. Tamehiro, Y. Yoshida, K. Funato, R. Uemori, Y. Horii. Development and PracticalApplication of Fire-resistant Steel for Buildings. Nippon Steel Technical Report,1993,58:48-55.
    [9] Y. Sakumoto. Research on new fire-protection materials and fire-safe design. Journal of StructuralEngineering.1999,125(12):1415-1422.
    [10] D. B. Moore, T. Lennon. Fire Engineering design of steel structures. Progress in structuralEngineering and Materials,1997,1(1):4-9.
    [11] W. Sha, F. S. Kelly, Z. X. Guo. Microstructure and properties of Nippon fire-resistant steels.Materials Engineering and Performance,1999,8(5):606-612.
    [12]《电厂金属材料》编写组.电厂金属材料.北京:水利电力出版社,1979:114.
    [13]金涛.耐火钢的耐火设计.江苏煤炭,2004(1):65-66.
    [14]方强.钢结构的防火设计和保护.钢结构,2002,17(4):43-46.
    [15]中华人民共和国国家标准GB/T1591-1994《低合金高强度结构钢》,1994.
    [16]杨才福,张永权.建筑用耐火钢的发展.钢结构,1997,12(38):29-34.
    [17] H. Fujino, K. Hitomi, J. hashimoto, S. Umezawa. Fire-Resistant Steel for Building Structures [J].Kawaski Steel Technical Report,1993,29:89-93.
    [18]张威振,徐志胜.耐火耐候钢的研究与应用.钢结构,2004,19(73):53-55.
    [19]完卫国,吴结才.耐火钢的开发与应用综述.建筑材料学报,2006,2:2-5.
    [20] R. W. Regier, J. G. Speer, D. K. Matlock, A. J. Bailey, S. G. Jansto. Thermomechanicalprocessing effects on the elevated temperature behavior of niobium bearing fire-resistant Steel.in Proceedings of Steel Properties and Applications Conference, edited by L. C. Oldham, AIST,Warrendale, PA,2007:803-814.
    [21]完卫国.建筑用耐火钢的研制和实际应用.钢铁译文集,马鞍山,1996,(2):29-40
    [22]张志勤,张朝生.建筑用耐火钢材的开发和应用.鞍钢技术,1997,(9):27-37.
    [23] NKK Corp.. Production of low yield ratio fire resistant steel. Japan Patent:2000-192142,2000-01-11.
    [24]王泽林.高层建筑用耐火钢的研制.鞍钢技术,2004,2:23-27.
    [25]陈晓,刘继雄,董汉雄,李平和,习天辉,卜勇.大线能量焊接耐火耐候建筑用钢的研制及应用.中国有色金属学报,2004,10(1):224-230.
    [26]吴保桥,吴结才,沈俊起,杨才福.建筑用耐火H型钢的开发.轧钢,2004,21(2):13-15.
    [27]武汉钢铁集团公司.高性能耐火耐侯钢及其生产方法.中国专利: CN1132958C,2003-12-31
    [28]刘继雄,李平和,王玉涛,陈晓.高性能耐火耐候建筑用钢自动埋弧焊焊评试验中的裂纹分析.焊接学报,2003,24(6):89-93.
    [29]鞍山钢铁集团公司.耐火钢及其制造方法.中国专利: CN1524976A,2004-09-01.
    [30]孙建国,吴子良,姚洪昌.对新钢种耐候钢及耐火钢力学性能的探讨.莱钢科技.2002,(6):46-47.
    [31]段小雪,胡淑娥,丁桦,刘相华,王国栋,胡淑娥,孙卫华.建筑用耐火钢控轧控冷实验研究.塑性工程学报,2003,10(5):93-96.
    [32]韦明,李玉谦.舞钢高层建筑结构用钢板的开发.钢结构,2004,19(4):59-61.
    [33]攀枝花钢铁集团公司.一种耐火钢、耐火缝钢管及其生产方法.中国专利: CN101285153A,2008-10-15.
    [34] W. sha, F. S. Kelly, P. Browne, S. P. O. Blackmore, A. E. Long. Development of structure steelswith fire resistant microstructures. Materials Science and Technology,2002,18:319-325.
    [35] W. B. Lee, S. G. Hong. Carbide precipitation and high-temperature strength of hot-rolledhigh-strength low-alloy steels containing Nb and Mo. Meallurgical and Materials Transactions,2002,33A:1689-1698.
    [36] M. Assefpiur-Dezfuly, B. A. Hugaas, A. Brownrigg. Fire resistant high-stress low-alloy steels.Materials Science and Technology,1990,6(12):1210-1214.
    [37] J. G. Speer, S. G. Jansto, J. C. Cross, M. S. Walp, D. K. Matlock. Elevated temperature propertiesof niobium microalloyed steels for fire-resistant structural applications. In: Proceedings of theJoint International Conference of HSLA Steels2005and ISUGS2005. Beijing, China,2005,40:818-823.
    [38] W. Sha, B. R. Kirby, F. S. Kelly. The behavior of structural steels at elevated temperatures andthe design of fire resistant steels. Materials Transaction,2001,42(9):1913-1927.
    [39]于庆波.建筑用低屈强比耐火钢热轧带材的开发.东北大学博士论文,2004.
    [40]潘小强.合金元素Mo、V对耐火钢组织及性能的影响.重庆大学硕士学位论文,2007.
    [41]党莹.低钼建筑用耐火钢组织和性能的研究.重庆大学硕士学位论文,2007.
    [42]翁宇庆.钢铁材料的组织细化.北京:冶金工业出版社,2003.
    [43] J. Glen, J. Lessells, R. R. Barr. Proceedings of the joint international conference on creep.London: The Institution of Mechanical Engineers,1963.
    [44]张树松.钢的强韧化机理与技术途径.北京:兵器工业出版社,1995.
    [45]孔君华,郑琳,郭斌,等.钼对低碳微合金钢组织和性能的影响.轧钢,2005,22(4):27-29.
    [46]韩孝永.铌、钒和钛在微合金中的作用.宽厚板,2006,12(1):39-41.
    [47]李麟,许珞萍.钢中铌钒碳氮化合物的析出及其稳定性分析.上海金属,2005,27(2):1-3.
    [48]雍歧龙,马鸣图,吴保榕.微合金钢-物理和力学冶金.北京:机械工业出版社,1989.
    [49]太田定雄著.张善元,张绍林译.铁素体系耐热钢.北京:冶金工业出版社,2003.
    [50]漆世泽.700MPa级高强低合金钢的成分设计与工艺开发.东北大学硕士学位论文,2003.
    [51] Y. R. Im, Y. Jun Oh, B. J. Lee, J. Hwa Hong, H. C. Lee. Effects of carbide precipitation on thestrength and Charpy impact properties of low carbon Mn-Ni-Mo bainitic steels. Journalof Nuclear Materia1s,2001,297:138-148.
    [52] J. H. Kong, L. Zhen, B. Guo, P. H. Li, A. H. Wang, C. H. Xie. Influence of Mo content onmicrostructure and mechanical properties of high strength pipeline steel. Materials and Design,2004,25:723-728
    [53] P. H. Chang, A. G. Preban. The effect of ferrite grain size and martensite volume fraction on thetensile properties of dual phase steel. Acta Metallurgica,1985,33(5):897-903.
    [54] A. K. Jena, M. C. Chaturvedi. On the effect of the volume fraction on martensite on the tensilestrength of dual-phase steel. Materials Science and Engineering,1988,100:1-6.
    [55]周乐育.高强度含铌热轧双相钢组织性能柔性控制研究.北京科技大学博士学位论文,2008.
    [56] P. A. Manohar, T. Chandra, C. R. Killmore. Continuous cooling transformation behaviour ofmicroalloyed steels containing Ti, Nb, Mn and Mo. ISIJ International,1996,36:1486-1493.
    [57] Y. Mizutan, K. Yoshii, R. Chijiiwa.590MPa class fire-resistant steel for building structural use.Nippon Steel Technical Report,2004,90:45-52.
    [58] K. C. Yang, H. H. Lee, O. Chan. Experimental study of fire-resistant steel H-columns at elevatedtemperature. Journal of Constructional Steel Research,2006,62:544-553.
    [59] Y. Sakumoto, T. Nakazato, A. Matsuzaki. High-temperature properties of stainless steel forbuilding structures. Journal of Structural Engineering,1996,(4):399-406.
    [60] J. Glen. Abnormal creep in carbon steels. Journal of the Iron and Steel Institute,1947,155(4):501.
    [61]刘荣藻.低合金热强钢的强化机理.北京:冶金工业出版社,1981.
    [62] K. Yamamoto, Y. Kimura, F. G. Wei, Y. Mishima. Design of Laves phase strengthened ferriticheat resisting steels in the Fe-Cr-Nb(-Ni) system. Materials Science and Engineering: A,2002,329-331:249-254.
    [63] R. Uemori, R. Chijiiwa, H. Tamehiro. AP-FIM analysis of ultrafine carbonitrides in fire-resistantsteel for building construction. Nippon Steel Technical Report, l996,69:23-28.
    [64] W. Sha. Fire resistance of floors constructed with fire-resistant steels. Journal of StructuralEngineering,1998,124(6):664-670.
    [65] M. Fushimi, K. Keira, H. Chikaraishi. Development of Fire-resistant Steel Frame BuildingStructures. Nippon Steel Technical Report,1995,66:29-36.
    [66] W. B. Lee, S. G. Hong, C. G. Park, K. H. Kim, S. H. Park. Influence of Mo on precipitationhardening in hot rolled HSLA steels containing Nb. Scripa Materialia,2000,43(4):319-324.
    [67] W. B. Lee, S. G. Hong, C. G. Park, K. H. Kim, S. H. Park. Carbide precipitation and hightemperature strength of hot rolled containing Cr and Mo fire resistant steels. Journal of theKorean Institute of Metals and Materials,2000,38(3):420-426.
    [68] R. Uemori, R. Chijiiwa, H. Tamehiro, H. Morlkawa. AP-FIM study on the effect of Mo additionon microstructure in Ti-Nb steel. Applied Surface Science,1994,76:255-260.
    [69] F. S. Kelly, W. Sha. A comparison of the mechanical properties of fire-resistant and S275structural steel. Journal of Constructional Steel Research,1999,50:223-233.
    [70] K. Miyata, Y. Sawaragi. Effect of Mo and W on the phase stability of precipitates in low Cr heatresistant steels. ISIJ International,2001,41:281-289.
    [71] M. S. Walp, J. G. Speer, K. M. David. Fire-resistant steels. Advaced Materials&Processes,2004,10:34-36.
    [72] K. P. Bimal. Microstructures and properties of low-alloy fire resistant steel. Bulletin of MaterialsScience,2006,29(1):59-66.
    [73]刘继雄,关云,李建华,李平和,陈晓. Mn-Mo-Nb (Ti, V)系耐火耐候钢的奥氏体连续冷却转变动力学分析.物理测试,2006,24(4):1-3.
    [74]潘小强,左汝林,党莹. Mo-V耐火钢显微组织分析研究.物理测试,2007,24(4):9-11.
    [75]陈杰,潘复生,左汝林,李聪,党莹. Mo对耐火钢组织性能的影响.钢铁钒钛,2007,28(3):24-26.
    [76] W. Sha F. S. Kelly. Atom probe field ion microscopy study of commercial and experimentalstructural steels with fire resistant microstructures. Materials Science and Technology,2004,20(4):451–456.
    [77]林慧国,傅代直.钢的奥氏体转变曲线——原理、测试与应用,北京:机械工业出版,1988.
    [78]李平和,刘继雄,陈晓.高性能耐火耐候建筑结构用钢的显微组织研究.钢铁,2005,40(6):72-75.
    [79]王艳华.超超临界汽轮机耐热钢组织和性能研究.哈尔滨工程大学硕士论文,2006.
    [80] A. Krisch. Creep Tests on Carbon-Free\Ferrous\Alloys. Arch. fur das Eisenhuttenwesen,1978,49(7):363-364.
    [81] M. Tamura, K. Ikeda, H. Esaka, K. Shinozuka. Precipitation behavior of NbC in9%Cr1%Mo0.2%VNb steel. ISIJ International,2001,41(8):908-914.
    [82]孙邦明,季怀忠,杨才福,张永权. V-N微合金化钢筋中钒的析出行为.钢铁,2001,36(2):44-47.
    [83]党莹,潘复生,陈杰,左汝林,李聪.钒对低钼耐火钢组织及性能的影响.钢铁,2007,42(5):65-69.
    [84]刘正东,程世长,包汉生,傅万堂,杨钢,王立民.钒对T122铁素体耐热钢组织和性能的影响.特殊钢,2006,27(1):7-9.
    [85]刘庆春,郑之旺,刘勇.钒对耐火耐候钢组织与性能的影响.钢铁钒钛,2007,28(4):22-26.
    [86] E. El-Kashif, K. Asakura, T. Koseki, K. Shibata. Effect of boron, niobium and titanium on graingrowth in ultra high purity18%Cr ferritic stainless steel. ISIJ International,2004,44(9):1568-1575.
    [87] F.布赖恩皮克林,主编.材料科学与技术丛书(第七卷)——钢的组织与性能.北京:北京科学出版社,1999.
    [88] Metals Handbook.10th ed.Vol.1, Metals Park: American Society for Metals,1990.
    [89] M. G. Gemmill. The technology and properties of ferrous alloys for high-temperature use.London: Newnes,1966.
    [90] J. D. Baird, A. Jamieson. Proceedings of conference on the relation between the structure andmechanical properties of metals, Middlesex,1963.
    [91] S. K. Chang, J. H. Kwak. Effect of manganese on aging in low carbon sheet steels. ISIJInternational,1997,37(1):74-79.
    [92]吾刚.国内钢厂钼铁价格跌破20万元.现代物流报,2006,(1):1.
    [93]包斯文.近期钼铁小幅回落后市难以回升.中国冶金报,2006,(7):1.
    [94]方兰.中美钼铁市场价格波动比较及协整分析.商场现代化,2007,(522):12-13.
    [95]黄璘.铌铁市场看好价格坚挺.铁合金,2008.
    [96]方兰.钼铁价格对陕西财政收入的拉动作用.矿业工程,2008,6(3):1-2.
    [97]杨涛.欧洲市场:钛铁价格进一步下滑[J].功能材料信息,2007,2007,(4):56.
    [98]陈汉平.原料上涨带动钼铁价升.中国冶金报,2009,(7):1.
    [99]王珩.欧洲市场钒铁价格稳定.铁合金,2008:11.
    [100]方兰,李夕兵.中国钼铁实物市场对钼业证券价格影响的实证检验.中国钼业,2009,33(5):39-44.
    [101]铁合金经济技术信息.行业信息.铁合金,2011.
    [1] W. sha, F. S. Kelly, P. Browne, S. P. O. Blackmore, A. E. Long. Development of structure steelswith fire resistant microstructures. Materials Science and Technology,2002,18:319-325.
    [2] W. B. Lee, S. G. Hong, C. G. Park, S. H. Park. Carbide precipitation and high-temperature strengthof hot-rolled high-strength, low-alloy steels containing Nb and Mo, Meallurgical and MaterialsTransactions A,2002,33:1689-1698
    [3] M. Assefpiur-Dezfuly, B. A. Hugaas, A. Brownrigg. Fire resistant high-stress low-alloy steels.Materials Science and Technology,1990,6(12):1210-1214.
    [4] J. G. Speer, S. G. Jansto, J. C. Cross, M. S. Walp, D. K. Matlock. Elevated temperature propertiesof niobium microalloyed steels for fire-resistant structural applications. In: Proceedings of theJoint International Conference of HSLA Steels2005and ISUGS2005. Beijing, China,2005,40:818-823.
    [5] W. Sha, B. R. Kirby, F. S. Kelly. The behavior of structural steels at elevated temperatures and thedesign of fire resistant steels. Materials Transaction,2001,42(9):1913-1927.
    [6]于庆波.建筑用低屈强比耐火钢热轧带材的开发.东北大学博士论文,2004.
    [7]潘小强.合金元素Mo、V对耐火钢组织及性能的影响.重庆大学硕士学位论文,2007.
    [8]党莹.低钼建筑用耐火钢组织和性能的研究.重庆大学硕士学位论文,2007.
    [9] M. Yasushi, Y. Kenichi, C. Rikio.590MPa class fire-resistant steel for building structural use.Nippon Steel Technical Report,2004,90:45-52.
    [10]陈杰,潘复生,左汝林,李聪,党莹. Mo对耐火钢组织性能的影响.钢铁钒钛,2007,28(3):24-26.
    [11] Z. Y. Liu, C. F. Yang, Y. Q. Zhang, J. C. Shen. Mechanical properties and microstructure offire-resistant H-beam building steels. Heat Treatment of Metals,2005,30:45-50.
    [12] W. Sha, F. S. Kelly. Atom probe field ion microscopy study of commercial and experimentalstructural steels with fire resistant microstructures. Materials Science and Technology,2004,20:449-457.
    [13]秦国友.定量金相.成都:四川科技出版社,1987.
    [14] J. E. Hilliard. Estimating grain gize by the intercept method. Metallurgiya Progress,1964;5:99.
    [15]孙业英.光学显微分析.北京:清华大学出版社,2003.78-79.
    [16] J. E. Hilliard, J. W. Cahn. Evaluation of Procedures in Quantitative Mettalography for VolumeFraction Analysis. Transactions of the Metals Society of ASME,1961;221:344-352.
    [17]中华人民共和国国家标准GB/T2039-1997《金属材料高温拉伸试验》,1997.
    [18] E. Seheil. Z. Metall.1965,27:199.
    [19] C. S. Smith, L. Guttman. Measurement of internal boundaries in three-dimensional structures byrandom sectioning. Transactions AIME.,1953,197:81.
    [20] R. L. Fullman. Interfacial free energy of coherent twin boundaries in copper. Journal of AppliedPhysics,1951,22:448-455.
    [21] W. Sha, F. S. Kelly, Z. X. Guo. Microstructure and properties of Nippon fire-resistant steels.Journal of Materials Engineering and Performance,1999,8(5):606-612.
    [22] H. K. D. H. Bhadeshia. Bainite in Steels,2nd ed. London: IOM Communications Ltd,2001.
    [23] R. W. K. Honeycombe, H. K. D. H. Bhadeshia. Steels: Microstructure and Properties,2nd ed.,London: Edward Arnold,1995.
    [24] J. H. Kong, L. Zhen, B. Guo, P. H. Li, A. H. Wang, C. S. Xie. Influence of Mo content onmicrostructure and mechanical properties of high strength pipeline steel. Materials and design,2004,25:723-728.
    [25]刘永铨.钢的热处理.北京:冶金工业出版社,1986.
    [26] J. D. Baird, Ann. Jerkontorets. The relationship between microstructure and creep strength inferritic steels. Mechanical Properties (MD),1971,155:311-321.
    [27]雍岐龙.钢铁材料中的第二相.北京:冶金工业出版社,2006.
    [28] B. H. Шербаков и др.Фнзика мегаппов И Мегапповепние,1960,10:4.
    [29]刘宗昌,任慧平,王海燕.奥氏体形成与珠光体转变.北京:冶金工业出版社,2010.
    [30] R. E. Hackenberg, G. J. Shiflet. A microanalysis study of the bainite reaction at the bay inFe-C-Mo. Acta Metallurgica,2003,51:2131-2147.
    [31]刘荣藻.低合金热强钢的强化机理.北京:冶金工业出版社,1981.
    [32] R. Wang, H. Andren, H. Wisell, G. Dunlop. The role of alloy composition in the precipitationbehavior of high-speed steels, Acta metallurgica et materialia,1992,40:1727-1738.
    [33] S. Taira, R. Ohtani, translated by T. W. Guo, A. D. Li, J. P. Xu. The theory of high-temperaturestrength of materials. Beijing: Science Press,1983:50.
    [34] R. Uemori, R. Chijiiwa, H. Tamehiro. AP-FIM analysis of ultrafine carbonitrides in fire-resistantsteel for building construction. Nippon Steel Technical Report,1996,69:23-28.
    [35]曹建春.铌钼复合微合金钢中碳氮化物沉淀析出研究.昆明理工大学博士学位论文.
    [36] R. Chijiiwa, H. Tamehiro, Y. Yoshida, K. Funato, R. Uemori, Y. Horii. Development and practicalapplication of fire-resistant steel for buildings. Nippon Steel Technical Report,1993,58:48-55.
    [37]李平和,刘继雄,陈晓.高性能耐火耐候建筑结构用钢的显微组织研究.钢铁,2005,40(6):72-75.
    [1] M. Yasushi, Y. Kenichi, C. Rikio.590MPa class fire-resistant steel for building structural use.Nippon Steel Technical Report,2004,90:45-52.
    [2] R. Uemori, R. Chijiiwa, H. Tamehiro, H. Morlkawa. AP-FIM Study on the Effect of Mo Additionon Microstructure in Ti-Nb Steel. Applied Surface Science,1994,76:255-260.
    [3] W. Sha, B. R. Kirby, F. S. Kelly. The behavior of structural steels at elevated temperatures and thedesign of fire resistant steels. Materials Transaction,2001,42:1913-1927.
    [4] F. S. Kelly, W. Sha. A comparison of the mechanical properties of fire-resistant and S275structuralsteel. Journal of Constructional Steel Research,1999,50:223-233.
    [5] K. Miyata, Y. Sawaragi. Effect of Mo and W on the phase stability of precipitates in low Cr heatresistant steels. ISIJ International,2001,41:281-289.
    [6]陈杰,潘复生,左汝林,李聪,党莹. Mo对耐火钢组织性能的影响.钢铁钒钛,2007,28(3):24-26.
    [7] Z. Y. Liu, C. F. Yang, Y. Q. Zhang, J. C. Shen. Mechanical properties and microstructure offire-resistant H-beam building steels. Heat Treatment of Metals,2005,30:45-50.
    [8] W. Sha, F. S. Kelly. Atom probe field ion microscopy study of commercial and experimentalstructural steels with fire resistant microstructures. Materials Science and Technology,2004,20:449-457.
    [9] R. Chijiiwa, H. Tamehiro, Y. Yoshida, K. Funato, R. Uemori, Y. Horii. Development and practicalapplication of fire-resistant steel for buildings. Nippon Steel Technical Report,1993,58:48-55.
    [10] J. G. Speer, S. G. Jansto, J. C. Cross, M. S. Walp, D. K. Matlock. Elevated temperature propertiesof niobium microalloyed steels for fire-resistant structural applications. In: Proceedings of theJoint International Conference of HSLA Steels2005and ISUGS2005. Beijing, China,2005,40:818-823.
    [11] J. Glen, J. Lessells, R. R. Barr. Proceedings of the joint international conference on creep.London: The Institution of Mechanical Engineers,1963.
    [12] J. C. Beddoes, W. Wallace. Heat treatment of hot isostatically processed IN-738investmentcastings. Metallography,1980,13:185-194.
    [13] W. Sha, F. S. Kelly, Z. X. Guo. Microstructure and properties of Nippon fire-resistant steels.Journal of Materials Engineering and Performance,1999,8(5):606-612.
    [14] A. C. Kneissl, C. I. Garcia, A. J. DeArdo. Characterization of precipitates in HSLA steels,Proceedings of Second International Conference on HSLA Steels: Processing, Properties andApplications, G. Tither and S. H. Zhang, Ed., The Minerals, Metals, and Materials Society,1990:99-105.
    [15] Metals Handbook,9th ed., American Society for Metals,1978.
    [16]雍岐龙.钢铁材料中的第二相.北京:冶金工业出版社,2006.
    [17]刘荣藻.低合金热强钢的强化机理.北京:冶金工业出版社,1981.
    [18] D. T. Llewellyn. Steels: Metallurgy and Applications,2nd ed., Oxford: Butterworth-Heinemann,1994:68.
    [19] M. E. Bush, P. M. Kelly. Strengthening Mechanisms in bainitic steels. Acta Metallurgica,1971,19(12):1363.
    [20] F. B. Pickering.物理冶金与钢的设计.石霖译,北京:北京工业学院出版社,1980.
    [21]胡赓祥,蔡珣,戎咏华.材料科学基础.上海:上海交通大学出版社,2000.
    [22]刘宗昌,任慧平.贝氏体与贝氏体相变.北京:冶金工业出版社,2009.
    [23] M. R. Akbarpour, A. Ekrami. Effect of ferrite volume fraction on work hardening behavior ofhigh bainite dual phase (DP) steels. Materials Science and Engineering: A,2008,477:306-310.
    [24] T. Furuhara, J. M. Howe, H. I. Aaronsom. Interphase boundary structures of intragranularproeutectoid α plates in a hypoeutectoid Ti-Cr alloy. Acta metallurgica et materialia,1991,39:2873-2886.
    [25] W. R. Calado, C. S. B. Castro, O. J. D. Santos, O. J. D. Santos, R. N. Barbosa, B. M. Gonzalez.Effect of finishing rolling temperature on fire resistance and dynamic strain aging behavior of astructural steel. Journal of materials science,2008,43:6005-6011.
    [1]武汉钢铁集团公司.高性能耐火耐侯钢及其生产方法.中国专利: CN1132958C,2003-12-31.
    [2]杨才福,张永权.建筑用耐火钢的发展.钢结构,1997,12(38):29-34.
    [3] R. Chijiiwa, H. Tamehiro, Y. Yoshida, K. Funato, R. Uemori, Y. Horii. Development and practicalapplication of fire-resistant steel for buildings. Nippon Steel Technical Report,1993,58:48-55.
    [4] Y. Sakumoto. Research on new fire-protection materials and fire-safe design. Journal of StructuralEngineering.1999,125,(12):1415-1422.
    [5] W. Sha, F. S. Kelly, Z. X. Guo. Microstructure and properties of Nippon fire-resistant steels.Materials Engineering and Performance,1999,8(5):606-612.
    [6] M. S. Walp, J. G. Speer, K. M. David. Fire-resistant steels. Advaced Materials&Processes,2004,10:34-36.
    [7] K. P. Bimal. Microstructures and properties of low-alloy fire resistant steel. Bulletin of MaterialsScience,2006,29(1):59-66.
    [8] J. G. Speer, S. G. Jansto, J. C. Cross, M. S. Walp, D. K. Matlock. Elevated temperature propertiesof niobium microalloyed steels for fire-resistant structural applications. In: Proceedings of theJoint International Conference of HSLA Steels2005and ISUGS2005. Beijing, China,2005,40:818-823.
    [9] M. Assefpour-Dezfuly, B. A.Hugaas, A. Brownrigg. Fire resistant high-strength low-alloy steels.Materials Science and Technology,1990,6:1210-1224.
    [10]中华人民共和国国家标准GB/T229-1994《金属夏比缺口冲击试验方法》,1994.
    [11] F. G. Caballero, M. J. Santofimia, C. García-Mateo, J. Chao, C. García. Theoretical design andadvanced microstructure in super high strength steels. Materials and design,2009,30:2077-2083.
    [12] L. C. Chang, H. K. D. H. Bhadeshia. Carbon content of austenite in isothermally transformed300M steel. Materials Science and Engineering: A,1994;184:17-19.
    [13] H. K. D. H. Bhadeshia. Bainite in Steels,2nd ed. London: IOM Communications Ltd,2001.
    [14] Q. L.Yong. Secondary Phases in Steels. Beijing: Metallurgical Industry Press,2006.
    [15] T. Furuhara, J. M. Howe, H. I. Aaronsom. Interphase boundary structures of intragranularproeutectoid α plates in a hypoeutectoid Ti-Cr alloy. Acta metallurgica et materialia,1991,39:2873-2886.
    [16] J. M. Ni, Z. G. Li, J. Huang, Y. X. Wu. Strengthening behavior analysis of weld metal of laserhybrid welding for microalloyed steel. Materials and design,2010,31:4876-4880.
    [17] R. Uemori, R. Chijiiwa, H. Tamehiro, H. Morlkawa. AP-FIM study on the effect of Mo additionon microstructure in Ti-Nb steel. Applied Surface Science,1994,76:255-260.
    [18] S. C. Wang. The effect of titanium and reheating temperature on the microstructure and strengthof plain-carbon, vanadium-microalloyed, and niobium-microalloyed steels. Journal of materialsscience,1990,25(1A):187-193.
    [19]郑鲁,雍岐龙,孙珍宝.碳化铌在微合金钢中的溶解.金属学报,1987,23: B277-281.
    [20] H. L. Andrade, M. G. Akben, J. J. Jonas. Effect of molybdenum, niobium and vanadium on staticrecovery and recrystallization and on solute strengthening in microalloyed steels. Metallurgicaland Materials Transactions,1983,14(10):1967-1977.
    [21] S. Matsuda, N. Okumura. Effect of distribution of TiN precipitate particle on the austenite grainsize of low carbon low alloy steels. Transactions ISIJ,1978,18:198-202.
    [22] S. Koyama, T. Ishii, K. Narita. Solubility of vanadium carbide and nitride in ferric iron. Journalof the Japan Institute of Metals,1973,37:191-196.
    [23] R. C. Hudd, A. Jones, M. N. Kale. A method for calculating the solubility and composition ofcarbonitride precipitates in steel with particular reference to niobium carbonitride. Journal of theIron and Steel Institute of Japan,1971,209:121-125.
    [24] K. J. Irvine, F. B. Pickering, T. Gladman. Grain refined C-Mn steels. Journal of the Iron and SteelInstitute of Japan,1967,205:161-182.
    [25] A. McLean, D. A. R. Kay. Control of inclusions in HSLA steels. M. Korchynsky eds,Microalloying’75, New York: Union Carbides Corporation,1976:215-231.
    [26] K. A. Tailor. Solubility product for titanium-, vanadium-, and niobium-carbides in ferrite. ScriptaMetallurgica et Materialia,1995,32:7-12.
    [27] Q. B. Yu, Z. D. Wang, X. H. Liu, G. D. Wang. Effect of microcontent Nb in solution on thestrength of low carbon steels. Materials Science and Engineering: A,2004,379:384-390.
    [28] O. Kwon, A. J. DeArdo. Interactions between recrystallization and precipitation in hot-deformedmicroalloyed steels. Acta metallurgica et materialia,1991:39(4):529-538.
    [29] G. K. Williamson, R. E. Smallman. Dislocation densities in some annealed and cold-workedmetals from measurements on the X-ray debye-scherrer spectrum. Philosophical Magazine,1956,1:34-46.
    [30] G. K. Williamson, W. H. Hall. X-ray line broadening from filed aluminium and wolfram. ActaMetallurgica,1953,1:22-31.
    [31] K. Gopinath, A. K. Gogia, S. V. Kamat, U. Ramamurty. Dynamic strain ageing in Ni-basesuperalloy720Li. Acta Metallurgica,2009,57:1243-1253.
    [32]孙茂才.金属力学性能.哈尔滨:哈尔滨工业大学出版社,2003.
    [33]胡赓祥,蔡珣,戎咏华.材料科学基础.上海:上海交通大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700