用户名: 密码: 验证码:
海底钴结壳采矿车路径规划主要技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底钴结壳是一种生长在水深500-3000m海底壳状物,它富含钴、铂等稀贵金属,还含有锰、镍、铁、铜等金属,是一种重要的矿产资源。随着陆地资源的日趋枯竭,深海钻结壳作为一种极具商业开采价值的海生矿产资源,获得了美国、德国、日本、俄罗斯等西方国家的重视。随着面向钻结壳勘探开采研究工作的日渐深入,部分国家已经步入试开采阶段。与西方发达国家相比,我国对钴结壳的勘探开采研究工作起步较晚。为维护我国的海洋权益,开辟我国新的矿产资源来源,面对国际社会对海洋资源争夺的形势,有必要开展钴结壳的探测采集技术与装备研究。
     本文在国务院大洋专项的支持下,是“钴结壳采集模型机关键技术及装备研究”项目的一项重要内容。作者在查阅国内外大量相关文献的基础上,对海底采矿车路径规划问题相关的海底矿区环境建模问题、海底大尺度遍历路径规划问题、海底采矿车静态路径规划问题和海底采矿车动态路径规划问题进行了深入并系统的研究。主要的研究成果如下:
     1)对高度非结构化,含不同类型底质的海底环境,提出了一种针对不同类底质的环境建模方法。利用先验的含底质类属性的DEM数据,提取地形几何特征,得到了海底环境四维混合属性数据;通过模糊推理的方法,获得不同类底质地形的通行性指数;并通过设置综合通行性代价函数,对不同底质地形的通行性进行有效整合,得到了环境可通行性地图。为路径规划研究提供了模型基础,并通过实验验证了算法的有效性。
     2)提出一种矿区大尺度遍历路径规划方法。首先设置遍历路径规划的性能评价函数,通过对评价函数的计算,确定平坦地形往复式采集的方式;后用Boustrophedon方法对矿区环境进行子区域划分;为可采子域之间建立综合连通距离矩阵,将子域连接问题转化为TSP问题,通过蚁群算法求解,达到最大覆盖率的优化目标;对于非相邻可采子域之间的局部路径搜索问题,将其转化为SPP问题,通过Floyd算法求解,满足了最小重复率的要求;最后提出矿区大尺度遍历路径规划算法。通过仿真,验证了算法的可行性。
     3)提出基于改进蚁群算法的采矿车静态路径规划方法。首先指出遍历路径中存在连接路径和采集路径两种路径;之后本着实时性要求对基本蚁群算法进行改进,对环境模型膨化后,提出了采矿车静态路径规划的改进蚁群算法,并证明了算法的收敛性;依据两种路径的不同要求,分别设置不同的启发函数和适应度函数,提出两种静态路径规划的改进蚁群算法;通过仿真,验证了两种算法的可行性。
     4)提出了基于改进滚动窗口法的采矿车动态路径规划方法。首先提出算法;之后按照A*算法的思想,确定子目标选取的方法;证明了算法的收敛性;并且证明了滚动规划的全局次优性,且行走优化系数γ的设置能够提高算法的优化性能;通过仿真验证了算法的可行性。
     5)对采矿车在线路径规划系统进行实车实验,通过实验过程及结果分析,证明该系统是可行的。
Deep-sea cobalt-rich crust is a kind of resource grown on seabed in500-3000m deep, which contain many rare metals such as cobalt, platinum, and also contain manganese, nickel, iron, copper and other metals. It is a kind of important mineral resource. With rapidly reducing of resources on land, as a kind of marine mineral resource with extremely commercial value to exploit, deep-sea cobalt-rich crust is catching attentions of USA, Germany, Japan, Russia and other western countries. Some countries have entered into trial mining stage with gradual deepening research on mining and exploration of cobalt-rich crust. Compared with western developed countries, In China, Research on cobalt-rich crust mining and exploration was carried out later. To safeguard the marine rights of China, and open up new mineral resource in our country, and face the situation of striving marine resources in international community, it is necessary to carry out research on cobalt-rich crust mining, exploration and equipment.
     This paper is supported by item DY105-03-02(Research on Key Technology and Equipment of Cobalt-rich Crust Mining Model Vehicle). After consulting a large quantity of related research papers and technique reports, the author is carried out thorough and systemic study on deep-sea world modeling problem, deep-sea large-scale traversal path planning problem, deep-sea static path planning problem and deep-sea dynamic path planning problem. Main research results are as follows:
     1) A kind of world modeling model with different types of bottom materials in highly unstructured seafloor environment was proposed. DEM data with bottom material class attributes detected in prophase was utilized, by extracting terraingeometrical characteristic, four-dimensional mixed attributes data of seafloor environment was obtained. Terrain trafficability index with different class was got by using the fuzzy reasoning method. By setting up comprehensive trafficability cost function, terrain trafficabilities in seafloor environment with different bottom materials were normalized, and then the world trafficability map was obtained. This model could provide a modeling foundation for study on path planning. The efficiency of the method was verified by and simulations experiments.
     2) A large scale traverse path planning method in mineral domain was put forward. Firstly traverse path planning performance evaluation function was set. Through the calculation of evaluation function, the way of reciprocating mining method was determined. The world model was divided into some subdomains by using Boustrophedon method. Comprehensive connection distance matrix for subdomains was set up, then the problem of connection among subdomains could be turned into TSP. After solved the problem through ACO, the optimal objective of maximum coverage was achieved. Transfered local path searching problem among no-adjacen subdomains into SPP, and then the SPP was sloved by Floyd algorithm, so that the minimum repeat rate requirement was met. Finally the large-scale mining traverse path planning algorithm was put forward. The simulations proved the feasibility of the presented algorithm.
     3) A improved ACO for mining vehicle static path planning was presented. Firstly, that traverse path is composed of two kinds of paths such as connecting path and mining path was pointed out. After expanding the world model, basic ACO was improved to meet mining real-time demand. The improved ACO was proposed and the convergence of the algorithm was proved. According to different demands of the two paths, different heuristic functions and fitness functions was set up, and then the two improved ACOs for static path planning were proposed. Through simulations, the feasibilities of the two algorithms were verified.
     4) A improved rolling window method for mining vehicle dynamic path planning was proposed. By using the ideology of A*algorithm, the method of choosing sub-aim points was determined. The convergence of the algorithm was proved. Then the global sub-optimality of rolling planning was proved, and that the optimal performance of the algorithm could be improved by y was also proved. The simulations show the feasibility of the algorithm.
     5) Experiments were carried out to test and verify mining vehicle online path planning system, and the system was proved feasible by analysis of the experiments results.
引文
[1]曹颖.加速国际海底区域资源开发产业化的战略思考[J].海洋开发,2003,(1):57-60.
    [2]Pontes M.T, Cavaleri L, Mollison D. Ocean waves:Energy resource assessment[J]. Marine Technology Society Journal,2002,36(4):42-51.
    [3]Bailey R, Oswalt D. Managing Oregon's Ocean Resources[C]. Proceedings of the Conference on California and the World Ocean. Reston:ASCE,1997.333-341.
    [4]简曲.我国已开始对大洋富钴结壳资源的开发研究[J].矿业研究与开发,1999,18(1):50-56.
    [5]Kim H.S. Deep ocean resource development program of Korea[C]. Proceedings of the ISOPE Ocean Mining Symposium. Golden:ISOPE,1995.1-3.
    [6]何清华,李爱强,邹湘伏.大洋富钴结壳调查进展及开采技术[J].金属矿山,2005,43(5):4-7.
    [7]Manheim F.T. Marine Cobalt Resources[J]. Science,1986,232(4750):600-608.
    [8]武光海,周怀阳,陈汉林.大洋富钻结壳研究现状与进展[J].高校地质学报,2001,7(4):379-389.
    [9]James H. Cobalt-rich ferromanganese crusts:global distribution, composition, origin and research activities[J]. Polymetallic massive sulphides and cobalt-rich ferromanganese crusts:status and prospects. ISA Technical study,(2):43-44,46-49.
    [10]简曲.中太平洋富钻结壳的研究[J].矿业研究与开发,1999,19(1):25-27.
    [11]李爱强,何清华,邹湘伏.富钴结壳开发动态[J].采矿技术,2005,5(2):13-38.
    [12]Loudat T.A, Zaiger K.K, Wiltshire J.C. Solution mining of Johnston Island manganese crusts:An economic evaluation[C]. Proceedings OCEAN'95-Challenges of Our Changing Global Environment. San Diego:MTS/IEEE,1995:713-722.
    [13]John E.H. Technology For Mining Cobalt Rich Manganese Crust From Seamounts[J]. John E. Halkyard & Company,1985:352-367.
    [14]Masuda Y, et al. Progress in the development of the continuous line bucket(CLB) mining on the 5th Takayou Sea Mount[C]. Proceedings of the 4th International Offshore and Polar Engineering Conference,1994:286-293.
    [15]Paul R.G. Development of metalliferous oxides from cobalt-rich manganese crust[J]. MTS Journal,1982,19(4):45-49.
    [16]Masuda Y. Crust mining plans of the Japan Resources Association[J]. Marine Mining,1991,10:95-101.
    [17]Chung J.S. Deep-ocean mining:Technologies for manganese nodules and crusts[J]. International Journal of Offshore and polar Engineering,1996,6(4): 244-254.
    [18]Yamazaki T. Distribution characteristics of the cobalt-rich manganese deposits for the miner design[C]. International Seminar on the Deep Seabed Mining Technology,18-20.
    [19]钟祥,牛京考.日本大洋多金属结核开采试验的进展[J].国外金属矿山,2000,3:33-38.
    [20]Yamazaki T, Park S.H, Shimada S, et al. Development of Technical and Economical Examination Method for Cobalt-Rich Manganese Crusts[C]. Proceedings of the International Offshore and Polar Engineering Conference,2002, 12:454-461.
    [21]梁平,石海林,崔波等.洋底富钴结壳的开采方法[J].金属矿山,2002,14(2):53-60.
    [22]陈圣源,何高文.DY95-7航次报告[R].北京:地质出版社,1999.
    [23]张国祯,梁德华等.DY95-7航次现场报告(内部)[R].1997.
    [24]张国祯,陈圣源等.DY95-9航次现场报告(内部)[R].1999.
    [25]陈圣源,何高文等.DY95-9航次报告[R].北京:地质出版社,2000.
    [26]国家海洋局科技公司,DY95-11航次现场总结报告,中国大洋矿产资源协会,1999.
    [27]中国大洋矿产资源勘察,DY105-11航次现场总结报告.中国大洋矿产资源研究开发协会,2000.
    [28]中国大洋矿产资源研究开发协会办公室.国际海底区域研究开发“十五”计划项目总体设计,2001.
    [29]John E.H. Technology for mining cobalt rich manganese crusts from seamounts[J]. Oceans (New York). New York:IEEE,1985:352-374.
    [30]倪建宇,周怀阳.中国多金属结核开辟区的深海环境[J].海洋地质与第四纪地质[J],2002(22).112-116.
    [31]宋连清.大洋多金属结核矿区沉积物土工性质[J].海洋学报,1999(21):221-226.
    [32]王明和,陈新民,简曲.大洋采矿集矿机行走技术的试验研究[J].采矿技术,1996(20):18-22.
    [33]Manheim F T. Marine Cobalt Resources[J]. Science,1986,232(4750):600-608.
    [34]James Hein. Cobalt-rich ferromanganese crusts:global distribution, composition, origin and research activities[J]. Polymetallic massive sulphides and cobalt-rich ferromanganese crusts:status and prospects. ISA Technical study, (2):43-44,46-49.
    [35]陈建林,马维林,武光海.中太平洋海山富钻结壳与基岩关系的研究[J].海洋学报,2004,26(4):71-79.
    [36]Yamazaki T, Sharma R. Distribution characteristics of Co-rich manganese deposits on a seamount in the central Pacific Ocean[J]. Marine Georesources and Geotechnology.1998,16(4):283-305.
    [37]Yamazaki T, Sharma R, Tsurusaki K. Influence of Distribution Characteristics and Associated Seabed Features on Exploitation of cobalt-Rich Manganese Deposits[C]. Proceeding of the ISOPE Ocean Mining symposium. Golden:ISOPE, 1995:119-124.
    [38]Yamazaki T, et al. Distribution characteristics of the cobal-rich manganese deposits for the miner design[C]. International Sea Mine on the Deep Sea Bed Mining Technology,1996:1-15.
    [39]Yamazaki T, Tsurusaki K, Handa K, et al. Ore grade evaluation of cobalt rich manganese crusts[C]. Proceedings of the Second International Offshore and Polar Engineering Conference. Golden:ISOPE,1992:483-489.
    [40]Yamazaki T, Chung Jin S, Tsurusaki K. Geotechnical parameters and distribution characteristics of the cobalt-rich manganese crust for the miner design[C]. International Journal of Offshore and Polar Engineering,1995,5(1):75-79.
    [41]Yamazaki T, Sharma R. Morphological features of co-rich manganese deposits and their relation to seabed slopes[J]. Marine Georesources and Geotechnology.2000, 18(1):43-76.
    [42]Chung. J.S, Tsurusaki. K. Advance in deep-ocean mining systems research[C]. Proc. of the International Offshore and Polar Engineering Conference. Apr,1994 v1.
    [43]Chung. J.S. Deep-Ocean Cobalt-rich Crust Mining Systems Concepts[C]. Proc of MTS 94, Washingto DC.Marine Tech Soc.1994:95-101.
    [44]陈峰,桂卫华,王随平等.深海底采矿机器车的研究现状[J].矿山机械.2005,33(9):6-10.
    [45]秦宣云.基于微地形重构的深海钴结壳最佳采集切削深度控制模型研究[博士论文].长沙:中南大学,2005.
    [46]罗柏文.摆动式超声单波束水下微地形探测与DEM数据实时处理研究[博士论文].长沙:中南大学,2009.
    [47]杨勃.深海钴结壳矿床地质识别关键技术研究[博士论文].长沙:中南大学,2010.
    [48]刘光华.海底自行式钴结壳采矿车自主定位系统研究[硕士论文].长沙:中南大学,2006.
    [49]Laubach S L, Burdick J, Matthies L. An Autonomous Path Planner Implemented on The Rocky 7 Prototype Microrover[C]//Proc. IEEE Intern. Conf. on Robotics and Automation, IEEE,1998,1:292-297.
    [50]Simmons R, Krotkov E, Chrisman L, et al. Experience with Rover Navigation for Lunar-like Terrains[C]//Proc. IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems (IROS), Pittsburgh:IEEE,1995:441-446.
    [51]Singh S, Simmons R, Smith T, et al. Recent Progress in Local and Global Traversability for Planetary Rovers[C]//Proc IEEE Intern. Conf. on Robotics and Automation, San Francisco:IEEE,2000:1194-1200.
    [52]Seraji H. Traversability Index:4 New Concept for Planetary Rovers[C]//Proc. IEEE Intern. Conf. on Robotics and Automation, Detroit:IEEE,1999,3:2006-2013
    [53]Seraji H. Fuzzy Traversability Index:A New Concept for Terrain-based Navigation [J]. Journal of Robotic Systems (S0741-2223).2000,17(2):75-91.
    [54]Shirkhodaie A, Amrani R, Tunstel E. Soft Computing for Visual Terrain Perception and Traversability Assessment by Planetary Robotic Systems[C]//Proc. 2005 IEEE Intern. Conf. on Systems. Man and Cybernetics, IEEE,2005,2: 1848-1855.
    [55]Gennery D. Traversability Analysis and Path Planning for A Planetary Rover[J]. Autonomous Robots (S0929-5593).1999,6:131-146
    [56]徐璐,曹亮,居鹤华,陈阳舟.基于三维通行性的月球车自主导航[J].系统仿真学报.2007,19(2):2852-2856.
    [57]史美萍,吴军,李焱,贺汉根.面向月球车路径规划的多约束环境建模方法[J].2006,28(5):104-108.
    [58]刘华军,陆建峰,杨静宇.基于相对特征的越野地形可通行性分析[J].数据采集与处理.2006,21(1):58-63.
    [59]Sylvia C Wong, Bruce A MacDonald. A topological coverage algorithm for mobile robots[C]. Proc of the 2003 IEEE/RSJ Int Conf on Intelligent Robots and Systems. Las Vegas,2003:1685-1690.
    [60]Zheng X.M, Sonal J, Sven K, et al. Multi-robot forest coverage[C]. Proc of the IEEE Int Conf on Intelligent Robots and Systems. Edmonton,2005:343-350.
    [61]Enrique G, Mauricio A, Paula A, et al. BSA:A coverage algorithm[C]. Proc of the 2003 IEEE/RSJ Int Conf on Intelligent Robots and Systems. Las Vegas,2003: 1679-1684.
    [62]Howie C. Coverage for robotics-A survey of recent results[J]. Annals of Mathematics and Artificial Intelligence,2001,31(124):113-126.
    [63]Yoav G, Elon R. Spanning-tree based coverage of continuous areas by a mobile robot[C]. Proc of the IEEE Conf on Robotics and Automation. Seoul,2001: 1927-1933.
    [64]Dana R.Y, Albert M.B, Barrie B.W, et al. Fine-scale seafloor survey in rugged deep-ocean terrain with an autonomous robot[C]. IEEE Int Conf on Robotics and Automation. San Francisco,2000:1787-1792.
    [65]Ercan U.A, Howie C, Alf red A.R, et al. Morse decompositions for coverage tasks[J]. The Int J of Robotics Research,2002,21(4):331-344.
    [66]Grossberg S. Nonlinear neural networks:principles, mechanism, and architectures[J]. Neural Networks,1988,1(1):1749-1761.
    [67]Hodgkin A.L, Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerves[J]. Phys Lond,1952,117(4): 500-544.
    [68]Yang S.X, Luo C.M. A neural network approach to complete cover-age path planning[J]. Systems, Man and Cybernetics, Part B:IEEE Transactions,2004,34(1): 718-724.
    [69]Carvalho R.N, Vidal H, Vieira P. Complete coverage path planning and guidance for cleaning robots [A]. Proceedings of the IEEE International Symposium on Industrial Electronics[C].1997,2:677-682.
    [70]Qiu X.N, Song J.T, Zhang X.J, et al. Complete coverage path planning method for mobile robot in uncertain environments[A]. Intelligent Control and Automation, WCICA 2006[C].2006,2:8892-8896.
    [71]蔡自兴,崔益安.多机器人覆盖技术研究进展[J].控制与决策.2008,23(5):481-488.
    [72]李开生,张慧慧,费仁元,宗光华.具有遍历特性的移动机器人规划方法的研究[J].机器人.2000,2(6):486-492.
    [73]张赤斌,王兴松.基于蚁群算法的完全遍历路径规划研究[J].中国机械工程.2008,19(16):1945-1949.
    [74]谢斌,刘士荣,俞金寿.基于在线图搜索的移动机器人遍历运动规划[J].华东理工大学学报.2007,33(4):551-556.
    [75]邱雪娜,刘士荣,俞金寿.移动机器人的完全遍历路径规划:生物激励与启发式模板方法[J].模式识别与人工智能.2006,19(1):122-128.
    [76]邱雪娜,刘士荣,宋加涛.不确定动态环境下移动机器人的完全遍历路径规 划[J].机器人.2006,28(6):586-591.
    [77]LaValle S.M. Planning Algorithms [M]. University of Illinois,2004.
    [78]Barraquand J, Latombe J.C. A monte-carlo algorithm for path planning with many degrees of freedom[A]. IEEE Int Conf Robot & Automation[C].1990. 1712-1717.
    [79]Orlin J. Network Flows[M]. Prentice Hall, Upper Saddle River, New Jersey, 1993.
    [80]Papadatos A. Research on Motion Planning of Autonomous Mobile Robot[M]. Master Thesis, Naval Postgraduate School,1996.
    [81]Stentz A. The focussed D* algorithm for real-time replanning[A]. Proceedings of the International Joint Conference on Artificial Intelligence [C]. August 1995.
    [82]张钹,张铃.人工智能及其应用丛书:问题求解理论及应用[M].北京:清华大学出版社,1990.204-297.
    [83]吴峰光,奚宏生.一种新的基于切线的路径规划方法[J].机器人,2004,26(3):193-197.
    [84]朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136.
    [85]王随平,朱燕春.基于GAAA算法的深海集矿车的最优路径规划[J].计算机测量与控制.2008,16(1):103-106.
    [86]Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[C]. Proceedings of the First European Conference on Artificial Life, Paris, France,1991.
    [87]Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents[C]. IEEE Transactions on Systems, Man and Cybernetics, Part B, 1996,26(1):29-41.
    [88]Dorigo M, Di Caro G. Ant colony optimization:a new meta-heuristic[C]. The Congress on Evolutionary Computation, Washington, DC,1999.
    [89]Dorigo M, Gambardella L.M. A Cooperative Learning Approach to the Traveling[C] Salesman Problem. IEEE Transactions on Evolutionary Computation, 1997,1(1):53-66.
    [90]Dorigo M, Gambardella L.M. Ant colonies for the travelling salesman problem[J]. Bio-systems,1997,43(2):73-81.
    [91]Colorni A, Dorigo M, Maniezzo V, and Trubian M. Ant system for job-shop scheduling[J]. Belgian Journal of Operations Research, Statistics and Computer Science (JORBEL),1994,34:39-53.
    [92]Gerke M. Genetic Path Planning for Mobile Robots[C]. Proc of American control conference. San Diego, CA, USA,1999:596-601.
    [93]Nelson H.C, Yung C.Y. An Intelligent Mobile Vehicle Navigator Based on Fuzzy Logic and Reinforcement Learning[J]. IEEE Trans on Sys Man and Cybern. Part B: Cyberneics,1999,29(2):314-320.
    [94]Jang D. Neural Networks in Mobile Robot Motion[J]. International Journal of Advanced Robotic Systems,2004,1(1):15-22.
    [95]Kastella K. Aircraft Route Optimization Using Adaptive Simulated Annealing [R].NA ECON,1991.
    [96]Fukuda T, Mori K, Tsukiyama M. Parallel search for multi-modal function optimization with diversity and learning of immune algorithm[C]//Dasgupta D. Artificial Immune Systems and Their Applications. Heidelberg, Springer-Verlag,1999: 210-220.
    [97]Mallot H.A. Spatial cognition:behavioral competences neural machanisms and evolutionary scaling[J]. Kognitions wis-senschaft,1999,8(1):40-48.
    [98]Arkin R.C. Behavior-based robotics[M]. London:The MIT Press,1998.
    [99]杨敬辉,洪炳镕,朴松昊.基于遗传模糊算法的机器人局部避障规划[J].哈尔滨工业大学学报,2004,36(7):946-948.
    [100]苏治宝,陆际联.用模糊逻辑法对移动机器人进行路径规划的研究[J].北京理工大学学报,2003,23(6):290-294.
    [101]范红.基于进化神经网络的移动机器人免碰路径规划方法[J].仪器仪表学报,2006,27(6):822-824.
    [102]梁毓明,徐立鸿.基于改进模拟退火混合算法的移动机器人全局路径规划[J].控制与决策.2010,25(2):237-241.
    [103]王孙安,庄健.移动机器人路径发现与规划的免疫算法[J].系统仿真学报,2002,14(8):995-997.
    [104]付宜利,靳保,王树国,曹政才.未知环境下基于行为的机器人模糊路径规划方法[J].机械工程学报.2006,42(5):120-125.
    [105]张菁,王立权,张铭钧.基于模糊决策法的水下机器人路径规划方法[J].哈尔滨工程大学学报.2001,22(7):49-55.
    [106]刘海滢,王随平,桂卫华.基于模糊神经网络的深海集矿机路径规划[J].控制工程.2004,11(4):317-320.
    [107]王随平,熊光辉.深海履带机器车的实时导航和避障[J].中南大学学报.2007,38(1):128-132.
    [108]李鹏英,冯雅丽,张文明,杨春晖.基于GA-BP神经网络的深海集矿机避障系统[J].中南大学学报.2010,41(4):1374-1378.
    [109]席裕庚,张纯刚.一类动态不确定环境下机器人的滚动路径规划[J].自动化学报.2002,28(2):161-174.
    [110]Zhang C.G, Xi Y.G. A Real Time Path Planning Method for Mobile Robot Avoiding Oscillation and Dead Circulation[J]. ACTA AUTOMATICA SINICA,2003, 29(2):197-205.
    [111]Zhang C.G, Xi Y.G. Robot path planning in globally unkown environments based on rolling window[J]. Science in China(E).2001,44(2):131-139.
    [112]Zhang C.G, Xi Y.G. Sub-optimality analysis of mobile robot rolling path planning [J]. Science in China(E).2003,46(2):116-125.
    [113]Zhang C.G, Xi Y.G. Robot Rolling Path Planning Based on Locally Detected Information [J]. ACTA AUTOMATICA SINICA,2003,29(1):38-44.
    [114]Nilsson N.J. A Mobile Automaton:An Application of Artificial Intelligence Techniques[C]. Proe.1st Int. Joint Conf. on Artificial Intelligence, Washington S.C: 509-520.
    [115]Pere. Automatic Planning of Manipulator Movements[J]. IEEE Trans on Sys Man & Cyb.1981,11(11):681-698.
    [116]Belkhouche F. Cooperative Autonomous Robots. PhD. Dissertation, Tulane University, March 28,2005
    [117]戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202.
    [118]Liu Y.H. Arimoto S. Computation of the tangent graph of polygonal obstacles by moving-lineprocessing[J]. IEEE Transaction on Robotics and Automation,1994, 10(6):823-830.
    [119]Choset H, Burdick J. Sensor based planning. Ⅰ. The generalized Voronoi graph [C]. IEEE International Conference on Robotics and Automation, Volume:1995: 1643-1648.
    [120]Canny J.F. A Voronoi method for the piano movers problem[C]. IEEE International Conference on Robotics and Automation.1985:530-535.
    [121]Leal J. Stochastic Environment Representation[doctoral dissertation]. Mechanical and Mechatronic Engineering, The University of Sydney 2003.
    [122]Elfes A. Using Occupancy Grids for Mobile Robot Perception and Navigation [J]. Computer,22(6),1989:46-57.
    [123]Parsons D, Canny J.F. A motion planner for multiple mobile robots[C]. IEEE International Conference on Robotics and Automation.1990:8-13.
    [124]Chen D.Z, Szczerba R.J. Uhran J.J. A framed-quadtree approach for determining Euclidean shortest paths in a 2-D environment[J]. IEEE Transactions on Robotics and Automation,1997,13(5):668-681.
    [125]Moravec H. Sensor Fusion in Certainty Grids for Mobile Robots[J]. Sensor and Systems for Robotics,1989:253-276.
    [126]Martin M.C, Moravec H. Robot Evidence Grids, in tech. CMU-RI-TR-96-06, Robotics Institute, Carnegie Mellon University,1996.
    [127]Kavraki L, Latombe J. Randomized Preprocessing of Configuration Space for Fast Path Planning[C]. IEEE International Conference on Robotics and Automation. 1994:2138-2139.
    [128]Hsu D, Latombe J, Kurniawati H. On the Probabilistic Foundations of Probabilistic Roadmap Planning[C].12th Int:Symp. on Robotics Research,2005: 627-643.
    [129]Chen H.L, Hsu D, Latombe J.C,et al. Multi-Level Free-Space Dilation for Sampling Narrow Passages in PRM Planning[C]. IEEE International Conference on Robotics and Automation (ICRA),2006:1255-1260.
    [130]Saha M, Latombe J. Finding Narrow Passages with Probabilistic Roadmaps: The Small Step Retraction Method[C]. IEEE/RSJ Conf. on Intelligent Robots and Systems,2005:301-319.
    [131]Geraerts R, Overmans M. A comparative study of probabilistic roadmap planners[C]. In Workshop on the Algorithmic Foundations of Robotics,2002:43-57 [132] Brooks R. A New Approaches to Robotics[J]. Science,253(5025),1991: 1227-1232.
    [133]Brooks R. A Robust Layered Control System for A Mobile Robot[J]. IEEE Journal of Robotics and Automation, IEEE,1986.
    [134]Khatib O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots[J]. The International Journal of Robotics Research,1986,5(1):90-98
    [135]汤国安,刘学军.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [136]刘华军.面向智能车辆的道路环境理解技术研究[博士论文].南京:南京理工大学,2006.
    [137]Folk R L.碎屑沉积物的分类及其命名在新泽西的应用[J].海洋地质动态,2007,23(1):31-34.
    [138]汤兵勇,路林吉,王文杰.模糊控制理论与应用技术[M].北京:清华大学出版社.2002.
    [139]顾嘉俊.移动机器人在非平坦地形上的自主导航研究[博士学位论文].上 海:上海交通大学.2010.
    [140]王俭,赵鹤鸣,肖金球.基于区域优化分割的机器人全覆盖路径规划[J].计算机工程与应用.2006,22:59-62.
    [141]Latombe J.C. Robot Motion Planning[M]. Boston, MA:Kluwer Academic Publisher,1991.
    [142]Choset H, Lee J.Y. Sensor-based Const ruction of Retract-like Structure for a Planar Rod Robot[J]. IEEE Transactions on Robotics and Automation,2001,17(4): 435-449.
    [143]Choset H, Pignon P. Coverage Path Planning:the Boustrophedon Cellular Decomosition[C]. In:Proceedings of the International Conference on Field and Service Robotics,1997.
    [144]Huang W.H. The Minimal Sum of Altitudes Decomposition for Coverage Algorithms[R]. Rensselaer Polytechnic Institute Computer Science Technical Report 0023,2000.
    [145]Huang W.H. Optimal Line-sweep-based Decompositions for Coverage Algorithms[C]. Proceedings of the 2001 IEEE International Conference on Robotics and Automation,2001:21-26.
    [146]Yao Z.Y. Finding efficient robot path for the complete coverage of a known space[A]. Intelligent Robots and Systems,2006 IEEE/RSJ International Conference [C].2006:3369-3374.
    [147]Kristen S, Pamela J.H, David W. Autonomy and common ground in human robot interaction:a field study[J]. Intelligent Systems,2007,22(2):42-50.
    [148]Petres C, Pailhas Y, Patron P, et al. Path planning for autonomous underwater vehicles[J]. Robotics,2007,23(2):331-341.
    [149]Qiu X.N, Song J.T, Zhang X.J, et al. Complete coverage path planning method for mobile robot in uncertain environments [A]. Intelligent Control and Automation, WCICA 2006[C].2006,2:8892-8896.
    [150]卜月华.图论及其应用[M].南京:东南大学出版社.2007.
    [151]Subramanian D, Druschel P, and Chen J. Ants and reinforcement learning:A case study in routing in dynamic networks[A]. In Proceedings of IJCAI-97, International Joint Conference on Artificial Intelligence, Morgan Kaufmann,1997. 832-838.
    [152]Costa D and Hertz A. Ants can color graphs[J]. Journal of the Operational Research Society,1997,48:295-305.
    [153]Bullnheimer B, Hart1 R.F, and Strauss C. Applying the ant system to the vehicle routing problem[M]. IN I. H. Osman S. Vo, S. Martello and C. Roucairol, editors, Meta-Heuristics:Advances and Trends in Local Search Paradigms for Optimization, Kluwer Academics,1998.109-120.
    [154]Gambardella L.M, Taillard E.D, and Dorigo M. Ant colonies for the QAP. Journal of the Operational Research Society[J] (JORS),1999,50(2):167-176.
    [155]Hackwood S, Beni G. Self-organization of Sensors for Swarm Intelligence[C]. In: IEEE International conference on Robotics and Automation. Piscataway, NJ:IEEE Press,1992:819-829.
    [156]Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence:From Natural to Artificial Systems[M]. New York:Oxford University Press,1999.
    [157]Kennedy J, Eberhart R.C. Swarm Intelligence[M]. San Francisco:Morgan Kaufmann division of Academic Press,2001.
    [158]樊晓平,罗熊,易晟等.复杂环境下基于蚁群算法的路径规划[J].控制与决策,2004,19(2):166-169.
    [159]岳富占,崔平远,崔祜涛.基于改进蚁群算法的星球探测机器人路径规划技术[J].控制与决策,2006,21(12):1437-1440.
    [160]张纯哲,林巨广等.凹形障碍全局路径规划的双蚁群完全交叉算法[J].农业机械学报,2008,39(7):149-152.
    [161]王沛栋,冯祖洪,黄新.一种改进的机器人路径规划蚁群算法[J].机器人,2008,30(6):554-560.
    [162]齐勇,魏志强,殷波等.增强蚁群算法的机器人最优路径规划.哈尔滨工业大学学报[J].2009,41(3):130-134.
    [163]陈雄,袁杨.一种机器人路径规划的蚁群算法[J].系统工程与电子技术.2008,30(5):952-955.
    [164]Hoar R, Penner J, Jacob C. Ant trails-An example for robots to follow[A]. Proc of the 2002 Congress on Evolutionary Computation[C]. Honolulu,2002.1910-1915.
    [165]金飞虎,洪炳熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划[J].机器人,2002,24(6):526-529.
    [166]胡小兵,黄席樾.基于蚁群算法的三维空间机器人路径规划[J].重庆大学学报,2004,27(8):132-135.
    [167]刘利强,戴运桃,王丽华等.基于蚁群算法的水下潜器全局路径规划技术研究[J].系统仿真学报,2007,19(18):4175-4178.
    [168]刘利强,于飞,戴运桃.基于蚁群算法的水下潜器三维空间路径规划[J].系统仿真学报,2008,20(14):3712-3716.
    [169]朱庆保.动态复杂环境下的机器人路径规划蚂蚁预测算法[J].计算机学 报,2005,28(11):1898-1906.
    [170]朱庆保.全局未知环境下多机器人运动蚂蚁导航算法[J].软件学报,2005,17(9):1890-1898.
    [171]朱庆保.复杂环境下机器人路径规划蚂蚁算法[J].自动化学报,2006,32(4):586-593.
    [172]段海滨,王道波,朱家强等.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1327.
    [173]Thomas S, Holger H.H. MAX-MIN ant system[J]. Future Generation Computer Systems,2000,16(8):889-914.
    [174]覃刚力,杨家本.自适应调整信息素的蚁群算法[J].信息与控制,2002,31(3):198-201.
    [175]王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33.
    [176]Reynolds C.W Flocks. Herds and Schools:A Distributed Behavioral Model[J]. Computer Graphics,1987; 21(4):25-34.
    [177]Kennedy J, Eberhart R.C. Particle Swarm Optimization[C]. In:IEEE International Conference on Neural Networks, IV Piscataway, NJ:IEEE Service Center,1995:1942-1948.
    [178]闵克学,葛宏伟,张毅,梁艳春.基于蚁群和粒子群优化的混合算法求解TSP问题[J].吉林大学学报.2006,24(4):402-405.
    [179]邓高峰,张雪萍,刘彦萍.一种障碍环境下机器人路径规划的粒子群算法[J].控制理论与应用.2009,26(8):879-884.
    [180]Chunxue Shi, Yingyong Bu and Jianghui Liu. Mobile robot path planning in three-dimensional environment based on ACO-PSO hybrid algorithm[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM2008:252-256.
    [181]Chunxue Shi, Yingyong Bu, Ziguang Li. Path planning for deep sea mining robot based on ACO-PSO hybrid algorithm[C]. International Conference on Intelligent Computation Technology and Automation, ICICTA 2008, v1,125-129.
    [182]段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005.
    [183]史春雪,卜英勇,罗柏文等.基于蚁群算法深海采矿机器人工作路径规划[J].海洋工程.2008,26(2):119-123.
    [184]Nilsson N.J. Introduction to artificial intelligence principles[J]. Rivista di Informatica,1981,11(1):13-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700