用户名: 密码: 验证码:
硫化矿石堆自热过程的非线性及数值仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化矿石自燃火灾会诱发一系列的安全与环境问题,同时给矿山企业带来巨大的经济损失。迄今为止,国内外学者对硫化矿石的自燃机理、自燃倾向性评价、预防及控制技术等领域进行了大量研究,但由于硫化矿石堆自热过程的高复杂性和强非线性,使问题未能得到根本解决。随着浅层资源的逐渐匮乏,我国金属矿山逐步进入深部开采阶段。采深增大导致开采过程中面临的高地温问题变得愈发严重,地温的升高将增大矿石自燃的可能性。因此,对硫化矿石堆氧化自热过程的非线性及渗流场和温度场的数值仿真展开研究,是硫化矿石自燃防治研究的一个发展趋势,具有重大的理论意义和实际应用价值。
     论文在检索国内外研究成果并进行系统分析的基础上,采用理论分析、室内模拟实验以及数值模拟相结合的研究方法对硫化矿石堆的动态自热过程、硫化矿石堆氧化自热过程的非线性特征以及渗流场和温度场的变化规律等进行了系统研究。论文的主要工作和取得的成果如下:
     (1)在实验室内对硫化矿石堆动态自热过程进行了模拟,揭示了矿石堆温度与时间的关系、矿石堆温度离散程度与时间的关系、平均升温率与深度的关系以及矿石堆对环境温度变化响应的空间差异,基于实测温度对矿石堆温度场进行了二维重构,探明了矿石堆内自热层的范围。
     (2)将小波技术与近似熵方法引入到矿石堆自热过程的研究上来,提出室内实测温度序列的低频成分反映的是梯度升温对矿石堆温度变化的影响,而自热过程的复杂信息则蕴藏在高频成分中这一概念,分析了矿石堆近似熵分布规律,同时对不同区域的自热过程进行了近似熵检测,从动力学角度证实了矿石堆自热层的存在。
     (3)采用混沌动力学方法对矿石堆自热过程进行了分析,探明了室内实验采用的梯度升温方式在一定程度上减弱了矿石堆自热过程的混沌程度,确定了矿石堆硫化物含量、氧气浓度、矿石堆温度、氧化反应速度和放热强度作为描述矿石堆自热动力学性态的5个变量,揭示了关联维数和最大Lyapunov指数与自热效果存在正相关性。
     (4)提出了将实测矿石堆温度序列拆分为趋势项、混沌项和随机项的概念。根据现场试验硫化矿石堆的自热升温特征建立了矿石堆温度的趋势预测模型,在对趋势预测结果的差值序列进行混沌识别之后,采用优选出的加权一阶局域法建立混沌预测模型,再以二者叠加构成趋势—混沌组合预测模型,最后应用室内实测温度数据对预测模型进行了检验。结果表明,建立的趋势—混沌组合预测模型具有很高的预测精度,能够很好地适用于硫化矿石堆自燃早期预测。
     (5)采用数字图像处理和有限元技术相结合的方法,进行了矿石堆孔隙内空气渗流的数值仿真研究,探明了不同粒径下空气流速和压力在孔隙内的分布规律,定性解释了矿石堆内存在自热层的原因。发展了有效导热系数法在矿石堆温度场数值仿真中的应用,分析了矿石堆温度场的变化规律,计算得出矿石堆自燃起始时间,探明了矿石堆自燃区域随时间的变化特征及矿石堆截面积、表面空气流速以及矿石堆高度对矿石堆温度场的影响规律。
Spontaneous combustion of sulfide ores can induce a series of safety and environment problems, and cause great economic loss in mining enterprises. Nowadays, the mechanism of spontaneous combustion, evaluation of spontaneous combustion tendency, prevention and control technology were carefully analyzed by many scholars over the world. However, the problem was not solved ultimately because of the high complexity and strong nonlinearity of self-heating process of sulfide ore heap. With the increasing scarcity of resources in shallow layer, metal mines in China enter the stage of deep mining gradually. The mining depth increasing can lead the high ground temperature problem during mining process to become more serious than before. Ground temperature rising will increase the possibility of spontaneous combustion of sulfide ores.
     Therefore, research on nonlinearity of the oxidation and self-heating process, and numerical simulation of seepage field and temperature field is a trend in spontaneous combustion prevention research of sulfide ores, which has great theoretical significance and practical value.
     On the basis of reviewing the previous papers at home and abroad, research methods combining the theoretical analysis, laboratory simulation and numerical simulation were used to systematically analyze the dynamic self-heating process and its nonlinear characteristics, and the variation of seepage field and temperature field. The main works and achievements of the thesis are as follows:
     (1) The dynamic self-heating process of sulfide ore heap was simulated in the laboratory. The relationship between temperature and time, relationship between temperature discrete degree and time, relationship between average temperature rise rate and depth, and spatial difference of the ore heap responding to ambient temperature changes were revealed. The temperature field was two dimensional reconstructed based on measured temperature, and the range of the self-heating layer in the ore heap was proved.
     (2) The wavelet technology and approximate entropy method were used to analyze the self-heating process of sulfide ore heap. The concept that low frequency component of measured temperature series in the laboratory reflects the effects of gradient increased temperature to the ore heap and the complicated information of self-heating process is embedded in the high frequency component was proposed. The approximate entropy distribution of the ore heap was analyzed and the self-heating process of different regions was detected based on approximate entropy method, which confirms the existence of self-heating layer from dynamics view.
     (3) The self-heating process was analyzed based on chaotic dynamics methods. The results indicate that gradient increased temperature weakens chaotic degree of self-heating process to some extent. The sulfide content, oxygen concentration, temperature, oxidation rate and heat liberation intensity of the ore heap were determined as the5variables to describe the self-heating process. Correlation dimension and maximum Lyapunov exponent positively correlated with self-heating effect were proved.
     (4) The concept that measured temperature series of the ore heap can be divided into three parts:trend item, chaos item and stochastic item was proposed. The trend model for temperature prediction was established according to the temperature rising characteristics of sulfide ore heap from field test. The chaos prediction model for difference series of trend prediction was established by means of the adding-weight one-rank local-region method through optimization after chaotic identification. Then, the trend and chaos prediction model was established by the superposition of these two models and it was tested based on measured temperature data in the laboratory. The results indicate that the trend and chaos prediction model is very precise. As a result, it can be used to predict spontaneous combustion of sulfide ore heap during early stage.
     (5) Coupled with digital image processing technology and finite element method, the air seepage field in pores of the ore heap was analyzed. The distribution of air velocity and pressure in pores was proved at different granularity, which explains the reason for self-heating layer existing in the ore heap qualitatively. The effective thermal conductivity method applied to the numerical simulation for temperature field of the ore heap was developed. The variation of temperature field was analyzed and the starting time of spontaneous combustion was calculated. The change characteristics of spontaneous combustion region varying with time, and the variation of temperature field affected by sectional area, air velocity and the height of the ore heap were proved.
引文
[1]谷树忠,姚予龙,沈镭,等.资源安全及其基本属性与研究框架[J].自然资源学报,2002,17(3):280-285
    [2]周淑敏。中国国土资源安全的地位和评价[J].石家庄经济学院学报,2005,28(5):608-611
    [3]于润沧,唐建,李有余.铜资源的危机与对策[J].中国有色工业,2002,(8):10-13
    [4]孙振家.中国矿山地质找矿与矿产经济[M].长沙:中南大学出版社,2000
    [5]古德生.对西部矿产资源开发问题的思考[J].矿业研究与开发,2001,21(1):1-3
    [6]于光.循环经济—矿产资源可持续发展的必然选择[J].当代经济管理,2005,27(5):92-96
    [7]李古寅,吴小飞.中国矿产资源现状分析及对策[J].中国煤炭地质,2008,20(11):84-87
    [8]孙成林.浅谈我国有色金属矿产资源综合利用现状[J]。有色矿冶,2005,2l(增刊):170-171
    [9]谭军.未来15年我国矿产资源供应缺口将进一步加大[J].世界有色金属,2007,4(3):61
    [10]赵雪娥,蒋军成,王若菌.含硫油品储罐自燃机理及预防技术研究[J].油气储运,2006,25(3):51-54
    [11]吴超,孟廷让.高硫矿井内因火灾防治理论与技术[M].北京:冶金工业出版社,1995
    [12]李孜军.硫化矿石自燃机理及其预防关键技术研究[D].长沙:中南大学,2007
    [13]潘伟,吴超,刘辉,等.硫化矿石堆自热实验模拟和热场数值仿真[J].中国有色金属学报,2010,20(1):149-155
    [14]毛丹,陈沅江.硫化矿石堆氧化自燃全过程特征综述与分析[J].化工矿物与加工,2008,(1):34-38
    [15]刘辉,吴超,潘伟,等.硫化矿石堆自燃早期指标优选及预测方法[J].科技导报,2009,27(3):46-50
    [16]WU Chao, MENG Ting-rang. Experimental investigation on chemical thermodynamic behavior of sulfide ores during spontaneous combustion[J]. West-China Exploration Engineering (English Edition),1995,7(4):57-65
    [17]吴超,孟廷让,王坪龙,等.水对硫化矿石氧化速度的影响研究[J].西部探矿工程,1994,6(2):59-62
    [18]MENG Ting-rang, WU Chao, WANG Ping-long. Study of mine spontaneous combustion of sulphide ores [A] In:Ragula B ed. Proceedings of the US Mine Ventilation Symposium [C]. Salt Lake City, UT:SME,1993:203-207.
    [19]蔡美芳,党志.磁黄铁矿氧化机理及酸性矿山废水防治的研究进展[J].环境污染与防治,2006,28(1):58-61
    [20]杨娟娟.基于神经网络的含硫矿石自燃预测技术研究[D].西安:西安科技大学,2008
    [21]WU Chao,, Li Zi-jun. A simple method for predicting the spontaneous combustion potential of sulfide ores at ambient. Transaction of Mining and Metallurgy Institute, Section A, 2005,114 (2):125-128
    [22]李孜军,吴超,周勃.硫化矿石氧化性的实验室综合评判[J].铜业工程,2003,(1):40-42
    [23]李孜军.炸药自爆的危险性实验评价[J].铜业工程,2002,(1):24-27
    [24]WU Chao, LI Zi-jun, ZHOU Bo. Correlation among factors of sulfide ores in oxidation process at ambient temperature[J]. Transactions of Nonferrous Metals Society of China (English Edition),2004,14(1):175-179
    [25]WU Chao, LI Zi-jun, ZHOU Bo. Coincidence on relevant substances of sulfide ores in the oxidation process at ambient temperature and a new method for predicting fire [J]. Transactions of Nonferrous Metals Society of China (English Edition),2003,13(6):633-638.
    [26]WU Chao, Xia Chang-nian, Gour Sen. Study of a risk assessment system to evaluate spontaneous combustion in sulfide ore mining.31st International Conference of Safety in Mines Research Institutes, Brisbane, Queensland, Australia,2-5 October,2005
    [27]阳富强,吴超,吴国珉,等.硫化矿石堆自燃预测预报技术[J].中国安全科学学报,2007,17(5):90-95
    [28]吴世铨.硫化矿自燃和药包自爆的预防措施[J].云锡科技,1992,19(4):14-23
    [29]赵国彦,古德生,吴超.硫化矿床内因火灾综合防治措施研究[J].矿业研究与开发,2001,21(1):17-19
    [30]赵国彦,古德生,吴超.硫化矿床内因火灾灭火试验研究[J].中国矿业,2001,10(2):34-37
    [31]胡汉华.铜山铜矿采场防灭火试验研究[J].金属矿山,2001,(5):48-51
    [32]刘辉.硫化矿石自燃特性及井下火源探测技术研究[D].长沙:中南大学,2010
    [33]覃和醒.矿房矿石自燃治理措施的研究与应用[J].第六届全国采矿学术会议,1999,10(2):245-246
    [34]阳富强.硫化矿石堆自然预测预报技术研究[D].长沙:中南大学,2007
    [35]中国消防视频网[EB/OL]. http://119.cctv.com/news/35/1/200910/27-61720.html
    [36]李杰林.矿井自燃火灾烟气流动及热环境的数值模拟分析与评价[D].长沙:中南大学,2007
    [37]杨培章.国内外硫化矿床内因火灾的防治[J].化工矿物与加工,1982,(4):57-61
    [38]王省身,张国枢.矿井火灾防治[M].徐州:中国矿业大学出版社,1990
    [39]邓军,徐精彩,陈晓坤.煤自燃机理及预测理论研究进展[J].辽宁工程技术大学学报,2003,22(4):455-459
    [40]苏加德.矿井火灾防治技术的发展现状及趋势[J].鸡西大学学报,2005,5(1):52-53
    [41]秦书玉,赵书田,张永吉.煤矿井下内因火灾防治技术[M].沈阳:东北大学出版社,1993
    [42]罗海珠,梁运涛.煤自然发火预测预报技术的现状与展望.中国安全科学学报,2003,13(3):76-78
    [43]Sasaki Kyuro, Hiroshi, Otsuka, Kazuo. Spontaneous combustion of coal in the low temperature range application of exposure equivalent time of numerical analysis[J]. Journal of the Mining and Metallurgical Institute of Japan,1997,103(11):771-775
    [44]Saurabh B, Pradeep K. The effect of moisture condensation on the spontaneous combustibility of coal[J]. Fuel,1996,75(13):1523-1532
    [45]Ninteman D J. Spontaneous oxidation and combustion of sulfide ores in underground mines [R]. Information Circular 8775, USA:Bureau of Mines,1978,1-40
    [46]Crundwell F. The formation of biofilms of iron oxidising bacteria on pyrite[J]. Minerals Engineering,1996,9(10):1081
    [47]Sand W, Gerke T, Hallmann R, et al. Sulfur chemistry, biofilm and the indirect attack mechanism-a critical evaluation of bacterial leaching [J].Appl Microbiol Biotechnol,1995, (43):961
    [48]奥尔松G J.金属硫化矿物的生物氧化基本原理[J].国外金属矿选矿,2004,(12):34-38
    [49]仇勇海,陈白珍.金属硫化矿体自燃的电化学机理[J].中国有色金属学报,1995,5(4):1-4
    [50]周勃,吴超,李茂楠,等.硫化矿石氧化前后自燃倾向性的比较研究[J].中国矿业,1998,5(7):77-79
    [51]周勃,吴爱祥.金属矿山内因火灾综合因素预报法的应用[J].有色矿山,1999,(2):18-21
    [52]夏长念,吴超.采场硫化矿石爆堆自燃危险性评价研究[J].火灾科学,2005,15(2):106-110
    [53]宋学义,文艳.硫化矿岩自燃倾向性的研究[J].湖南冶金,1991,(3):10-15
    [54]李萍,叶威,张振华.硫化亚铁自然氧化倾向性的研究[J].燃烧科学与技术,2004,10(2):168-170
    [55]Zhou F B, Wang D M. Directory of recent testing methods for coals to spontaneous combustion[J]. Journal of Fire Sciences,2004,22(2):91-96
    [56]Pahlman J E, Reimers G W. Thermal gravimetric analysis of pyrite oxidation at low temperature [R]. Report of Investigations 9059, USA:Bureau of Mines,1986.1-15
    [57]Rosenblum F, Spira P. Evaluation of hazard from self-heating of sulfide rock [J]. CIM Bull, 1995,88(989):44-49
    [58]Miron Y, Ruhe T C, Watson R W. Reactivity of ANFO with pyrite containing weathering products [R]. Report of Investigation 8373, USA:Bureau of Mines,1979.1-24
    [59]孟廷让,吴超,谢永铜,等.高硫矿床开采中炸药自爆危险性及安全装药评价法研究[J].中南矿冶学院学报,1994,25(1):19-23
    [60]吴超.硫化矿床开采中炸药自爆事故树分析及其试验方法[J].矿冶工程,1995,15(1):17-20
    [61]刘剑,赵凤杰.升温速率对煤的自燃倾向性表征影响的研究[J].煤矿安全,2005,(5):4-6
    [62]陆伟,王德明,仲晓星.基于活化能的煤自燃倾向性研究[J].中国矿业大学学报,2006,35(2):201-205
    [63]NUGROHO Y S, MCINTOSHA C, GIBBS B M. Low-temperature oxidation of single and blended coals[J]. Fuel,2000, (97):1951-1961
    [64]陈文胜,刘剑,吴强.基于活化能指标的煤自燃倾向性及发火期研究[J].中国安全科学学报,2005,15(11):19-22
    [65]陆伟,王德明,周福宝.绝热氧化法研究煤的自燃特性[J].中国矿业大学学报,2005,34(2):213-217
    [66]Davis J D, Byrne J F. An adiabatic method for studying spontaneous heating of coal[J]. Journal of A m Ceram Soc,1924, (7):809-816
    [67]Beamis B B, Barakat M A. Spontaneous-combustion propensity of NewZealand coals under adiabatic conditions[J]. International Journal of Coal Geology,2001, (45):217-224
    [68]刘剑,赵凤杰.粒度对煤的自燃倾向性表征影响[J].辽宁工程技术大学学报,2006,25(1):1-3
    [69]万兵.硫化矿床自燃发火可能性的鉴别[J].世界采矿快报,1998,14(11):27-30
    [70]李济吾.硫化矿石氧化速度的实验测定研究[J].江西有色金属,1990,(2):54-58
    [71]贺兵红,吴超.硫化矿石自燃倾向性的实验室测定方法与应用[J].安全与环境工程,2006,13(1):92-95
    [72]朱挺廷.硫化矿床自燃倾向性的实验研究[J].金属矿山,1989(8):25-27
    [73]王少芬,方正.硫化矿阳极氧化的交流阻抗[J].中南大学学报(自然科学版),2006,37(2):274-279
    [74]黄富贵,王城.硫化矿氧化率测定问题的研究[J].冶金分析,1994,14(3):21-24
    [75]陈文胜,吴强.煤的自燃倾向性及自然发火期与活化能关系的探讨[J].煤矿安全,2005,36(12):53-55
    [76]占丰林,蔡美峰.高硫矿山高温采场的成因及危害与防治措施[J].矿业研究与开发,2006,26(1):71-73
    [77]钱柏青.铜山铜矿井下采场硫化矿石自燃的机理探讨及预防措施[J].有色金属,2005,57(3):99-102
    [78]蒋仲安,杜翠凤,何理,等.石灰凝胶阻化剂防灭火技术在高硫矿的应用研究[J].中国安全科学学报,2003,13(10):31-33
    [79]沈福尧.三次硫化矿石自燃火灾的分析及其预防对策[J].金属矿山,1994,(2):50-51
    [80]谢庆龙.铜坑矿细脉带矿体火灾防治及开采技术研究[J].采矿技术,2002,2(2):25-26
    [81]吴法春.新桥硫铁矿矿石自燃的原因及防灭火措施[J].矿业安全与环保,2002,29(3):55-56
    [82]邬长福.高硫金属矿床内因火灾及其灭火措施[J].矿业安全与环保,2002,29(2):21-22
    [83]黄跃军.高温高硫矿床矿石自燃性及防治技术研究[J].有色矿冶,2000,16(1):13-15
    [84]李孜军,吴超,李茂楠.阻化剂性能评价的氧化增重法研究[J].金属矿山,2000,(3):43-45
    [85]张英才.广东省云浮硫铁矿矿石自燃的原因与防治[J].化工矿产地质,1996:238
    [86]李济吾.某硫化矿矿石氧化自燃的调查及防止措施[J].江西冶金,1994,14(2):40-43
    [87]王琳玲,李均淑.钙镁矿物抑制硫化矿自燃机理的研究[J].矿业研究与开发,1993,13(3):48-52
    [88]廖明清.高硫矿火区开采中高温气浪的成因及伤亡事故的预防[J].湖南有色金属,1990,6(1):11-14
    [89]李济吾,宋学义.矿岩氧化自燃数学模型的研究[J].南方冶金学院学报,1990,11(1):7-17
    [90]WU Chao. Fault tree analysis of spontaneous combustion of sulphide ores and its risk assessment[J]. Journal of Central South University of Technology (English Edition),1995, 2(2):77-80
    [91]李明,吴超,李孜军.多因素耦合条件下硫化矿自燃神经网络动态预测模型研究[J].中国安全科学学报,2007,17(8):32-36
    [92]刘辉,吴超,崔燕,等.硫化矿石氧化性的分形表征[J].安全与环境学报,2009,9(3):113-116
    [93]金一庆,陈越.数值方法[M].北京:机械J:业出版社,2000
    [94]《现代应用数学手册》编委会.计算与数值分析卷[M].北京:清华大学出版社,2005
    [95]李珞铭,吴超,王立磊,等.流变—突变论在预防硫化矿自燃中的应用研究[J].中国安全科学学报,2008,18(2):81-86
    [96]胥永刚,李凌均,何正嘉.近似熵及其在机械设备故障诊断中的应用[J].信息与控制,2002,31(6):547-549
    [97]冯晓光.近似熵在往复式压缩机故障诊断中的研究应用[D].大连:大连理工大学,2006
    [98]林丽,赵德友.近似熵在声发射信号处理中的应用[J].振动与冲击,2008,27(2):99-102
    [99]Pincus S M. Approximate entropy as a measure of system complexity[J], Proceeding of the National Academy Sciences USA,1991,88(6):2297-2301
    [100]符玲,何正友,麦瑞坤,等.近似熵算法在电力系统故障信号分析中的应用[J].中国电机工程学报,2008,28(28):68-73
    [101]胡汉辉,杨洪,谭青,等.基于小波分析的风机故障诊断[J].中南大学学报(自然科学版),2007,38(6):1169-1173
    [102]邸新杰,李午中,自世武,等.金属磁记忆信号关联维数与应力关系[J].北京科技大学学报,2007,29(11):1101-1104
    [103]桑燕芳,王栋.水文序列小波分析中小波函数选择方法[J].水利学报,2008,39(3):295-300
    [104]王文圣,J‘晶,李跃清.水文小波分析[M].北京:化学工业出版社,2005
    [105]黄润生.混沌及其应用[M].武汉:武汉大学出版社,1999
    [106]R.L. Devancy. An Introduction to Chaotic Dynamical System[M]. New York:Westview Press,1992
    [107]D. Assaf, S. Gadbois. Definition of chaos[J]. Letter in American Mathematical Monthly, 1995,99:865
    [108]M. Henon. A two dimensional mapping with a strange attractor[J]. Comm. Math. Phys., 1976,50:69-77
    [109]T.Y. Li, J.A. Yorke. Period three implies chaos[J]. The American Mathematical Mothly, 1975,82 (10):985-992
    [110]R.M. May. Simple mathematical models with very complicated dynamics[J]. Nature,1976, 261:459-467
    [111]M.J. Feigenbaum. Quantitative universality for a class of nonlinear transformations[J]. Journal of Statistical Physics,1978,19:25-52
    [112]C. Nicolis, G. Nicolis. Is there a climatic attractor[J]. Nature,1984,311:529-532
    [113]Klaus Fraedrich. Estimating the dimension of weather and climate atractors[J]. Journal of the Atmospheric Science:1986,50(15):2549-2555
    [114]J. Kurths, H. Herzel. An attractor in a solar time series[J]. Physica D:1987,25:165-172
    [115]A. Hense. On the possible existence of a strange attractor for the Southern Oscillation[J]. Beitr. Phys. Atmos.:1987,60:34-47
    [116]I. Rodriguez-Iturbe, F.B. De Power, M.B. Sharifi, K.P. Georgakakos. Chaos in rainfall[J]. Water Resources Research:1989,25(7):1667-1675
    [117]F. Takens. Determing strange attractors in turbulence[J]. Lecture Notes in Math:1981,898: 361-381
    [118]N. H. Packard, J. P. Crutchfield, J. D. Farmer and R. S. Shaw. Geometry from a time series[J]. Physical Review Letters,1980,45(9):712-716
    [119]G. Chen, D. Lai. Feedback anticontrol of discrete chaos[J]. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering,1998,8:1585-1590
    [120]张雨.时间序列的混沌和符号分析及实践[M].长沙:国防科技大学出版社,2007
    [121]吕金虎,陆君安,陈十华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002
    [122]吴朝晖,危启正.用Matlab5.3求解洛伦兹方程[J].安徽师范大学学报(自然科学版),2002,25(4):335-338
    [123]林嘉宇,王跃科,黄芝平,等.语音信号相空间重构中时间延迟的选择-复自相关法[J].信号处理,1999,15(2):220-225
    [124]王海燕,卢山.非线性时间序列分析及其应用[M].北京:科学出版社,2006
    [125]施式亮,宋译,何利文,等.矿井掘进工作面瓦斯涌出混沌特性判别研究[J].煤炭学报,2006,31(6):701-705
    [126]Grassberger P, Procaccia I. Dimension and entropy of strange attractors from a fluctuating dynamic approach[J]. Physica,1984,13:34-54.
    [127]Schouten J C, et al. Maximum-likelihood estimation of the entropy of an attractor[J]. Phys. Rev. E,1994,49(1):126-129
    [128]Daw C S, et al. Chaos in thermal pulse combustion[J]. Chaos,1995,5(4):662-670
    [129]Michael T R, James J C, Carlo J D L. A practical method for calculating largest lyapunov exponents from small data sets[J]. Physica D,1993,65(1-2):117-134
    [130]蒋卫东,李夕兵,邱更生.基于最大Lyapunov指数分析的尾矿坝浸润线控制混沌方法[J].安全与环境学报,2003,3(5):16-20
    [131]林振山.非线性动力学与大气科学[M].南京:南京大学出版社,1993
    [132]许春明,吴超,陈沅江.硫化矿石堆自燃的灰色预测研究[J].安全与环境学报,2008,8(4):125-127
    [133]潘树米,王全凤.利用回归分析拟合Duncan-Chang双曲线E-γ模型的材料参数[J].数学的实践与认识,2010,40(13):43-50
    [134]陈卫兵,王德厚.相空间局域预测法在滑坡位移预测中的应用[J].长江科学院院报,2005,22(6):6-9
    [135]胡朝浪,胡勇,丁雪峰,等.加权零阶局域法在网络舆论趋势预测中的应用[J].四川大学学报(自然科学版),2010,47(5):1049-1052
    [136]李圣清,周友庆,朱英浩,等.基于加权一阶局域理论的综合电力滤波器谐波电流预测方法[J].中国电机工程学报,2004,24(6):19-23
    [137]王进,史其信.基于非线性理论的短期交通流预测研究[J].西安建筑科技大学学报, 2006,38(2):184-188
    [138]蔡烽,万林,石爱国.基于相空间重构技术的舰船摇荡极短期预报[J].水动力学研究与进展,2005,20(6):780-784
    [139]周伟国,张中秀,姚健.城市燃气负荷的混沌特性与预测[J].同济大学学报(自然科学版),2010,38(10):1511-1515
    [140]赵鹏,张宏伟.城市用水量的混沌特性与预测[J].中国给水排水,2008,24(5):90-94
    [141]于大鹏,赵德有,汪玉.螺旋桨鸣音的混沌动力特性研究[J].声学学报,2010,35(5):530-538
    [142]王竹溪.热力学[M].北京:北京大学出版社,2005
    [143]王新月,杨清真.热力学与气体动力学基础[M].西安:西北工业大学出版社,2004
    [144]卞晓锴,包宗宏,史美仁.采空区温度场模拟及煤自燃状态预测[J].南京化工大学学报,2000,22(2):43-47
    [145]蒋军成,王省身.火灾巷道烟气流动的数值分析[J].煤炭学报,1997,22(2):165-169
    [146]陶文铨,陈在康.计算流体力学与传热[M].北京:中国建筑工业出版社,1991
    [147]李宗翔,王晓冬.采空区场流数值模拟程序(G3)的实现与应用[J].湖南科技大学学报(自然科学版),2005,20(4):16-20
    [148]李宗翔.采空区遗煤自燃过程及其规律的数值模拟研究[J].中国安全科学学报,2005,15(6):15-19
    [149]张瑞林,杨运良.自燃采空区风流场、温度场及热力风压场的计算机模拟[J].焦作工学院学报,1998,17(4):253-257
    [150]江培谟.地质热力学基础[M].北京:科学出版社,1989
    [151]林睦曾.岩石热物理学及其工程应用[M].重庆:重庆大学出版社,1991.
    [152]程尚模.传热学[M].北京:高等教育出版社,1990
    [153]毛丹.散堆硫化矿石典型导热特性研究[D].长沙:中南大学,2008
    [154]Naomi Tsafnat a, Guy Tsafnat, Allan S. Jones. Automated mineralogy using finite element analysis and X-ray microtomography[J]. Minerals Engineering,2009,22(2):149-155
    [155]陈兴润,张志峰,徐骏,等.电磁搅拌法制备半固态浆料过程电磁场、流场和温度场的数值模拟[J].中国有色金属学报,2010,20(5):937-945
    [156]杨保华.堆浸体系中散体孔隙演化机理与渗流规律研究[D].长沙:中南大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700