用户名: 密码: 验证码:
30Cr2Ni4MoV钢低压转子热处理工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
30Cr2Ni4MoV钢大型低压转子是AP1000百万千瓦级核电机组的关键部件。本文围绕低压转子热处理工艺的制订,采用光学显微镜、扫描电镜、X射线衍射、热模拟试验、力学性能测试等方法,研究了30Cr2Ni4MoV钢的TTT、CCT曲线和相变动力学,详细分析了该钢在不同等温温度及冷却速度下的组织演变规律,阐明了组织转变的复杂性;并通过热膨胀法、排水法、差示扫描量热法、激光脉冲法等手段,建立了包括30Cr2Ni4MoV钢的相变动力学、热物理性能和力学性能的数据库。运用数值模拟与物理模拟相结合的方法,预示了多次正火工艺各个阶段转子心部的晶粒变化过程,并探讨了在大型低压转子上采用该工艺的可行性;提出了基于部分珠光体转变的等温预处理细化晶粒新方法。采用温度-相变-应力/应变耦合的数学模型模拟并分析了低压转子热处理过程中的温度、相变和应力演变,为直径1768mm和2826mm两种典型低压转子制订了锻后热处理和性能热处理工艺,并结合生产试制结果提出了设备改造和工程实施建议。
     为了指导低压转子加热工艺的制订,研究了30Cr2Ni4MoV钢的奥氏体化相变动力学。测定了0.008~20°C/s范围内不同加热速率下的膨胀曲线,运用Kissinger方法进行了基于非等温相变Johnson-Mehl-Avrami模型的动力学分析,确定了奥氏体化相变激活能Q约为2.367×10~6J/mol,J-M-A指数n约为0.2448,指前因子ln k0约为270.5。当设定J-M-A方程中温度变量为不同数值时,可获得等温奥氏体化相变动力学曲线。该研究也表明,对于孕育期极短而难以准确测定的等温相变动力学曲线,从连续转变动力学数据中提取是一种行之有效的方法。
     为了指导低压转子淬火工艺的制订,测试分析了30Cr2Ni4MoV钢的TTT曲线和CCT曲线与组织转变。结果表明发生珠光体转变的临界冷速为3.3°C/h,生成马氏体及下贝氏体的临界冷速为1°C/s。通过对连续冷却与等温转变组织的对照分析,并结合TTT、CCT曲线的转变量测算,获得了该钢在不同冷速下连续冷却转变产物的组织形貌特征和演变规律:冷速5~10°C/s时,转变产物为马氏体,其中自回火马氏体量随着冷速降低而逐渐增多;冷速1~2°C/s时,转变产物为马氏体及一定数量下贝氏体,碳化物颗粒随着冷速降低而逐渐变大增多;冷速0.2~0.5°C/s时,转变产物以低温上贝氏体和马氏体为主;冷速0.01~0.1°C/s时,转变产物以中温块状铁素体、粒状贝氏体和粗大的上贝氏体为主。
     结合组织形貌特征的观察以及冷速与相变量的计算,研究了低压转子不同位置上冷速、组织与硬度的关系。在淬火冷却过程中低压转子不同位置处的冷速差异显著,使它们的组织和性能也有较大区别:表面位置在中温转变区内的平均冷速可达10°C/s以上,生成的马氏体组织硬度可达500HV;心部位置冷速仅0.01°C/s左右,转变产物中的粒状贝氏体和中温块状铁素体会对性能产生不良影响,使硬度降低到370HV以下;在0.01~10°C/s范围内,转变产物的硬度随着冷却速度的降低呈逐渐减小趋势,两者关系曲线的拐点处的临界冷速为0.2°C/s。由此可见,不同类型的贝氏体在组织形貌和性能上存在显著差异,不能仅以不出现先共析铁素体或珠光体的临界冷速(3.3°C/h)作为制订低压转子淬火工艺的准则,在实际生产中淬火冷速应不低于开始出现粗大上贝氏体和中温块状铁素体的冷速(0.2°C/s)。
     为了解决热处理过程计算机数值模拟中材料热物性参数和力学性能参数缺乏的问题,本文通过系统的测试,建立了30Cr2Ni4MoV钢不同组织(马氏体、贝氏体和奥氏体)的热物理性能(热膨胀系数、密度、比热容、相变潜热、导热系数)和力学性能(弹性模量、屈服强度、塑性模量)参数的数据库,得到了这些参数与温度的函数关系。并根据Greenwood-Johnson相变塑性模型,实验测试并建立了模型参数关于等效应力和温度的函数关系。研究结果表明,对马氏体相变而言,外加应力对Ms与参数的影响可以忽略不计;对贝氏体相变而言,孕育期t s随着温度的升高而显著增大,参数n随着温度和等效应力的增大而减小,参数b总体上不受等效应力和温度的影响;马氏体和贝氏体的相变塑性参数K分别为8.77110~(-5)MPa~(-1)和8.9488105MPa~(-1)。
     30Cr2Ni4MoV钢大型低压转子锻后热处理的主要目的是调整锻后组织细化晶粒。在相变动力学与组织转变的研究基础上,探索了不同热处理工艺的晶粒细化效果。运用有限元数值模拟与热模拟炉物理模拟相结合的方法,对直径2900mm低压转子心部在多次正火不同阶段的晶粒演变过程进行研究,提出了可以满足细化晶粒要求的多次正火工艺。本文提出了基于部分珠光体转变的等温预处理晶粒细化创新工艺,实验验证了其对于30Cr2Ni4MoV低压转子的细化晶粒作用,与四次正火工艺具有相同的细化效果,且更加省时节能。本文为直径1800mm和2900mm低压转子制订了多次正火和等温预处理两种锻后热处理工艺。
     通过温度-相变-应力/应变耦合的计算机模拟得到低压转子冷却过程的温度、组织、应力分布规律,结果表明淬火冷却数学模型中的相变应变及相变塑性应变因素对转子内应力场演变的影响很大。不同直径低压转子在不同喷水强度下冷却过程的模拟结果表明,在10~100(l/m~2s)的范围内改变喷水强度对低压转子心部贝氏体相变区(300~500C)的平均冷速及冷却时间的影响很小,喷水时间长短的选择主要由转子截面直径大小决定,为低压转子淬火设备的改进与设计提供了依据。据此,制订了直径1768mm和2826mm两种典型低压转子的性能热处理工艺,前者已经过试制生产检验,各项力学性能均符合要求。
Large-sized low pressure (LP) rotor of30Cr2Ni4MoV steel is one of the keycomponents in AP1000(1000MW-grade advanced passive pressurized water reactor)nuclear power unit. This study was accomplished around the establishment of heattreatment process for the LP rotors. TTT curves, CCT curves and phase transformationkinetics were investigated using dilatometer, and the detailed analysis of themicrostructure evolution under different holding temperatures and cooling rates werecarried out by optical microscopy (OM), scanning electron microscopy (SEM), X-raydiffraction (XRD), thermal simulation and mechanical property tests to demonstrate thecomplexity involved in the transformation in30Cr2Ni4MoV steel. The material database,including transformation kinetics, thermophysical properties and mechanical properties,was then set up by thermal expansion, drainage and laser pulse methods, and thedifferential scanning calorimetry as well. To investigate the effect and feasibility of grainrefinement in large-sized LP rotors, the grain evolution at the rotor center during variousstages of a multi-normalizing treatment was traced by combining numerical and physicalsimulations. As a novel grain refinement method, the isothermal pretreatment was thenproposed based on the partial decomposition of austenite into pearlite. A numerical modelcoupling temperature, transformation and stress/strain was established to predict theirevolution during quenching process of LP rotors. The heat treatment processes wereestablished for the typical LP rotors with diameter of1768mm and2826mm respectively,and the suggestions on the corresponding equipment improvement and engineeringimplement were proposed based on the results of trial production as well.
     The austenization kinetics of30Cr2Ni4MoV steel was investigated to guide theformulation of the heating process. The dilatometric curves with the heating rates from0.008to20°C/s were measured, and the austenization kinetics was then analyzed usingKissinger method based on the non-isothermal Johnson-Mehl-Avrami (J-M-A) model. The parameters in the model were obtained as the austenization activation energy Q,pre-exponential factorln k0and J-M-A exponent n being about2.367×106J/mol,0.2448and270.5, respectively. The isothermal austenization kinetics curves could thus bedetermined by setting the temperature in the J-M-A equation as different values. Thisindicates that the isothermal transformation kinetics curves could be derived by extractinguseful information directly from continuous transformation kinetics, in the case ofextremely short incubation period causing it difficult to be accurately measured.
     TTT and CCT curves were measured and analyzed in detail to guide the formulationof the quenching process for LP rotors. The critical cooling rate to form pearlite is about3.3°C/h and that for mixture of matensite and bainite is1°C/s. Based on the carefulcomparison of microstructures from isothermal transformation and continuous coolingtransformation, the morphological characters and microstructure evolution uponcontinuous cooling of different rates were obtained. When the cooling rate is between5-10°C/s, only martensite forms and the amount of self-tempered martensite graduallyincreases as cooling is slowed down. When the cooling rate is between1-2°C/s, thetransformation products are martensite and a certain amount of lower bainite, and thecarbide particles becomes more and larger as for slower cooling. When the cooling rate isbetween0.2-0.5°C/s, martensite and low temperature upper bainite are the maintransformation products. When the cooling rate is between0.01-0.1°C/s, thetransformation products are mainly massive ferrite, granular bainite and coarse upperbainite.
     The relationship of cooling rate, microstructure and hardness on different positions ofLP rotor was investigated by microstructure observation and quenching simulation. It isobvious that the cooling rates at different positions of LP rotors are significantly different,leading to great differences in microstructure and mechanical properties. At the surfacepoints the average cooling rate in the medium temperature transformation region could behigher than10°C/s, and thus the hardness could reach up to500HV due to formedmartensite. The average cooling rate at the central points was nearly0.01°C/s, and granular bainite and massive ferrite having a negative impact on mechanical propertiesformed and resulted in the hardness below370HV. Therefore, when the cooling rate variesfrom10to0.01°C/s, the hardness of transformation products gradually decreases as thecooling rate decreases, and a turning point at cooling rate of0.2°C/s exists on the curvebetween cooling rate and hardness. It is demonstrated that various kinds of bainite havesignificant differences in morphology and mechanical properties, and the cooling rate atwhich no coarse upper bainite or massive ferrite (0.2°C/s) would form should be regardedas the criteria, rather than that of no proeutectoid ferrite or pearlite (3.3°C/h), for thedevelopment of quenching process for the LP rotors in the practical production.
     The material database, including thermophysical and mechanical properties, wasestablished by systematical measurements, providing the input data for heat treatmentprocess simulation later. Thermal expansion coefficient, density, heat capacity, latent heat,thermal conductivity, elastic modulus, yield strength and plastic modulus were tested andformulated into functions of temperature. The relationship of temperature, equivalentstress and modeling parameters were set up experimentally. The parameters wereextracted and formulated into the functions of temperature and equivalent stress based onGreenwood-Johnson phase transformation plasticity model and thermal-mechanicalsimulator experiments. The results showed that the effect of applied stress onM sand thecoefficient could be neglected for martensitic transformation. However, for bainitictransformation, the incubation periodt sincreases with increasing temperature, while theparameter n decreases as temperature and equivalent stress increase, and the parameterb is almost a constant. The transformation plasticity parameter K for martensite andbainite were found as8.771MPa-1and8.9488MPa~(-1), respectively.
     The main purpose of the heat treatment after forging was to eliminate the coarsemicrostructure and refine the grains. The effect of different heat treatment processes ongrain refinement was comparatively investigated. The grain size evolution at the centerpart of the2900mm LP rotor during multi-normalizing was studied by the combinationof FEM numerical and physical simulations. The multi-normalizing process to meet the requirements of grain refinement was therefore recommended. A novel grain refinementmethod through isothermal pretreatment based on partial decomposition of austenite intopearlite was proposed and verified experimentally. The results indicate that the proposedmethod has the same effect as the four times normalizing process but exhibits clearadvantage of timesaving and energy efficiency. Then, the heat treatment processes afterforging based on multi-normalizing and isothermal pretreatment were formulated for both1800mm and2900mm LP rotors.
     A numerical model coupling temperature, transformation and stress/strain wasestablished to analyze the distribution and evolution of temperature, phase transformationand stress during quenching process of LP rotors. The simulated results showed thattransformation strain and transformation plasticity play important roles on the evolutionand distribution of the stress. The results also indicated that the change of water sprayingintensity in a range of10~100(l/m2s) could hardly affect the cooling time and the averagecooling rate at the center part of LP rotors in the bainitic phase transformation zone(300~500C), and the spraying time needed was mainly determined by the sectionaldiameter of the rotor, providing a basis for the design and improvement of quenchingequipment. Besides, the heat treatment processes were developed for the typical LP rotorswith both diameters of1768mm and2826mm, and the former had been validated by trialproduction, in which the mechanical properties could comprehensively meet therequirements.
引文
[1]张国宝.努力打造大型铸锻件生产基地.装备制造.2008,(4):48-51
    [2]邹善藻.三十五年来我国的转子锻件制造.大型铸锻件.1994,(1):29-38
    [3]郭会光,曲宗实.我国大锻件制造业的发展.大型铸锻件.2003,(1):42-45
    [4]邢春林,王曰东,黄蓉,李振学.300MW、600MW汽轮机材料科研总结及汽轮机材料的研究方向.汽轮机技术.1997,39(3):179-184
    [5]陈书贵,王莉莉.“八五”电站大型铸锻件科技攻关成果与“九五”科技攻关展望.大型铸锻件.1997,(2):41-46
    [6]姚新.数值模拟在大模块及轴承钢淬火中的应用[D].上海:上海交通大学,2003
    [7]刘庄,吴肇基,吴景之,张毅.热处理过程的数值模拟.北京:科学出版社,1996
    [8]潘健生,张伟民.试论先进制造技术中的热处理.金属热处理.2001,26(9):3-4
    [9]潘健生,张伟民,陈乃录,胡明娟.热处理信息化若干问题的思考.金属热处理.2004,29(1):13-16
    [10] T. Filetin, B. Liscic, J. Galinec. New computer-aided method for steel selection based onhardenability. Heat Treat Met-uk.1996,23(3):63-66
    [11] L. A. Dobrzanski, J. Madejski. Computer aided system for selection of the high-speed steels andheat treatment technology synthesis of the tools. J Mater Process Tech.1993,38(1-2):135-143
    [12] T. Filetin, B. Liscic, J. Galinec. Computer-aided steel selection. Advanced Materials andProcesses.1995,148(6):
    [13] M. Gergely, T. Reti. Application of a computerized information system for the selection of steelsand their heat treatment technologies. Journal of Heat Treating.1988,5(2):125-140
    [14] B. Smoljan, D. Iljki, F. Traven, J. Mr a. Mathematical modeling and computer simulation offatigue properties of quenched and tempered steel. Journal of ASTM International.2011,8(1):
    [15] S. Hao, H. Lin, R. R. Binomiemi, D. M. G. Combs, G. Fett. A multi-scale model of intergranularfracture and computer simulation of fracture toughness of a carburized steel. Comp Mater Sci.2010,48(2):241-249
    [16] K. O. Lee, J. M. Kim, M. H. Chin, S. S. Kang. A study on the mechanical properties fordeveloping a computer simulation model for heat treatment process. J Mater Process Tech.2007,182(1-3):65-72
    [17] A. B. Kuvaldin, M. Y. Pogrebisskii, M. A. Fedin. Development of a melt temperature controlsystem for induction crucible mixers and the study of this system with a computer model.Russian Metallurgy (Metally).2008,2008(7):624-629
    [18]黎振华,耿慧远,李言祥.通用高精度计算机炉温控制系统研究.铸造.2004,53(7):547-550
    [19]徐川.使用电子计算机确定连续加热炉的炉温制度.钢铁.1984,19(10):58-62
    [20]李勇军,张伟民,李宇,潘健生,胡明娟.常见形状零件气体渗碳过程计算机模拟软件的开发.金属热处理.2000,(3):36-38
    [21]韩华,王顺兴.计算机辅助设计气体渗碳工艺.河南科技大学学报(自然科学版).2004,25(6):9-12
    [22] A. M. Freborg, B. L. Ferguson, R. W. Larson. Using Computer Simulation to Improve aCarburization Process. In: Funatani K, Totten GE, editors, vol.1. St. Louis, MO,2000. p.70-78.
    [23] M. J. Hu, J. S. Pan, Y. J. Li, D. Ruan. Mathematical modelling and computer simulation ofnitriding. Mater Sci Tech-lond.2000,16(5):547-550
    [24]郝晓伟,张伟民,陈乃录,左训伟.真空热处理炉传热的三维数值模拟.金属热处理.2007,32(7):51-54
    [25] M. W. Wang, L. W. Zhang, G. D. Jiang, F. Y. Zhang, C. H. Li, L. S. Zhang, Z. L. Zhang.Numerical simulation of vacuum heat treatment thermal hysteresis time of GH4169superalloyworkpiece. Transactions of Materials and Heat Treatment.2004,25(5):772-775
    [26] A. Pokrovskii, V. Leshkovtsev, A. Polushin, E. Bochektueva. Simulation of structural state andstresses in forming rolls subjected to hardening with induction heating. Met Sci Heat Treat+.2011,52(9):442-445
    [27] B. J. Yang, A. Hattiangadi, W. Z. Li, G. F. Zhou, T. E. McGreevy. Simulation of steelmicrostructure evolution during induction heating. Mat Sci Eng A.2010,527(12):2978-2984
    [28]卢金斌,彭竹琴,弓金霞,杨卫铁,隋磊. HT200铸铁等离子弧熔凝温度场数值模拟.材料热处理学报.2010,31(7):146-150
    [29] J. Meister, G. B hm, I. M. Eichentopf, T. Arnold. Simulation of the substrate temperature fieldfor plasma assisted chemical etching. Plasma Processes and Polymers.2009,6(SUPPL.1):S209-S213
    [30] E. Meillot, G. Balmigere. Plasma spraying modeling: Particle injection in a time-fluctuatingplasma jet. Surface and Coatings Technology.2008,202(18):4465-4469
    [31]朱祖昌,李培耀,俞少罗.钢激光热处理的数值模拟和表面温度场测定.金属热处理学报.1996,17:109-115
    [32] K. Obergfell, V. Schulze, O. V hringer. Simulation of phase transformations and temperatureprofiles by temperature controlled laser hardening: Influence of properties of base material.Surface Engineering.2003,19(5):359-363
    [33] F. Kong, S. Santhanakrishnan, D. Lin, R. Kovacevic. Modeling of temperature field and graingrowth of a dual phase steel DP980in direct diode laser heat treatment. J Mater Process Tech.2009,209(18-19):5996-6003
    [34] W. Liu, J. N. DuPont. Effects of melt-pool geometry on crystal growth and microstructuredevelopment in laser surface-melted superalloy single crystals. Mathematical modeling ofsingle-crystal growth in a melt pool (part I). Acta Mater.2004,52(16):4833-4847
    [35] E. V. Levchenko, A. V. Evteev, I. V. Belova, G. E. Murch. Molecular dynamics simulation andtheoretical analysis of carbon diffusion in cementite. Acta Mater.2009,57(3):846-853
    [36] Y.-F. Guo, Y.-S. Wang, D.-L. Zhao, W.-P. Wu. Mechanisms of martensitic phase transformationsin body-centered cubic structural metals and alloys: Molecular dynamics simulations. Acta Mater.2007,55(19):6634-6641
    [37] R. B. Godiksen, Z. T. Trautt, M. Upmanyu, J. Schi tz, D. J. Jensen, S. Schmidt. Simulations ofboundary migration during recrystallization using molecular dynamics. Acta Mater.2007,55(18):6383-6391
    [38] S. Yamasaki, H. K. D. H. Bhadeshia. Modelling and characterisation of V4C3precipitation andcementite dissolution during tempering of Fe-C-V martensitic steel. Mater Sci Tech-lond.2003,19(10):1335-1343
    [39] N. Wan, W. Xiong, J. Suo. Mathematical model for tempering time effect on quenched steelbased on hollomon parameter. Journal of Materials Science and Technology.2005,21(6):803-806
    [40]刘庄,吴肇基,许学军,陈国学,吴景之,凌进.回火过程数值模拟的研究大型铸锻件.1998,(2):1-7
    [41] S. Yamasaki, H. K. D. H. Bhadeshia. Modelling and characterisation of Mo2C precipitation andcementite dissolution during tempering of Fe-C-Mo martensitic steel. Mater Sci Tech-lond.2003,19(6):723-731
    [42]潘健生,胡明娟,田东,顾剑峰.淬火过程计算机模拟研究的若干进展.金属热处理.1998,(12):30-31
    [43] B. L. Ferguson, Z. Li. Using simulation for heat treatment process design: Matching quenchingprocess with steel grade and product geometry. International Heat Treatment and SurfaceEngineering.2011,5(1):31-35
    [44] C. Simsir, C. H. Gür.3D FEM simulation of steel quenching and investigation of the effect ofasymmetric geometry on residual stress distribution. J Mater Process Tech.2008,207(1-3):211-221
    [45] J. Wang, J. F. Gu, X. X. Shan, X. W. Hao, N. L. Chen, W. M. Zhang. Numerical simulation ofhigh pressure gas quenching of H13steel. J Mater Process Tech.2008,202(1-3):188-194
    [46] N. L. Chen, L. Z. Han, W. M. Zhang, X. W. Hao. Enhancing mechanical properties and avoidingcracks by simulation of quenching connecting rods. Mater Lett.2007,61(14-15):3021-3024
    [47] H. P. Li, G. Q. Zhao, S. T. Niu, C. Z. Huang. FEM simulation of quenching process andexperimental verification of simulation results. Materials Science and Engineering: A.2007,452-453:705-714
    [48]顾剑锋,潘健生,胡明娟,沈甫法.9Cr2Mo冷轧辊加热过程的数值模拟.金属学报.1999,35(12):1266-1270
    [49]潘健生,王婧,韩利战,顾剑锋.热处理数值模拟工程应用的一些尝试.金属热处理.2008,33(1):3-8
    [50]叶成,张震,李云胜,李献斌.压水堆核电AP1000二回路系统与1000MW超超临界机组热力系统的比较.电力设备.2008,9(4):25-28
    [51]朱丹书.核电汽轮机的运行与高压缸的热应力分析.核动力工程.1996,17(5):395-402
    [52]崔宏博.核电汽轮机组特点研究.东方电气评论.2005,19(4):192-195
    [53]刘显惠,林锦棠.国内外汽轮机大型转子锻件材料的技术进展(一).国外金属热处理.1999,(3):5-7
    [54]康大韬,廖波,陈廉,刘民治.34CrNi3Mo转子钢的氢致脆化.金属学报.1987,23(5):391-395
    [55]刘显惠,林锦棠.国内外汽轮机大型转子锻件材料的技术进展(二).国外金属热处理.1999,(6):5-8
    [56]林富生.我国电站锅炉、汽轮机材料的发展.发电设备.1997,(11-12):15-19
    [57]康大韬,叶国斌.大型锻件材料及热处理.北京:龙门书局,1998
    [58] W. P. McNaughton, R. H. Richman, R. I. Jaffee."Superclean"3.5NiCrMoV turbine rotor steel: AStatus Report-Part II: Mechanical Properties. Journal of Materials Engineering.1991,13(1):19-28
    [59] C. Berger, K.-H. Mayer. Melting of3.5%NiCrMoV superclean steel for extended operationtemperatures. Hochreine Erschmelzung des3,5%-NiCrMoV-Stahles zur Erweiterung derEinsatzgrenzen.1990,110(9):57-64
    [60] J. Watanabe, Y. Murakami. Prevention of Temper Embrittlement of CrMo Steel Vessels by theUse of Low-Silicon Forged Shells. American Petroleum Institute.1981:216-223
    [61]钟惠仙.汽轮机低压转子用钢的发展.大型铸锻件.1996,(4):45-50
    [62]田中泰彦.汽轮机超纯钢低压转子的制造.大型铸锻件.1992,(2):57-63
    [63]王雷刚,邓冬梅,刘助柏.90年代汽轮机转子用钢的新进展.2001.2001,(1):43-44,54
    [64]崔晋娥,王涛.3.5%NiCrMoV钢超纯净低压转子锻件材料与工艺性能的研究.大型铸锻件.2007,(6):7-10
    [65] W. McNaughton, R. Richman, R. Jaffee.“Superclean”3.5NiCrMoV turbine rotor steel: A statusreport—Part I: Steelmaking practice, heat treatment, and metallurgical properties. Journal ofMaterials Engineering.1991,13(1):9-18
    [66] JB/T11020-2010,超临界及超超临界机组汽轮机用超纯净钢低压转子锻件技术条件[S],北京,国家标准出版社,2010
    [67]潘健生,胡明娟.热处理工艺学.北京:高等教育出版社,2009
    [68]何君毅,林祥都.工程结构非线性问题的数值解法.北京:国防工业出版社,1994
    [69]王勖成.有限单元法.北京:清华大学出版社,2003
    [70]郭宽良,孔祥谦,陈善年.计算传热学.合肥:中国科学技术大学出版社,1988
    [71]徐祖耀.相变原理.北京:科学出版社,1988
    [72]陈明祥.弹塑性力学.北京:科学出版社,2007
    [73]马铁犹.计算流体动力学.北京:北京航空学院出版社,1986
    [74] T. Inoue, B. Raniecki. Determination of thermal-hardening stress in steels by use ofthermoplasticity theory. J Mech Phys Solids.1978,26(3):187-212
    [75] T. Inoue, Z. Wang. Coupling betwen stress, temperature, and metallic structures during processesinvolving phase transformations. Mater Sci Tech-lond.1985,1(10):845-850
    [76] T. Inoue, T. Yamaguchi, Z. Wang. Stresses and phase transformations occuring in quenching ofcarburized steel gear wheel Mater Sci Tech-lond.1984,1(10):872-876
    [77] B. Hildenwall, T. Ericsson. Prediction of residual stresses in case-hardening steels, InHardenability Concepts with Appl to Steel, Proc of a Symp[C]. Chicago, IL, USA,1978:579-606
    [78] F. G. Rammerstorfer, D. F. Fischer, W. Mitter, K. J. Bathe, M. D. Snyder. Onthermo-elastic-plastic analysis of heat-treatment processes including creep and phase changes.Computers and Structures.1981,13(5-6):771-779
    [79] S. Denis, E. Gautier, A. Simon, G. Beck. Stress-phase-transformation interactions-basicprinciples, modelling, and calculation of internal stresses. Mater Sci Tech-lond.1984,1(10):805-814
    [80] S. Denis, D. Farias, A. Simon. Mathematical model coupling phase transformations andtemperature evolutions in steels. Isij Int.1992,32(3):316-325
    [81] M. Gergely, S. Somogyi, G. Buza. Calculation of transformation sequences in quenched steelcomponents to help predict internal stress distribution. Mater Sci Tech-lond.1984,1(10):893-898
    [82] S. Sjostrom. Interactions and constitutive models for calculating quench stresses in steel. MaterSci Tech-lond.1984,1(10):823-829
    [83] B. Buchmayr, J. S. Kirkaldy. Modeling of the temperature field, transformation behavior,hardness and mechanical response of low alloy steels during cooling from the austenite region.Journal of Heat Treating.1990,8(2):127-136
    [84] T. Inoue, D. Y. Ju, K. Arimoto. Metallo-Thermo-Mechanical Simulation of Quenching Process-Theory and Implementation of Computer Code "HEARTS" In Proc. of Int. Conf. on Quenchingand Control of Distortion[C]. Chicago, Illinois, USA,1992:205-212
    [85] T. Inoue, K. Arimoto. Development and implementation of CAE system “HEARTS” for heattreatment simulation based on metallo-thermo-mechanics. J Mater Eng Perform.1997,6(1):51-60
    [86] F. Waeckel, P. Dupas, S. Andrieux. A thermo-metallurgical model for steel cooling behaviour:Proposition, validation and comparison with the Sysweld's model. Journal De Physique. IV: JP.1996,6(1):255-264
    [87] K. Arimoto, D. Lambert, G. Li, A. Arvind, W. T. Wu. Development of Heat Treatment SimulationSystem "Deform-HT", In Heat Treating: Proceedings of the18th Conference[C]. Cincinatti,OH,1998:639-644
    [88] Z. C. Li, B. L. Ferguson. Computer modeling and validations of steel gear heat treatmentprocesses using commercial software DANTE. Journal of Shanghai Jiaotong University(Science).2011,16(2):152-156
    [89]刘晓晖,韩利战,顾剑锋,潘健生.热处理模拟软件Thermal Prophet的开发与应用.金属热处理.2012,37(2):112-115
    [90]刘桂芝,刘庄,吴肇基,吴振宇;.大型冷轧辊模拟件残余应力的研究.东北电力学院学报.1994,14(1):25-30
    [91]许学军,陈国学,刘春成,刘庄,吴景之.钢的淬火过程的数值模拟.1997,(2):6-10
    [92]王本一,石伟,刘庄.数值模拟技术在大型锻件生产中的应用.大型铸锻件.1999,(1):15-20
    [93]徐雪霞,李维勇,白秉哲,方鸿生;.采用模拟方法对反应堆压力容器大锻件用钢的研究.铸造技术.2010,31(7):928-931
    [94] W. Shi, K. F. Yao, N. Chen, H. P. Wang. Experimental study of microstructure evolution duringtempering of quenched steel and its application. Cailiao Rechuli Xuebao/Transactions ofMaterials and Heat Treatment.2004,25(5):736-739
    [95]姚可夫,钱滨,石伟,刘春成,刘庄.马氏体回火过程中组织转变量预测的实验研究.金属学报.2003,39(8):892-896
    [96]朱祖昌,李培耀,俞少罗.钢激光热处理的数值模拟和表面温度场测定.金属热处理学报.1996,17(Suppl):109-115
    [97]朱祖昌,李培耀,俞少罗.相变硬化激光热处理的数值解及组织性能的预测.金属学报.1996,32(1):105-112
    [98]顾剑锋,潘键生,胡明娟.淬火过程的计算机模拟及其应用.金属热处理.2000,(5):35-38
    [99]张伟民,潘健生,钱初钧,李勇军,张戈.热处理数值模拟与远程服务.材料热处理学报.2001,22(1):60-66
    [100]李勇军,潘健生,顾剑锋,胡明娟,张幸,于文平.70Cr3Mo钢大型支承辊淬火加热计算机模拟.金属热处理.2000,(9):34-35
    [101]顾剑锋,潘健生,胡明娟,沈甫法.冷轧辊淬冷过程数值模拟的研究.金属热处理学报.1999,20(2):1-6
    [102] S. Pan, D. Ruan, X. Q. She, W. M. Zhang, M. J. Hu. The SJTU-CARBCAD(1.0) Software Basedon Numerical Simulation. In: Walton HW, Wallis RA, editors. Cincinatti, OH,1998. p.665-671.
    [103]李勇军,潘健生,胡明娟,田东,张伟民.淬冷过程非线性有限元分析的单元选择.金属热处理学报.1999,20(4):22-25
    [104]顾剑锋,潘健生,胡明娟.淬火冷却过程中表面综合换热系数的反传热分析.上海交通大学学报.1998,32(2):19-23
    [105]陈乃录,高长银,单进,潘健生,叶健松,廖波.动态淬火介质冷却特性及换热系数的研究.材料热处理学报.2001,22(3):41-44
    [106]袁俭,张伟民,刘占仓,陈乃录,王鸣华,徐骏.不同冷却方式下换热系数的测量与计算.材料热处理学报.2005,26(4):115-120
    [107]王婧,陈乃录,张伟民.渗氮炉内流速场的数值模拟.材料热处理学报.2007,28(3):141-144
    [108] J. Wang, N. L. Chen, H. Dai, W. M. Zhang. Numerical simulation of high pressure gas quenchingprocess. Heat Treat Met-uk.2007,32(8):72-76
    [109]郝晓伟,陈乃录,张伟民.基于CFD模拟的气冷室结构的优化设计.材料热处理学报.2007,28(Suppl):371-374
    [110] J. Wang, J. Gu, X. Shan, X. Hao, N. Chen, W. Zhang. Numerical simulation of high pressure gasquenching of H13steel. J Mater Process Tech.2008,202(1-3):188-194
    [111]田东.复杂形状工件的淬火模拟及淬火工艺设计[D].上海:上海交通大学,1998
    [112]韩利战,顾剑锋,潘健生.超超临界转子钢X12CrMoWVNbN10-1-1的等温转变动力学.材料热处理学报.2010,31(1):35-39
    [113]韩利战,顾剑锋,潘健生. X12CrMoWVNbN10-1-1铁素体耐热钢中的马氏体相变过程.上海交通大学学报.2010,44(1):11-15
    [114]李勇军,潘健生,胡明娟,钱初钧,沈甫法.马氏体相变塑性及其在淬火数值模拟中的应用.上海交通大学学报.2001,35(3):352-355
    [115]李勇军.扩散、相变、热应力/应变非线性有限元分析中几个特殊问题的研究和应用[D].上海:上海交通大学,2000
    [116] M. Krishnan, D. G. R. Sharma. Determination of the interfacial heat transfer coefficient h inunidirectional heat flow by Beck's non linear estimation procedure. Int Commun Heat Mass.1996,23(2):203-214
    [117] D. O'Mahoney, D. J. Browne. Use of experiment and an inverse method to study interface heattransfer during solidification in the investment casting process. Exp Therm Fluid Sci.2000,22(3-4):111-122
    [118] H. B. Dong, J. D. Hunt. A numerical model for a heat flux DSC: Determining heat transfercoefficients within a DSC. Mat Sci Eng A.2005,413-414:470-473
    [119] H. C. Sun, L. S. Chao. Prediction of interfacial heat transfer coefficients by using a modifiedlump capacitance method for aluminum casting in a green sand mold. Isij Int.2007,47(12):1753-1758
    [120] A. Sugianto, M. Narazaki, M. Kogawara, A. Shirayori. A comparative study on determinationmethod of heat transfer coefficient using inverse heat transfer and iterative modification. J MaterProcess Tech.2009,209(10):4627-4632
    [121]林慧国,傅代直.钢的奥氏体转变曲线——原理、测试与应用.北京机械工业出版社,1988
    [122]刘宗昌,于健,宋义全,张丽颖,范秀风. P20塑料模具钢的相变动力学曲线.特殊钢.2003,24(4):16-17
    [1]林慧国,傅代直.钢的奥氏体转变曲线——原理、测试与应用.北京机械工业出版社,1988
    [2] YB/T5127-1993,钢的临界点测定方法(膨胀法)[S],北京,国家标准出版社,1993
    [3] YB/T5128-1993,钢的连续冷却转变曲线图的测定方法(膨胀法)[S],北京,国家标准出版社,1993
    [4] YB/T130-1997,钢的等温转变曲线图的测定[S],北京,中国标准出版社,1997
    [5] Dynamic Systems Inc., Gleeble3500/3800Manuals, Rev2.4.
    [6] W. Zhang, J. W. Elmer, T. DebRoy. Kinetics of ferrite to austenite transformation during weldingof1005steel. Scripta Mater.2002,46(10):753-757
    [7] H. E. Kissinger. Reaction Kinetics in Differential Thermal Analysis. Anal Chem.1957,29(11):1702-1706
    [8] E. J. Mittemeijer, L. Cheng, P. van der Schaaf, C. Brakman, B. Korevaar. Analysis ofnonisothermal transformation kinetics. Metall Mater Trans A.1988,19(4):925-932
    [9] T. Waterschoot, K. Verbeken, B. C. De Cooman. Tempering Kinetics of the Martensitic Phase inDP Steel. Isij Int.2006,46(1):138-146
    [10] P. Budrugeac, E. Segal. Applicability of the Kissinger equation in thermal analysis J Therm AnalCalorim.2007,88(3):703-707
    [11] E. J. Mittemeijer. Analysis of the kinetics of phase transformations. J Mater Sci.1992,27(15):3977-3987
    [12] M. Van Genderen, M. Isac, A. B ttger, E. Mittemeijer. Aging and tempering behavior ofiron-nickel-carbon and iron-carbon martensite. Metall Mater Trans A.1997,28(3):545-561
    [13] J. Farjas, P. Roura. Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equation fornon-isothermal experiments and its analytical solution. Acta Mater.2006,54(20):5573-5579
    [14] P. R. Rios. Relationship between non-isothermal transformation curves and isothermal andnon-isothermal kinetics. Acta Mater.2005,53(18):4893-4901
    [15] S. Denis, D. Farias, A. Simon. Mathematical model coupling phase transformations andtemperature evolutions in steels. Isij Int.1992,32(3):316-325
    [16] M. Avrami. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. TheJournal of Chemical Physics.1941,9(2):177-184
    [17] E. Hawbolt, B. Chau, J. Brimacombe. Kinetics of austenite-ferrite and austenite-pearlitetransformations in a1025carbon steel. Metall Trans A.1985,16(4):565-578
    [18]宋冬利.大型塑料模具钢模块淬火工艺的研究与应用[D].上海:上海交通大学,2005
    [19]韩利战,顾剑锋,潘健生.超超临界转子钢X12CrMoWVNbN10-1-1的等温转变动力学.材料热处理学报.2010,31(1):35-39
    [20] S. Serajzadeh. Modelling of temperature history and phase transformations during cooling ofsteel. J Mater Process Tech.2004,146(3):311-317
    [21] E. Anelli. Application of Mathematical Modelling to Hot Rolling and Controlled Cooling of WireRods and Bars. Isij Int.1992,32(2):440-449
    [22] T. Reti, Z. Fried, I. Felde. Computer simulation of steel quenching process using a multi-phasetransformation model. Comp Mater Sci.2001,22(3-4):261-278
    [23] E. Davenport, E. Bain. Transformation of austenite at constant subcritical temperatures. MetallMater Trans B.1970,1(12):3503-3530
    [24] F. Wever, H. Lange. Mitt. KWIE.1932,17:71
    [25] S. Liu, W. T. Reynolds, H. I. Aaronson, H. Hu, G. J. Shiflet. Discussion of “the bainitetransformation in a silicon steel. Metall Mater Trans A.1985,16(3):457-466
    [26] W. T. Reynolds, F. Z. Li, C. K. Shui, H. I. Aaronson. The Incomplete transformationphenomenon in Fe-C-Mo alloys. Metall Mater Trans A.1990,21(6):1433-1463
    [27] H. K. D. H. Bhadeshia, D. V. Edmonds. The bainite transformation in a silicon steel. MetallMater Trans A.1979,10(7):895-907
    [28] H. K. D. H. Bhadeshia, D. V. Edmonds. The mechanism of bainite formation in steels. ActaMetallurgica.1980,28(9):1265-1273
    [29] R. Hehemann, K. Kinsman, H. Aaronson. A debate on the bainite reaction. Metall Mater Trans B.1972,3(5):1077-1094
    [30] R. F. Hehemann, A. R. Troiano. The Bainite Transformation. Metal Progress.1956,70:97-104
    [31] JB/T7027-2002,300MW及以上汽轮机转子体锻件技术条件[S],北京,国家标准出版社,2002
    [32]康大韬,叶国斌.大型锻件材料及热处理.北京:龙门书局,1998
    [33]顾剑锋,陈睿恺,潘健生.中高合金钢大型锻件的晶粒细化方法[P].中国专利,201110009744.6,2011-01-18
    [34]徐祖耀.马氏体相变与马氏体(第二版).北京科学出版社,1999
    [35] D. P. Koistinen, R. E. Marburger. A general equation prescribing the extent of theaustenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. ActaMetallurgica.1959,7(1):59-60
    [36]俞德刚,王世道.贝氏体相变理论.上海:上海交通大学出版社,1998
    [37]康沫狂.钢中贝氏体.上海:上海科学技术出版社,1990
    [38] GB/T4340.1-2009,金属材料维氏硬度试验方法[S],北京,国家标准出版社,2009
    [1]潘健生,胡明娟,田东,顾剑峰.淬火过程计算机模拟研究的若干进展.金属热处理.1998,(12):30-31
    [2]宿德军,陈军.热处理过程数值模拟的研究现状和发展趋势.模具技术.2004,(6):54-57
    [3]俞昌铭.热传导及其数值分析.北京:清华大学出版社,1981
    [4]孙炳楠,项玉寅,张永元.工程中边界元法及其应用.浙江:浙江大学出版社,1991
    [5] F. M. B. Fernandes, S. Denis, A. Simon. Mathematical model coupling phased transformationand temperature evolution during quenching of steels. Mater Sci Tech-lond.1985,1(10):838-844
    [6] S. Denis, E. Gautier, A. Simon, G. Beck. Stress-phase transformation interactions-basicprinciples, modeling, and calculation of internal stresses. Mater Sci Tech-lond.1985,1(10):805-814
    [7] E. Hawbolt, B. Chau, J. Brimacombe. Kinetics of austenite-ferrite and austenite-pearlitetransformations in a1025carbon steel. Metall Trans A.1985,16(4):565-578
    [8] C. L. Magee. Phase transformations. ASM international.1970:115-156
    [9] C. L. Magee. The kinetics of martensite formation in small particles. Metallurgical Transactions.1971,2(9):2419-2430
    [10] D. P. Koistinen, R. E. Marburger. A general equation prescribing the extent of theaustenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. ActaMetallurgica.1959,7(1):59-60
    [11] J. B. Leblond, G. Mottet, J. Devaux, J. C. Devaux. Mathematical models of anisothermal phasetransformations in steels, and predicted plastic behaviour. Mater Sci Tech-lond.1984,1(10):815-822
    [12] J. B. Leblond, J. Devaux, J. C. Devaux. Mathematical modelling of transformation plasticity insteels I: Case of ideal-plastic phases. Int J Plasticity.1989,5(6):551-572
    [13] J. B. Leblond. Mathematical modelling of transformation plasticity in steels II: Coupling withstrain hardening phenomena. Int J Plasticity.1989,5(6):573-591
    [14] S. Denis, P. Archambault, E. Gautier, A. Simon, G. Beck. Phase transformations and generationof heat treatment residual stresses in metallic alloys. Mater Sci Forum.2000,347:184-198
    [15] T. Inoue, K. Tanaka. An elastic-plastic stress analysis of quenching when considering atransformation. Int J Mech Sci.1975,17(5):361-367
    [16]王勖成.有限单元法.北京:清华大学出版社,2003
    [17]蒋友谅.有限单元法基础.北京:国防工业出版社,1980
    [18] T. Inoue, K. Arimoto. Development and implementation of CAE system “HEARTS” for heattreatment simulation based on metallo-thermo-mechanics. J Mater Eng Perform.1997,6(1):51-60
    [19]姚新.数值模拟在大模块及轴承钢淬火中的应用[D].上海:上海交通大学,2003
    [20] T. Inoue, Z. Wang. Coupling betwen stress, temperature, and metallic structures during processesinvolving phase transformations. Mater Sci Tech-lond.1985,1(10):845-850
    [21] W. J. Dowling, T. Pattok, B. L. Ferguson, D. Shick, Y. H. Gu, M. Howes. Development of acarburizing and quenching simulation tool: program overview In Second InternationalConference on Quenching and the Control of Distortion[C]. Cleveland, Ohio; USA,1996:349-355
    [22] D. Y. Ju, Y. Ito, T. Inoue. Simulation and Verification of Residual Stresses and Distortion inCarburizing-quenching Process of a Gear Shaft In4th International Conference on Quenchingand Control of Distortion[C]. Beijing; China,2003291-296
    [23] T. Inoue, B. Raniecki. Determination of thermal-hardening stress in steels by use ofthermoplasticity theory. J Mech Phys Solids.1978,26(3):187-212
    [24]谭真,郭广文.工程合金热物性.北京:冶金工业出版社,1994
    [25] S. Denis, D. Farias, A. Simon. Mathematical model coupling phase transformations andtemperature evolutions in steels. Isij Int.1992,32(3):316-325
    [26] GB/T229-2007,金属材料夏比摆锤冲击试验方法[S],国家标准出版社,2007
    [27]胡赓祥,蔡珣.材料科学基础.上海:上海交通大学出版社,2000
    [28]徐洲,姚寿山.材料加工原理.北京:科学出版社,2003
    [29]杨世铭.传热学基础.第2版.北京:高等教育出版社,2003
    [30]刘庄,吴肇基,吴景之,张毅.热处理过程的数值模拟.北京:科学出版社,1996
    [31] R. D. Morales, A. G. Lopez, I. M. Olivares. Heat transfer analysis during water spray cooling ofsteel rods. ISIJ Int.1990,30(1):48-57
    [32] P. D. Hodgon, K. M. Browne, D. C. Collinson, T. T. Pham, R. K. Gibbs. A Mathematical Modelto Simulate the Thermomechanical Processing of Steel In3rd International Seminar onQuenching and Carburising[C]. Melbourne, Australia,1991:139-159
    [1]吴景之,张信.26Cr2Ni4MoV钢的晶粒遗传.金属热处理.1984,(4):29-39
    [2]康大韬,叶国斌.大型锻件材料及热处理.北京:龙门书局,1998
    [3]周子年.钢的加热转变及组织遗传性.上海金属.1993,15(2):57-62
    [4]潘健生,胡明娟.热处理工艺学.北京:高等教育出版社,2009
    [5]崔占全.26Cr2Ni4MoV转子钢的奥氏体再结晶及其消除组织遗传.钢铁.1994,34(4):37-39
    [6]景勤,牟军,康大韬.26Cr2Ni4MoV钢组织遗传与晶粒细化工艺的研究.金属热处理.1997,(5):13-14,31
    [7]牟军,康大韬,杨慧心,张丰.26Cr2Ni4MoV钢的组织遗传及α-T曲线法研究.理化检验-物理分册.1997,33(8):21-25
    [8]周子年,张肇一,郑生梁,任颂讚.残余奥氏体在组织遗传中的作用.理化检验-物理分册.1983,19(6):
    [9]徐彦和,吴景之.钢的原始组织状态对奥氏体化及再结晶过程的影响.大型铸锻件.1985,(3):12-24
    [10] GB/T6394-2002,金属平均晶粒度测定方法[S],国家标准出版社,2002
    [11] ASTM Standard E112-10, Standard Test Methods for Determining Average Grain Size[S], ASTMInternational,2010
    [12] ASTM Standard E1382-10, Standard Test Methods for Determining Average Grain Size UsingSemiautomatic and Automatic Image Analysis[S], ASTM International,2010
    [13]宋传宝,金嘉瑜,刘志颖,郭培亮.300MW汽轮机低压转子晶粒细化与均匀化的热处理工艺方法研究.大型铸锻件.1998,82(4):34-37
    [14]景勤,牟军,康大韬.高淬透性钢的组织遗传及其消除.钢铁.1998,33(7):41-43
    [15] K. Werber,何志勇.锻件中的粗晶问题.大型铸锻件.1987,(3):63-69
    [1]刘庄,吴肇基,吴景之,张毅.热处理过程的数值模拟.北京:科学出版社,1996
    [2]康大韬,叶国斌.大型锻件材料及热处理.北京:龙门书局,1998
    [3]潘健生,胡明娟.热处理工艺学.北京:高等教育出版社,2009
    [4]杨世铭.传热学基础.第2版.北京:高等教育出版社,2003
    [1] GB/T228-2002,金属材料室温拉伸试验方法[S],国家标准出版社,2002
    [2] GB/T229-2007,金属材料夏比摆锤冲击试验方法[S],国家标准出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700