用户名: 密码: 验证码:
全钒液流储能电池非氟隔膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石能源的枯竭和环境恶化迫使人们去开发太阳能、风能等可再生能源。然而,这些再生能源受气候变化而具有不稳定和不连续的特点,因而,储能技术备受国内外研究者的广泛关注。与其它储能技术相比,全钒液流氧化还原电池(VRB)由于具有绿色安全环保、快速响应、可深度充放电、容量可设计性好、能量效率高、成本低、不受地域限制等优点被认为是最具有应用前景的储能技术之一。作为VRB核心组件的隔膜的性能和价格是制约电池效能和大规模推广应用的关键因素之一。本文围绕高离子传导率、高选择性、长寿命和低价格的隔膜的制备和性能方面展开研究,主要内容如下:
     利用交流阻抗测试了几种商用膜的面电阻,结果发现,Nafion的面电阻最小,国产膜中,异相膜的面电阻值明显大于均相膜面电阻值,阳离子交换膜的面电阻值小于阴离子交换膜。VO2+渗透率和水迁移测试表明阴离子膜由于Donnan效应更利于阻钒离子,相应地,水迁移也小。电池测试表明,Nafion膜的充放电性能好,容量大;国产膜中,小电流密度下,阴离子膜具有更好的充放电性能和更高的容量;大电流密度下,阳离子交换膜体现出更好的充放电性能。化学稳定性测试表明,聚苯醚类阴膜DF-a化学稳定性较其它国产膜高。综合评价,Nafion膜和DF-a膜更适用于钒电池中。
     采用水热法以Ti(SO4)2和尿素为前体对Nafion膜改性,制备了Nafion/TiO2杂化膜。与Nafion膜相比,杂化膜的含水率降低,而离子交换容量(IEC)、厚度、面电阻基本不变。SEM-EDS和XRD表明杂化膜中Ti02粒子分布均匀,TG测试发现水热改性没有显著降低Nafion膜的热稳定性。Nafion/TiO2膜中的钒离子V02+渗透率由改性前的2.26×10-5cm2·min-1下降到6.72×10-6cm2·min-1。Nafion/TiO2膜组装的单电池具有更小的自放电率(37h vs.14h),更高库仑效率(88.8%vs.86.3%),和更高的能量效率(71.5%vs.69.6%)。
     利用后磺化法对PPES聚合物进行了磺化,以特性粘度和磺化度为评价指标,发现在40℃下磺化4-6h得到的SPPES较好地满足离子交换膜的要求,磺化后的聚合物特性粘度变大,能溶于大多数非质极性溶剂。IR, TG和DSC证实了磺化产物的主链上成功引入了-SO3H,导致了聚合物的热性能降低(Td=300℃)和玻璃化温度提高。与Nafion膜相比,SPPES膜具有更高的IEC;而具有较低的含水率、电解质的吸附率和质子传导率;SPPES膜具有显著低钒离子渗透率(1.24×10-7vs.22.63×10-7cm2·min-1); SPPES膜组装的钒电池具有更高的库仑效率和能量效率和良好的稳定性。
     利用水热法以NaWO3作为前体对SPPEK膜改性制备SPPEK/WO3杂化膜。SEM-EDS表明W03微粒均匀分布于杂化膜内。与SPPEK膜相比,杂化膜的钒离子的渗透率基本不变。与Nafion膜相比,杂化膜的选择性更高(5.81×104vs.0.22×104min·S·cm-3)。电池测试表明,SPPEK/WO3组成VRB的CE和EE(98.07%和78.60%)高于Nafion膜(92.81%和76.19%)。电池循环测试和化学稳定性测试表明SPPEK/WO3杂化膜具有较好的化学稳定性。
     利用共混法制备了SPPEK/TPA(磷钨酸)复合膜。SEM和XRD表明复合膜中的TPA与SPPEK具有良好的相容性,膜呈均相状态。基本性能测试表明复合膜中TPA含量增加时,复合膜离子交换容量降低,含水率增大,溶胀率降低,拉伸强度变化不大。钒离子对膜的渗透实验表明,TPA含量增大时,离子传输率变大,选择性降低,而阻钒性仍高于Nafion膜二个数量级;钒离子从五价依次降低到三价,钒离子渗透率依次增大,Nafion膜的增幅最大。静态电池和动态电池测试表明,与Nafion膜相比,SPPEK-TPA-17复合膜具有更低的自放电率和容量衰减,更高的库仑效率和能量效率。充放电循环和化学稳定性测试,表明SPPEK-TPA-17复合膜具有较好的稳定性。
With fossil supplies increasingly exhausted and the environment highly deteriorated by their consumption, renewable energy sources such as solar energy and wind energy have been developed. However, these energies have instability and discontinuous interrupt due to the climate change. So the energy conservation technologies have drawn great attention. Compared to the other energy conservation technologies, all vanadium redox flow battery (VRB) has been accepted as a very promising energy conversion device due to its green safety, fast response, deep charge-discharge ability, easily designed capacity, high energy efficiency, low cost, and no limit in geographical position. As a key component in VRB, the separator is vital to restrain the VRB's performance and its large-scale application. In this paper, the research work was focused on the preparation and properties of the membranes with high ionic conductivity and selectivity, long life, and low price. The main points in this research can be summarized as follows.
     The area resistance (AR) for several commercial ionic exchange membranes (IEM) was determined by electrochemical impedance spectroscopy (EIS). The results showed Nafion membrane had the least AR value in all samples, in the domestic membranes AR values of heterogeneous membranes were markedly higher than homogeneous ones, and AR values of cationic exchange membranes (CEM) were lower than that of anionic exchange membranes (AEM). The AEM had a significant reduction in crossover of vanadium ions compared with the CEM due to the Donnan effect of AEM. Correspondingly, the AEM had a lower water transfer than the CEM. Cell test indicated that Nafion exhibited a superior charge-discharge performance and a higher capacity. For the domestic membranes, the VRB with the AEM showed a better charge-discharge performance and higher capacity than that of CEM at the lower current density, and at higher current density the cell with CEM exhibited a superior charge-discharge performance to that of AEM. The chemical stability tests showed the Poly(aryl ether)s AEM (DF-a) possessed more chemical stability and was more suitable for VRB than the other domestic IEM.
     A Nafion/TiO2hybrid membrane was fabricated by a hydrothermal method. The primary properties of the hybrid membrane were measured and compared with the Nafion membrane. The results of Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD) of the hybrid membrane revealed that the TiO2phase was formed in the bulk of the prepared membrane. Thermo Gravimetric Analysis (TG) showed that hydrothermal modification had almost no effect on the thermal property of the hybrid membrane. The Nafion/TiO2hybrid membrane had a dramatic reduction in crossover of vanadium ions compared with the Nafion membrane (6.72×10-6vs.2.26×10-5cm2·min-1). The columbic efficiency (CE) and energy efficiency EE of the VRB with the hybrid membrane were88.8%and71.5%at60mA·cm-2, respectively, while those of the VRB with Nafion membrane were86.3%and69.7%at the same current density.
     Sulfonated poly(phthalazinone ether sulfone)(SPPES) suitable for ionic exchange membrane fabrication was prepared by sulfonating PPES with fuming sulfuric acid at40℃for4-6h. By testing the sulfonation degree (SD), intrinsic viscosity and solubility of SPPES, the results showed that sulfonated polymers had higher intrinsic viscosities and excellent solubility in most polar solvents. IR analysis revealed that the-SO3H group was successfully attached to SPPES backbone. DSC and TG results showed that SPPES exhibited higher Tg than that of PPES, and Td at the first weight loss of SPPES was about300℃. The SPPES membrane (SP-02) showed a dramatic reduction in crossover of vanadium ions across the membrane compared with that of the Nafion membrane (1.24×10-7vs.22.63×10-7cm2·min-1). Cell tests identified that VRB with the SPPES membrane exhibited a lower self-discharge rate, higher CE (92.82%) and EE (67.58%) compared with the Nafion system. Furthermore, cycling tests indicated the single cell with SPPES membrane exhibited a stable performance during100cycles.
     A SPPEK/WO3membrane was fabricated by a hydrothermal method to improve its performance in VRFB. SEM of the composite membrane revealed that WO3phase was well formed in the bulk of the SPPEK membrane. Compared with Nafion membrane, the hybrid membrane showed a dramatic reduction in crossover of vanadium ions across the membrane and a higher selectivity (5.81×104vs.0.22x104minScm-3). Cell tests identified that the VRB with the SPPEK/WO3hybrid membrane presented a higher coulombic efficiency (98.07%vs.92.81%) and energy efficiency (78.60%vs.76.19%) compared with the Nafion system. Cycling and chemical stability tests indicated that the hybrid membrane had enough stability to be applied in VRB system.
     A SPPEK/TPA composite membrane was prepared by blending SPPEK and tungstophosphoric acid (TPA). SEM and XRD showed that TPA had excellent compatibility with SPPEK in the homogeneous membrane. With TPA content increasing, the composite membrane exhibited lower IEC, greater water uptake, lower swelling ratio, unchangeable tensile strength, higher ionic conductivity, lower selectivity, and lower permeability of vanadium ions which was still superior to Nafion membrane. In terms of vanadium ion valence, from quintavalent to trivalence, the permeability of the vanadium ion for all membrane samples increased correspondingly, especially for Nafion membrane. The static and flow cell tests showed SPPEK-TPA-17membrane exhibited a lower self-discharge rate, and higher CE and EE. Cycling and chemical stability tests indicated that the SPPEK/TPA composite membrane had enough stability to be applied in VRB system.
引文
[1]Huang K.L., Li X.G., Liu S.Q., et al. Research progress of vanadium redox flow battery for energy storage in China Renewable Energy,2008,33(2):186-192
    [2]朱顺泉,孙娓荣,汪钱,等.大规模蓄电储能全钒液流电池研究进展.化工进展,2007,26(2):207-211
    [3]刘素琴,黄可龙,刘又年,等.储能钒液流电池研发热点及前景.电池,2005,35(5):356-359
    [4]Yang Z., Zhang J., Kintner-Meyer M.C.W., et al. Electrochemical Energy Storage for Green Grid. Chemical Reviews,2011,111(5):3577-3613
    [5]Skyllas-Kazacos M., Chakrabarti M.H., Hajimolana S.A., et al. Progress in Flow Battery Research and Development Journal of the Electrochemical Society,2011, 158(8):R55-R79
    [6]张华民,周汉涛,赵平,等.储能技术的研究开发现状及展望.能源工程,2005,3:1-7
    [7]杨裕生,张立,文越华,等.液流电池蓄电技术的进展与前景.电源技术,2007,31(3):175-178
    [8]董全峰,张华民,金明钢,等.液流电池研究进展.电化学,2005,11(3):237-243
    [9]Stalnaker D.K.,Lieberman A. Design and Assembly Considerations for Redox Cells and Stacks. Ohio, USA:National Aeronautics and Space Administration, Lewis Research Center,1981.100-101
    [10]Fang B., Wei Y., Arai T., et al. Development of a novel redox flow battery for electricity storage system. Journal of Applied Electrochemistry,2003,33(2): 197-203
    [11]Fang B., Iwasa S., Wei Y., et al. A study of the Ce(Ⅲ)/Ce(Ⅳ) redox couple for redox flow battery application. Electrochimica Acta,2002,47(24):3971-3976
    [12]Anon. Major reduction in electric energy storage costs. Industrial Research & Development,1980,22(3):97-98
    [13]Thaller L.H. Electrically rechargeable redox flow cell US Patent 3996064,1974
    [14]Wang Y.Y., Lin M.R., Wan C.C. Study of the discharge performance of the Ti/Fe redox flow system. Journal of Power Sources,1984,13(1):65-74
    [15]Anon. Fluid battery promises to store electricity at lower cost for power generation systems. Power,1979,123(7):83-88
    [16]Gahn R.F., Hagedorn N.H., Johnson J.A. Cycling Performance of the Iron chromium Redox Energy Storage System. Cleveland, Oh, USA:NASA Technical Memorandum, NASA,1985.18
    [17]Zito R.J. Zinc-bromine battery with long term stability. US Patent 4482614,1984
    [18]Kantner E. Zinc-bromine batteries with improved electrolyte. US Patent 4491625, 1985
    [19]Skyllas-Kazacos M. Novel vanadium chloride/polyhalide redox flow battery. Journal of Power Sources,2003,124:299-302
    [20]Wen Y.H., Zhang H.M., Qian P., et al. A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application. Electrochimica Acta,2006,51:3769-3775
    [21]Nozaki K.,Ozawa T. Fe/Cr redox flow cell. Solar Energy Materials and Solar Cells, 1984,50(5):327-329
    [22]Johnson D.A.,Reid M.A. Chemical and electrochemical behavior of the Cr(III)/(II) half-cell in the iron-chromium redox energy storage system. Journal of Electrochemical Society,1985,132(25):1058-1061
    [23]Chen Y.W.D. Solution redox couples for electrochemical energy storage (I). Journal of Electrochemical Society,1981,128(12):1460-1464
    [24]Chen Y.W.D. Solution redox couples for electrochemical energy storage (II). Journal of Electrochemical Society,1982,129(20):61-63
    [25]Sum E., Rychcik M., Skyllas-kazacos M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. Journal of Power Sources,1985, 16(2):85-95
    [26]Sum E.,Skyllas-Kazacos M. A study of the V(Ⅱ)/V(Ⅲ) redox couple for redox flow cell applications. Journal of Power Sources,1985,15(2-3):179-190
    [27]Skyllas-Kazacos M., Rychcik M., Robins R.G., et al. New All-Vanadium Redox Flow Cell. Journal of the Electrochemical Society,1986,133(5):1057-1058
    [28]Skyllas-Kazacos M.,Grossmith F. Efficient Vanadium Redox Flow Cell. Journal of the Electrochemical Society,1987,134(12):2950-2953
    [29]Rychcik M.,Skyllas-Kazacos M. Characteristics of a new all-vanadium redox flow battery. Journal of Power Sources,1988,22(1):59-67
    [30]Kazacos M., Cheng M., Skyllas-Kazacos M. Vanadium redox cell electrolyte optimization studies. Journal of Applied Electrochemistry,1990,20(3):463-467
    [31]Skyllas-Kazacos M., Kasherman D., Hong D.R., et al. Characteristics and performance of 1 kW UNSW vanadium redox battery. Journal of Power Sources, 1991,35(4):399-404
    [32]Skyllas-Kazacos M., Rychick M., Robins R., et al. All-vanadium redox battery. US Patent 4786567,1986
    [33]Kazacos M.,Skyllas-Kazacos M. High energy density vanadium electrolyte solution, methods of preparation thereof and all-vanadium redox cells and batteries containing high energy vanadium electrolyte solutions. US Patent 6468688,2002
    [34]Kazacos M., Skyllas-Kazacos M., Michael, et al. Stabilized vanadium electrolyte solutions for all-vanadium redox cells and batteries US Patent 6562514,2003
    [35]Zhao P., Zhang H., Zhou H., et al. Characteristics and performance of 10KW class all-vanadium redox-flow battery stack. Journal of Power Sources,2006,162(2): 1416-1420
    [36]李志明,黄可龙,满瑞林.全钒液流电池关键材料的研究进展.电池,2006,36(2):150-152
    [37]崔艳华.钒电池储能系统的发展现状及其应用前景.电源技术,2005,29(11)
    [38]Rychcik M.,Skyllas-Kazacos M. Evaluation of electrode materials for vanadium redox cell. Journal of Power Sources,1987,19(1):45-54
    [39]Largent R., Skyllas-Kazacos M., Chieng J. Improved PV system performance using vanadium batteries. in Proceedings IEEE,23m Photovoltaic Specialists Conference.1993. Louisville, Kentucky.
    [40]Skyllas Kazacos M., Rychick M., Robins R. All-vanadium redox battery USP, 1988,4,786,567
    [41]Skyllas-Kazacos M., Kazacos G., Poon G., et al. Recent advances with UNSW vanadium-based redox flow batteries. International Journal of Energy Research, 2010,34(2):182-189
    [42]崔艳华,孟凡明.全钒离子液流电池的应用研究.电源技术,2000,24(6):356-358
    [43]孟凡明,崔艳华.全钒离子液流电池初步研究.电源技术,1998,22(1):24-26
    [44]常芳,崔艳华,李晓兵,等.五价钒电解液稳定性研究.化学研究与应用,2006(07):866-869
    [45]常芳,孟凡明,陆瑞生.钒电池用电解液研究现状及展望.电源技术,2006(10):860-862
    [46]陈茂斌,孟凡明,李晓兵,等.全钒电池组的充放电性能.电源技术,2008(04):225-227
    [47]陈茂斌,张胜涛,李晓兵,等.钒电池集流体用聚四氟乙烯导电塑料的制备与性能.高分子材料科学与工程,2009(06):121-124
    [48]崔艳华,孟凡明.全钒离子液流电池的应用研究.电源技术,2000(06):356-358
    [49]刘联,刘效疆,李晓兵,等.对甲苯磺酸对钒电池负极液的影响.电源技术,2010(06):552-555
    [50]Chang F., Hu C., Liu X., et al. Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery. Electrochimica Acta,2012,60(0):334-338
    [51]文越华,张华民,钱鹏,等.全钒液流电池高浓度下Ⅴ(Ⅳ)/Ⅴ(Ⅴ)的电极过程研究物理化学学报,2006,22(4):403-408
    [52]Wen Y., Zhang H., Qian P., et al. Investigations on the Electrode Process of Concentrated V(Ⅳ)/V(Ⅴ) Species in a Vanadium Redox Flow Battery. Acta Physico-Chimica Sinica,2006,22(4):403-408
    [53]文越华,张华民,钱鹏,等.离子交换膜全钒液流电池的研究.电池,2005,35(6):414-416
    [54]Li X., Zhang H., Mai Z., et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy & Environmental Science,2011,4:1147-1160
    [55]Luo Q.T., Zhang H.M., Chen J., et al. Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications. Journal of Membrane Science,2008,311(1-2):98-103
    [56]Luo Q.T., Zhang H.M., Chen J., et al. Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery. Journal of Membrane Science,2008,325(2):553-558
    [57]钱鹏,张华民,陈剑,等.全钒液流电池用电极及双极板研究进展.能源工程,2007,1:7-11
    [58]Zhang Y.M., Huang Q.M., Li W.S., et al. Graphite-acetylene black composite electrodes for all vanadium redox flow battery. Journal of Inorganic Materials, 2007,22:1051-1055
    [59]Ma X., Zhang H., Sun C., et al. An optimal strategy of electrolyte flow rate for vanadium redox flow battery. Journal of Power Sources,2012(0)
    [60]You D., Zhang H., Chen J. A simple model for the vanadium redox battery. Electrochimica Acta,2009,54(27):6827-6836
    [61]You D., Zhang H., Sun C., et al. Simulation of the self-discharge process in vanadium redox flow battery. Journal of Power Sources,2011,196(3):1578-1585
    [62]尹海涛,王保国.隔膜扩散特性对全钒液流单电池性能的影响.电池,2006(01):60-61
    [63]朱顺泉,陈金庆,王保国.电解液流动方式对全钒液流电池性能的影响.电池,2007(03):217-219
    [64]汪钱,陈金庆,王保国.导流结构和电极结构对全钒液流电池性能的影响.电池,2008(06):346-348
    [65]朱顺泉,陈金庆,汪钱,等.流道结构与电解液流动状态对VRB性能的影响.电池,2008(05):285-287
    [66]陈金庆,王保国,杨基础.VO2+/H+在阳离子交换膜中的吸附平衡.清华大学学报(自然科学版),2009(06):884-887
    [67]陈金庆,王保国,吕宏凌.基于吸附-扩散机理研究钒离子透膜传质过程(Ⅰ)—离子膜吸附-扩散模型.当代化工,2011(08):859-861
    [68]陈金庆,王保国,吕宏凌.全钒液流电池电解液流场结构优化设计.现代化工2011(09):52-55
    [69]范永生,陈晓,王保国.基于交流阻抗法的离子交换膜电阻研究.膜科学与技术,2011(02):14-18
    [70]徐冬清,范永生,刘平,等.全钒液流电池复合材料双极板研究.高校化学工程学报,2011(02):308-313
    [71]黄可龙,伍秋美,刘素琴,等.钒氧化还原液流电池石墨一炭黑复合电极性能.电源技术,2004,28(2):91-93
    [72]谭宁,黄可龙,刘素琴.全钒液流电池隔膜在钒溶液中的性能.电源技术,2004,28(12):775-778
    [73]李晓刚,刘素琴,黄可龙,等.全钒氧化还原液流电池集流体的性能.电池,2005,35(2):93-94
    [74]刘素琴,郭小义,黄可龙,等.钒电池电极材料聚丙烯腈石墨毡的研究.电池,2005,35(3):183-184
    [75]李晓刚,黄可龙,谭宁,等.钒液流电池用石墨毡电极的电化学修饰.无机材料学报,2006,21(5):1114-1120
    [76]刘素琴,史小虎,黄可龙,等.钒液流电池用碳纸电极改性的研究.无机化学学报,2008,24(7):1079-1083
    [77]仲晓玲,黄可龙,袁国霞,等.液流钒电池用TiO2/Nafion/PP质子交换膜的研究.电源技术,2009,4:261-265
    [78]Skyllas-Kazacos M., Menictas C., Kazacos M. Thermal Stability of Concentrated V(V) Electrolytes in the Vanadium Redox Cell. Journal of the Electrochemical Society,1996,143(4):L86-L88
    [79]Skyllas-Kazacos M.,Kazacos M. Stabilized vanadium electrolyte solutions for all-vanadium redox cells and batteries US Patent 6562514,2003
    [80]罗冬梅,许茜,隋智通.添加剂对钒电池电解液性质的影响.电源技术,2004,28(2):94-96
    [81]梁艳,何平,于婷婷,等.添加剂对全钒液流电池电解液的影响.西南科技大学学报,2008,23(02):11-14
    [82]袁俊,余晴春,刘逸枫,等.全钒液流电池性能及其电极材料的研究.电化学,2006,12(3):271-274
    [83]陈金庆,汪钱,王保国.全钒液流电池关键材料研究进展.现代化工,2006,26(9):21-24
    [84]伍秋美,黄可龙,桑商斌,等.全钒液流电池用聚丙烯腈石墨毡电极研究.电源技术,2005,29(7):456-458
    [85]Zhu H.Q., Zhang Y.M., Yue L., et al. Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery. Journal of Power Sources,2008, 184(2):637-640
    [86]Wang W.H.,Wang X.D. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochimica Acta,2007, 52(24):6755-6762
    [87]Zhong S., Kazacos M., Burford R.P., et al. Fabrication and activation studies of conducting plastic composite electrodes for redox cells. Journal of Power Sources, 1991,36(1):29-43
    [88]Haddadi-Asl V., Kazacos M., Skyllas-Kazacos M. Conductive carbon-polypropylene composite electrodes for vanadium redox battery. Journal of Applied Electrochemistry,1995,25(1):29-33
    [89]Zhong S H, Kazacos M, Skyllas-Kazacos M. Flexible Conducting Plastice Electrode and Progress for its Preparation. US Patent 5665212,1997
    [90]罗冬梅,李道玉,常志峰,等.全钒液流电池用导电高分子材料集流体的研究.合成化学,2007,15(B11):255-258
    [91]Sukkar T.,Skyllas-Kazacos M. Water transfer behaviour across cation exchange membranes in the vanadium redox battery. Journal of Membrane Science,2003, 222(1-2):235-247
    [92]陈振兴.高分子电池材料.北京:化学工业出版社:2005.10
    [93]Zeng J., Jiang C.P., Wang Y.H., et al. Studies on polypyrrole modified nation membrane for vanadium redox flow battery. Electrochemistry Communications, 2008,10(3):372-375
    [94]Xi J.Y., Wu Z.H., Qiu X.P., et al. Nafion/Si02 hybrid membrane for vanadium redox flow battery. Journal of Power Sources,2007,166(2):531-536
    [95]滕祥国,赵永涛,席靖宇,等.全钒氧化还原液流电池用Nafion/有机硅复合膜.化学学报,2009 67(6):471-476
    [96]Teng X., Zhao Y., Xi J., et al. Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery. Journal of Power Sources,2009, 189(2):1240-1246
    [97]Teng X., Zhao Y., Xi J., et al. Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ so-gel reactions. Journal of Membrane Science,2009,341(1-2):149-154
    [98]吕正中,胡嵩麟,罗绚丽,等.质子交换膜对钒氧化还原液流电池性能的影响.高等学校化学学报,2007,28(1):145-148
    [99]龙飞,陈金庆,王保国.全钒液流电池用离子交换膜的制备.天津工业大学学报,2008,27(4):9-11
    [100]Qiu J.Y., Ni H.F., Zhai M.L., et al. Radiation grafting of styrene and maleic anhydride onto PTFE membranes and sequent sulfonation for applications of vanadium redox battery. Radiation Physics and Chemistry,2007,76(11-12): 1703-1707
    [101]Qiu J., Zhang J., Chen J., et al. Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into PVDF film for vanadium redox flow battery applications. Journal of Membrane Science,2009,334(1-2):9-15
    [102]Qiu J.Y., Li M.Y., Ni J.F., et al. Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery. Journal of Membrane Science,2007,297(1-2):174-180
    [103]Sukkar T.,Skyllas-Kazacos M. Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery. Journal of Membrane Science,2003,222(1-2):249-264
    [104]Robeson L.M.,Matzner M. Flame retardant polyarylate compositions. US Patent 4380598 1983
    [105]Wang F., Hickner M., Kim Y.S., et al. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers:candidates for new proton exchange membranes. Journal of Membrane Science,2002,197(1-2): 231-242
    [106]Ueda M., Toyota H., Ouchi T., et al. Synthesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium sulfonate groups. Journal of Polymer Science Part A:Polymer Chemistry,1993,31(4):853-858
    [107]Wang F., Hickner M., Ji Q., et al. Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization. Macromolecular Symposia,2001,175(1):387-396
    [108]Xing P.X., Robertson G.P., Guiver M.D., et al. Synthesis and characterizatio n of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials. Polymer,2005,46 (10):3257-3263
    [109]Chen D., Wang S., Xiao M., et al. Preparation and properties of sulfonated poly(fluorenyl ether ketone) membrane for vanadium redox flow battery application. Journal of Power Sources,2010,195(7):2089-2095
    [110]Mai Z., Zhang H., Li X., et al. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application. Journal of Power Sources,2011,196(1):482-487
    [111]Gao Y., Robertson G.P., Guiver M.D., et al. Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials. Journal of Polymer Science Part A: Polymer Chemistry,2003,41(4): 497-507
    [112]Gao Y., Robertson G.P., Guiver M.D., et al. Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials. Journal of Membrane Science,2003,227(1-2):39-50
    [113]Hwang G.-J.,Ohya H. Preparation of anion exchange membrane based on block copolymers. Part Ⅱ:the effect of the formation of macroreticular structure on the membrane properties. Journal of Membrane Science,1998,149(2):163-169
    [114]Hwang G.-J.,Ohya H. Preparation of anion-exchange membrane based on block copolymers:Part 1. Amination of the chloromethylated copolymers. Journal of Membrane Science,1998,140(2):195-203
    [115]Bae B., Hoshi T., Miyatake K., et al. Sulfonated Block Poly(arylene ether sulfone) Membranes for Fuel Cell Applications via Oligomeric Sulfonation. Macromolecules,2011,44(10):3884-3892
    [116]Kerres J.A. Development of ionomer membranes for fuel cells. Journal of Membrane Science,2001,185(1):3-27
    [117]Xing D.,Kerres J. Improved performance of sulfonated polyarylene ethers for proton exchange membrane fuel cells. Polymers for Advanced Technologies,2006, 17(7-8):591-597
    [118]Arnold Jr C.,Assink R.A. Development of sulfonated polysulfone membranes for redox flow batteries. Journal of Membrane Science,1988,38(1):71-83
    [119]Kim S., Yan J., Schwenzer B., et al. Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. Electrochemistry Communications,2010,12(11):1650-1653
    [120]Chen D., Wang S., Xiao M., et al. Synthesis of sulfonated poly(fluorenyl ether thioether ketone)s with bulky-block structure and its application in vanadium redox flow battery. Polymer,2011,52(23):5312-5319
    [121]Chen D., Wang S., Xiao M., et al. Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadium redox flow battery applications. Energy & Environmental Science,2010,3(5):622-628
    [122]Chen D., Wang S., Xiao M., et al. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery. Energy Conversion and Management,2010,51(12):2816-2824
    [123]Kashima G.,Ibaraki K. Redox flow cell battery with vanadium electrolyte and a polysulfone-base semipermeable membrane EP 0790658A2,1997
    [124]张守海,邢东博,颜春,等.液流电池用季铵化聚醚砜阴离子交换膜材料的研究.合成化学,2007,15(B11):225-225
    [125]Jian X.G., Yan C., Zhang H.M., et al. Synthesis and characterization of quaternized poly(phthalazinone ether sulfone ketone) for anion-exchange membrane. Chinese Chemical Letters,2007,18(10):1269-1272
    [126]Ahmad H., Kamarudin S.K., Hasran U.A., et al. Overview of hybrid membranes for direct-methanol fuel-cell applications. International Journal of Hydrogen Energy,2010,35(5):2160-2175
    [127]Chen D., Wang S., Xiao M., et al. Sulfonated poly (fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery. Journal of Power Sources,2010,195(22):7701-7708
    [128]桑商斌,黄可龙,石瑞成,等.PVA-ZrP复合膜作为全钒液流电池隔膜的研究.中南大学学报:自然科学版,2005,36(6):1011-1016
    [129]Chieng S.C., Kazacos M., Skyllas-Kazacos M. Preparation and evaluation of composite membrane for vanadium redox battery applications. Journal of Power Sources,1992,39(1):11-19
    [130]Chieng S.C., Kazacos M., Skyllas-Kazacos M. Modification of Daramic, microporous separator, for redox flow battery applications. Journal of Membrane Science,1992,75(1-2):81-91
    [131]Hwang G.-J.,Ohya H. Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery. Journal of Membrane Science,1996,120(1): 55-67
    [132]Hwang G.-J.,Ohya H. Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery. Journal of Membrane Science,1997,132(1):55-61
    [133]Mohammadi T.,Kazacos M.S. Modification of anion-exchange membranes for vanadium redox flow battery applications. Journal of Power Sources,1996,63(2): 179-186
    [134]Tian B., Yan C.W., Wang F.H. Modification and evaluation of membranes for vanadium redox battery applications. Journal of Applied Electrochemistry,2004, 34(12):1205-1210
    [135]Tian B., Yan C.W., Wang F.H. Proton conducting composite membrane from Daramic/Nafion for vanadium redox flow battery. Journal of Membrane Science, 2004,234(1-2):51-54
    [136]Hilal N., Al-Zoubi H., Darwish N.A., et al. A comprehensive review of nanofiltration membranes:Treatment, pretreatment, modelling, and atomic force microscopy. Desalination,2004,170(3):281-308
    [137]Zhang H., Zhang H., Li X., et al. Nanofiltration (NF) membranes:the next generation separators for all vanadium redox flow batteries (VRBs)? Energy & Environmental Science,2011,4(5):1676-1679
    [138]徐又一,徐志康.高分子膜材料.北京:化学工业出版社,2005
    [139]Damay F.,Klein L.C. Transport properties of NafionTM composite membranes for proton-exchange membranes fuel cells. Solid State Ionics,2003,162-63(0): 261-267
    [140]Sang S., Wu Q., Huang K. Preparation of zirconium phosphate (ZrP)/Nafion1135 composite membrane and H+/VO2+ transfer property investigation. Journal of Membrane Science,2007,305(1-2):118-124
    [141]Sukkar T.,Skyllas-Kazacos M. Membrane stability studies for vanadium redox cell applications. Journal of Applied Electrochemistry,2004,34:137-145
    [142]Mohammadi T.,Skyllas-Kazacos M. Characterisation of novel composite membrane for redox flow battery applications. Journal of Membrane Science,1995, 98(1-2):77-87
    [143]Mohammadi T., Chieng S.C., Skyllas Kazacos M. Water transport study across commercial ion exchange membranes in the vanadium redox flow battery. Journal of Membrane Science,1997,133(2):151-159
    [144]Mohammadi T.,Kazacos M.S. Evaluation of the chemical stability of some membranes in vanadium solution. Journal of Applied Electrochemistry,1997, 27(2):153-160
    [145]Kim S., Tighe T., Schwenzer B., et al. Chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. Journal of Applied Electrochemistry,2011:1-13
    [146]Qiu J.Y., Zhao L., Zhai M.L., et al. Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries. Journal of Power Sources,2008,177(2):617-623
    [147]焦剑,雷渭媛.高聚物结构、性能与测试.北京:化学工业出版社,2003.670-673
    [148]Xie Z.,Holdcroft S. Polarization-dependent mass transport parameters for orr in perfluorosulfonic acid ionomer membranes:an EIS study using microelectrodes. Journal of Electroanalytical Chemistry,2004,568:247-260
    [149]巴德,福克纳.电化学方法原理及应用.北京:化学工业出版社,1986
    [150]Oei D.-G. Permeation of vanadium cations through anionic and cationic membranes. Journal of Applied Electrochemistry,1985,15(2):231-235
    [151]Xi J., Wu Z., Teng X., et al. Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. Journal of Materials Chemistry,2008,18(11):1232-1238
    [152]Teng X.G., Zhao Y.T., Xi J.Y., et al. Nafion/Organic Silica Hybrid Membrane for Vanadium Redox Flow Battery. Acta Chimica Sinica,2009,67(6):471-476
    [153]Shao Z.-G., Joghee P., Hsing I.M. Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. Journal of Membrane Science, 2004,229(1-2):43-51
    [154]Shao Z.-G., Xu H., Li M., et al. Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell. Solid State Ionics,2006,177(7-8):779-785
    [155]Kim Y.M., Choi S.H., Lee H.C., et al. Organic-inorganic composite membranes as addition of SiO2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs). Electrochimica Acta,2004,49(26):4787-4796
    [156]Deng Q., Moore R.B., Mauritz K.A. Nafion(?)/(SiO2, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol-gel reactions:Characterization of fundamental properties. Journal of Applied Polymer Science,1998,68(5):747-763
    [157]Damay F.,Klein L.C. Transport properties of NafionTM composite membranes for proton-exchange membranes fuel cells. Solid State Ionics,2003,162-163:261-267
    [158]Xiang Y., Yang M., Zhang J., et al. Phosphotungstic acid (HPW) molecules anchored in the bulk of Nafion as methanol-blocking membrane for direct methanol fuel cells. Journal of Membrane Science,2011,368(1-2):241-245
    [159]Ramani V., Kunz H.R., Fenton J.M. Investigation of Nafion(?)/HPA composite membranes for high temperature/low relative humidity PEMFC operation. Journal of Membrane Science,2004,232(1-2):31-44
    [160]Mahreni A., Mohamad A.B., Kadhum A.A.H., et al. Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity. Journal of Membrane Science,2009,327(1-2):32-40
    [161]Al-Othman A., Tremblay A.Y., Pell W., et al. The effect of glycerol on the conductivity of Nafion-free ZrP/PTFE composite membrane electrolytes for direct hydrocarbon fuel cells. Journal of Power Sources,2012,199:14-21
    [162]Hou H., Sun G., Wu Z., et al. Zirconium phosphate/Nafion115 composite membrane for high-concentration DMFC. International Journal of Hydrogen Energy,2008,33(13):3402-3409
    [163]Liu Z., Guo B., Huang J., et al. Nano-TiO2-coated polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources,2006,157(1):207-211
    [164]Jian-hua T., Peng-fei G., Zhi-yuan Z., et al. Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs. International Journal of Hydrogen Energy,2008,33(20):5686-5690
    [165]Yang J., Mei S., Ferreira J.M.F. Hydrothermal Synthesis of Nanosized Titania Powders:Influence of Peptization and Peptizing Agents on the Crystalline Phases and Phase Transitions. Journal of the American Ceramic Society,2000,83(6): 1361-1368
    [166]Yang J., Mei S., Ferreira J.M.F. Hydrothermal Synthesis of Nanosized Titania Powders: Influence of Tetraalkyl Ammonium Hydroxides on Particle Characteristics. Journal of the American Ceramic Society,2001,84(8):1696-1702
    [167]Feng X., Yang L., Liu Y. A simple one-step fabrication of micrometer-scale hierarchical TiO2 hollow spheres. Materials Letters,2010,64(24):2688-2691
    [168]Adjemian K.T., Dominey R., Krishnan L., et al. Function and Characterization of Metal Oxide-Nafion Composite Membranes for Elevated-Temperature H2/O2 PEM Fuel Cells. Chemistry of Materials,2006,18(9):2238-2248
    [169]Yang J., Li Y., Huang Y., et al. Dynamic conducting effect of WO3/PFSA membranes on the performance of proton exchange membrane fuel cells. Journal of Power Sources,2008,177(1):56-60
    [170]Schwenzer B., Kim S., Vijayakumar M., et al. Correlation of structural differences between Nafion/polyaniline and Nafion/polypyrrole composite membranes and observed transport properties. Journal of Membrane Science,2010,372(1-2): 11-19
    [171]Sun C., Chen J., Zhang H., et al. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. Journal of Power Sources,2010,195(3):890-897
    [172]Gardner K.H., Hsiao B.S., Faron K.L. Polymorphism in poly(aryl ether ketone)s. Polymer,1994,35(11):2290-2295
    [173]Rose J.B. Preparation and properties of poly(arylene ether sulphones). Polymer, 1974,15(7):456-465
    [174]Xiao Y., Low B.T., Hosseini S.S., et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas- A review. Progress in Polymer Science,2009,34(6):561-580
    [175]蹇锡高,孟跃忠,郑海滨,等.含二氮杂萘结构的聚醚砜及制备法.CN93109180.2,1993
    [176]蹇锡高,张守海,杨大令,等.磺化含二氮杂萘酮结构共聚芳醚砜复合纳滤膜及其制备方法.CN200910220544.8,2009
    [177]蹇锡高,张守海,杨大令,et a1.含二氮杂萘酮结构共聚芳醚砜超滤膜及其制备方法.CN 200910220545.2,2009
    [178]Kreuer K.D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science,2001,185(1): 29-39
    [179]Yang B.,Manthiram A. Comparison of the small angle X-ray scattering study of sulfonated poly(etheretherketone) and Nafion membranes for direct methanol fuel cells. Journal of Power Sources,2006,153(1):29-35
    [180]Woo M.H., Kwon O., Choi S.H., et al. Zirconium phosphate sulfonated poly (fluorinated arylene ether)s composite membranes for PEMFCs at 100-140℃. Electrochimica Acta,2006,51(27):6051-6059
    [181]Zaidi S.M.J., Mikhailenko S.D., Robertson G.P., et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. Journal of Membrane Science,2000,173(1):17-34
    [182]Othman M.H.D., Ismail A.F., Mustafa A. Proton conducting composite membrane from sulfonated poly(ether ether ketone) and boron orthophosphate for direct methanol fuel cell application. Journal of Membrane Science,2007,299(1-2): 156-165
    [183]Wei X.,Shen P.K. Electrochromics of single crystalline WO3·H2O nanorods. Electrochemistry Communications,2006,8(2):293-298
    [184]Livage J.,Guzman G. Aqueous precursors for electrochromic tungsten oxide hydrates. Solid State Ionics,1996,84(3-4):205-211
    [185]Di Noto V., Piga M., Lavina S., et al. Structure, properties and proton conductivity of Nafion/[(TiO2)·(WO3)0.148]ψTiO2 nanocomposite membranes. Electrochimica Acta,2010,55(4):1431-1444
    [186]王恩波,胡长文,许林.多酸化学导论.北京:化学工业出版社,1998
    [187]Kreuer K.-D. Proton Conductivity:Materials and Applications. Chemistry of Materials,1996,8(3):610-641
    [188]Bello M., Zaidi S.M.J., Rahman S.U. Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application. Journal of Membrane Science,2008,322(1):218-224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700