用户名: 密码: 验证码:
羊毛角蛋白原纤增强同质复合膜的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过复合材料仿生设计,将羊毛中分离出的微-亚微尺度原纤作为增强体,制备基质为角蛋白的同质复合材料,并对其分布排列结构特征及其对力学性质的影响进行表征,成功地解决了纯角蛋白低强、低模的问题。同时,对原纤头端作分叉处理以模仿树根结构,达到了同质复合膜的增强与增韧。
     本文首次实现角蛋白同质与异质复合膜性能的对比,即羊毛原纤增强角蛋白膜与无机晶须(K2Ti6O13)增强角蛋白膜的对比。紫外-可见-近红外光谱分析表明,同质复合膜的透光性好于异质复合膜,即羊毛原纤与角蛋白基体的界面良好。红外光谱与x衍射图谱分析表明,原纤基本保持羊毛中晶区的特征,即含较多的α螺旋结构;复合膜的特征吸收峰和结晶度主要取决于基质,因增强体的混入比小于5%。再生角蛋白复合膜的力学测量表明,原纤添加质量百分数为5%、晶须为3%,且分散均匀、沿载荷方向取向排列时,得到的复合膜力学性能最佳,而同质膜较异质膜的断裂应力仍高出42%。
     制备了平直原纤和分叉原纤,对其增强效能和原纤形态对强伸性贡献作了分析。平直原纤增强角蛋白膜的模量和断裂应力相对未增强膜分别提高70.2%和48.8%,仅断裂应变减少了7.8%。一级和二级分叉原纤增强复合膜的断裂应力和应变均改善,断裂应力较纯角蛋白膜分别提高了92.4%和94.9%,断裂应变则提高了7.4%和7.7%。
     由修正的复合材料强度与模量的计算法则和复合膜的力学试验结果,推得平直原纤的断裂应力为206.12Mpa,弹性模量为278.28Mpa,断裂应变为0.74,剪切强度为6.87MPa。而一级与二级分叉原纤的断裂应力分别为平直原纤的1.81倍和1.86倍,弹性模量为1.28倍和0.95倍,断裂应变为1.42倍和1.96倍,平均剪切强度为1.81倍和1.86倍,说明头端分叉原纤同时具备增强及增韧效能。但原纤的头端分叉数对复合膜性能的影响不大,是由于长时间超声波处理损伤以及分叉不完整所致。
     之后又从断裂力学和细观力学出发,对异质与同质复合膜,以及分叉原纤增强复合膜的损伤特征进行分析。首先对比了同/异质复合膜断裂面的显微镜照片,发现同质膜的破坏特征可以归纳为断裂短纤维破坏模型,而异质复合膜则为桥式短纤维破坏模型。而原纤的分叉头端之所以能同时起到增强与增韧,其原因是头端的分叉结构不仅有可变形性,使其在基体中能够有效减小头端应力集中,而且分叉端存在附加的摩擦力和变形力,提供了主要界面作用力在形式上的转换。还基于修正的剪滞模型,分析了并建立了单根和多根原纤存在的情况下中间一根原纤的轴向载荷传递模型方程,发现当原纤模量Ef/基质模量Em为2~50、原纤头头间距/原纤长度为0.053~0.667、原纤直径df/原纤间距d越大(即d越小,V%越大)时,原纤上的轴向载荷传递效率较高。而试验中,第一项都已达到理论范围,若要继续提高同质复合膜的力学性能,须通过改进原纤头头间距/原纤长度和提df/d值来实现。
     最后,利用有限元方法对原纤与晶须增强复合膜的应力场等进行了分析,探索了复合膜的破坏机理,以及依据结构仿生理论设计的平直、一级与二级分叉原纤增强同质复合膜中,原纤形态对其力学性能的影响。揭示了同质复合膜的损伤过程为:原纤断裂后的断裂端附近产生大变形及界面剪切力,可直接促成基体裂纹和界面脱粘,但由于同质界面作用良好,使得脱粘难以继续,将使已有基体裂纹扩展或产生新的基体裂纹。
     论文对无机晶须和羊毛原纤增强角蛋白膜的结构、性质和制备的研究,为同质复合角蛋白膜,甚至仿生同质复合材料的研究提供了科学依据。
This paper carried out a series of exploratory research work about bio-inspired designing composites, in which the wool fibrils at micro to sub-micro scales used as reinforcement to blend with keratin matrix, and then characterized the distribution and arrangement structure, as well as the effects of composites mechanical properties. It can successfully resolved the low strength and low modulus of neat keratin membranes. Additional, the branched fibrils, like plant roots, were also used to strengthen and toughening the composite membranes.
     In this paper, it realized the properties comparison between homogeneous and heterogeneous composites, namely wool fibrils reinforced composites compared to inorganic K2Ti6O13whisker reinforced composites. The result of UV-Vis-NIR absorption spectrum analysis showed that the light transmission in homogeneous composites is superior to in heterogeneous composites, which indicating that the wool fibrils and keratin matrix has good interface. FT-IR spectrum and X-ray diffraction were employed to investigate the molecular structural changes of fibrils and membranes, and the results showed the fibrils almost maintained the characteristics of wool, both many disulphide bonds and a-helix molecules. Characteristic absorption peaks and crystallinity of composite membranes mainly depended on the keratin matrix, and almost have no influence of the reinforcements. The mechanical testing results of keratin composites showed that when fibrils quality percentage is5%, whiskers quality percentage is3%, and also uniformly dispersed and highly oriented, the composite membranes have optimal mechanical properties. However, the strength of homogeneous composites is higher than heterogeneous ones by42%.
     Then, branched fibrils were prepared, and the strengthen efficiency of different types fibrils were analyzed. The modulus and strength of plain fibrils reinforced membranes increased70.2%and48.8%respectively than those of neat keratin membranes, only strain at break decreased7.8%. Compared with the neat keratin membranes, ultrasonic processed one-step and two-step branched fibrils reinforced membranes have better mechanical properties, the stress increased92.4%and94.9%respectively, and strain at break increased7.4%and7.7%respectively.
     With the aid of corrected law of mixtures and the mechanics experimental results of composite membranes, here calculated the stress of plain fibrils is206.12Mpa, modules is278.28Mpa, strain at break is0.74, and shear stress is6.87Mpa. However, the stress of one-and two-step branched fibrils are1.81and1.86times as many as plain fibrils respectively, and modules are1.28and0.95times, and strain at break are1.42and1.96times, and shear strengths are1.81and1.86times. It confirmed that the branched structure has a better effect on strengthen and toughen, but the number of branched ends has little impact on the properties of composites, not only because the long time ultrasonic processing easily decrease the properties of fibrils, as well as the incomplete branching.
     In addition, this paper also took fracture mechanics and micromechanics to analysis the damage characteristics of heterogeneous and homogeneous composite membranes, as well as the branched fibrils reinforced membranes. Firstly, the micrographs of cross-sections shown that whiskers performed bridging fibre fracture model and fibrils performed breaking fibres fracture model. The analysis results revealed that the branched fibrils could achieve both reinforcement and toughness simultaneously, not only because fibrils ends deformation, which can effectively reduce the stress concentration, but also because the additional friction and deforming force of fibrils ends. On the basis of modified shear lag model, the axial load transfer model equations of single fibril among multi-fibrils were established, in which found that when fibril modulus Ef/matrix modulus Em is2~50, the value of longitudinal spacing/the length of fibrils equal to0.053~0.667, and the ratio (df/d) of fibril diameter (df) to the space (d) of between the fibrils is larger (namely d smaller, or V%larger), the axial load transfer efficiency higher. In experiment, the first item have reached the theory range, to enhance the mechanical properties of homogeneous composite membrane just can by improving the value of longitudinal spacing/the length of fibrils and df/d value.
     Through the establishment of finite element model, it defined that the stress distribution of fibrils and whiskers reinforced composite membranes. The researches include the fracture pattens of heterogeneous composites, and based on the structural bionics, the plain, one-and two-step branched fibrils were prepared to reinforce homogeneous membranes, the influence of fibrils ends shapes on the mechanical properties were also discussed. Finally, it revealed the fracture process of homogeneous composite membranes, large matrix deformation and interfacial shear stress around fibrils fracture easy to product matrix crack and interfacial debonding, however, due to the good interfacial interaction, made the interfacial debonding too difficult to continue, instead by the existing or new matrix crack.
     The present thesis researched the inorganic whisker and wool fibrils reinforced keratin composite membranes systemically, especially including structure, properties and preparation technology. The achievements with research play a beneficial role in the development and application of keratin regeneration composites and provide a theoretical basis for related field.
引文
[1]鲁博,张林文,曾竟成.天然纤维复合材料[M].北京:化学工业出版社.材料科学与工程出版中心,2005:312.
    [2]柴山干生,李维贤.羊毛角蛋白及其复合物的纤维化技术[J].国外纺织技术,2001,(9):4-10.
    [3]Shenai VA, Dalvi MC. Wool fibers-a review[J]. Textile Dyer & Printer,1989, 22 (23):25-28.
    [4]唐锋意,周正诚.生物医用材料及其应用前景[J].右江民族医学院学报,2009,31(5):893-895.
    [5]刘梅,于伟东.羊毛角蛋白作为生物医用材料的研究进展[J].材料导报,2005,19(9):111-113.
    [6]刘梅.羊毛角蛋白生物相容性研究[D].上海:东华大学,2005.
    [7]贾如琰,何玉凤,王荣民,et al.角蛋白的分子构成、提取及应用[J].化学通报,2008,(4):265-271.
    [8]Lindberg J, Mercer EH, Philip B, et al. The fine histology of the keratin fibers[J]. Textile Research Journal,1949,19(11):673-678.
    [9]Razikov KK, Muratov A, Sidikov AV. Microstructure of cotton fibers during their developmen[J].1973, (6):27-37.
    [10]刘建勇.羊毛粉末及其性能与应用[J].印染助剂,1999,16(2):4-6.
    [11]陈莹.角蛋白提取和制膜的研究[D].天津:天津大学,2003.
    [12]湛海玲,郭艺雯,于伟东.基于还原法的羊毛溶解及其效果表征[J].纺织学报,2009,10:37-40.
    [13]Liu RT, Xu B, Liu X, et al. Extraction of wool keratin by mercaptoethanol-reduction method[C],2009:141-146.
    [14]Lei Z, Tao H, Sun C, et al. A method of preparing wool keratin solution by oxidation process[P].Tongxiang Hanbang Chem Eng Co Ltd.2008. CN1986561-A.
    [15]Xie HB, Li SH, Zhang SB. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers[J]. Green Chemistry,2005,7 (8):606-608.
    [16]Katoh K, Shibayama M, Tanabe T, et al. Preparation and physicochemical properties of compression-molded keratin films[J]. Biomaterials,2004,25: 2265-2272.
    [17]杨旭红,钟林钧,陈博,et al.废弃羊毛中蛋白质提取初探[J].毛纺科技,2004,32(4):14-16.
    [18]姚金波,何天虹,何美劲,et al.还原C法制备羊毛角蛋白质溶液的工艺优化[J].毛纺科技,2003,(5):10-13.
    [19]Plowman JE. Proteomic database of wool components[J]. Journal of Chromatography B,2003,787 (1):63-76.
    [20]昝大鑫,陈莹,许莉,et al.羊毛角蛋白膜的制备及其气体分离性能的研究[J].膜科学与技术,2006,(03):56-60.
    [21]胡继文,杨玉芹.人发角蛋白溶液成膜的结构与性能[J].高分子材料科学与工程,2002,18(2):131-133.
    [22]Tanabe T, Okitsu N, Tachibana A, et al. Preparation and characterization of keratin-chitosan composite film[J]. Biomaterials,2002,23:817-825.
    [23]Tanabe T, Okitsu N, Yamauchi K. Fabrication and characterization of chemically crosslinked keratin films[J]. Materials Science and Engineering C,2004, 24 (3):441-446.
    [24]陈莉萍,于伟东,戴黎春,et al.羊毛角朊蛋白溶液的制备[J].西安工程大学学报,2008,22(2):132-135.
    [25]汤燕伟,于伟东.羊毛溶液和角蛋白膜的实用制备技术与基本问题[J].膜科学与技术,2007,27(2):80-84.
    [26]陈莉萍,于伟东.羊毛及其角朊膜显微傅立叶红外光谱对比分析[J].东华大学学报(自然科学版),2006,32(4):106-108.
    [27]陈莉萍,于伟东.羊毛溶解可行性及其溶液的制取[J].毛纺科技,2006,(10):5-9.
    [28]汤燕伟.羊毛角朊蛋白膜的高性能化及表征[D].上海:东华大学,2005.
    [29]Tang YW, Yu WD. Preparation and characterization of a water-fast, soft and elastic keratin membrane[C],2005:928-932.
    [30]Liu M, Yu WD. Investigation on the biocompatibility of keratin membranes[C],2005:1011-1014.
    [31]刘让同.羊毛价值提升技术与羊毛角蛋白的纤维化再生[J].毛纺科技,2004,(10):8-11.
    [32]刘让同.羊毛角蛋白纤维化再生的研究进展[J].毛纺科技,2004,(11):5-9.
    [33]奚柏君.再生蛋白纤维理化性能研究[J].毛纺科技,2003,(5):7-9.
    [34]奚柏君.再生蛋白纤维及纺织品的研制[J].纺织学报,2003,24(3):243,256.
    [35]奚柏君,姜永峰,宣光荣,et al.再生蛋白纤维的研制及性能分析[J].上海纺织科技,2002,30(6):13-14.
    [36]奚柏君,罗以喜,朱琴娟.再生蛋白质纤维的形态结构与性能研究[J].上海纺织科技,2005,33(8):12-13.
    [37]吴安成,宋修彩,严灏景.特种动物毛纤维的性能研究[J].东华大学学报(自然科学版),1987,(6):1-6.
    [38]Katoh K, Shibayama M, Tanabe T, et al. Preparation and properties of keratin-poly(vinyl alcohol) blend fiber[J]. Journal of Applied Polymer Science,2004, 91 (2):756-762.
    [39]杨庆斌,于伟东.大豆蛋白纤维及其加工与应用中的问题[J].纺织导报,2004,(6):74-80.
    [40]于伟东.TMT团队内部研究规划报告[R].2008.
    [41]于伟东,储才元.纺织物理[M].上海:东华大学出版社,2002:71-73.
    [42]Hocker H. Hierarchy of alpha-keratin fibers with a glance at skin and Otzi[J]. Journal of Macromolecular Science-Pure and Applied Chemistry,1996, A33 (10): 1437-1446.
    [43]Feughelman M. Mechanical properties and structure of α-keratin fibres[M]. Sydney, NSW, Australia:University of New South Wales Press,1997:139.
    [44]Goldsmith LA. Biochemistry and physiology of the skin[M]. New York: Oxford University Press,1983:113.
    [45]Fraser RDB, David ADP. Macrofibril assembly in trichocyte (hard-α) keratins[J]. Journal Of Structural Biology,2003,142:319-325.
    [46]Hearle JWS. A critical review of the structural mechanics of wool and hair fibres[J]. International Journal Of Biological Macromolecules,2000,27:123-138.
    [47]McKinnon AJ. The self-assembly of keratin intermediate filaments into macro fibrils:Is this process mediated by a mesophase?[J]. Current Applied Physics, 2006,6:375-378.
    [48]Dobb MG, Sikorski J. Find and ultrafine structure of mammalian keratin[J]. Journal of Textile Institute,1969,60:497-498.
    [49]Kulkarni VG, Robson RM, Robson A. Orthocortex and paracortex of Merino wool[J]. Applied Polymer Symposia,1971,18(1):127-146.
    [50]Chapman VG, Bradbury JH. The chemical composition of wool VII. Separation and analysis of orthocortex and paracortexfJ]. Archives Of Biochemistry And Biophysics,1968,127 (1):157-163.
    [51]Feughelman M, Robinson MS. Some mechanical properties of wool fibers in the "Hookean" region from zero to 100%relative humidity[J]. Textile Research Journal,1971,41 (6):469-474.
    [52]Kulkarni VG, Robson RM, Robson A. Studies on the Orthocortex and Paracortex of Merino Wool [J]. Applied Polymer Symposium,1971,18:127-146.
    [53]Simmonds DH. The amino acid composition of keratins. Part V:A Comparison of the chemical composition of Merino wools of differing crimp with that of other animal fibers [C]. Australia,1955:65-74
    [54]Yamauchi K, Yamauchi A, Kusunoki T, et al. Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational proterties of films[J]. Journal Of Biomedical Materials Research,1996,31:439-444.
    [55]Bradbury JH, Chapman GV. The chemical composition of wool I. The separation and microscopic characterization of components produced by ultrasinic disintegrations[J]. Australian Journal of Biological Sciences,1964,17:960-972.
    [56]Elod E, Zahn H. The preparation and properties of cortical cell of wool[J]. Melliand Texttilber,1941,24:245-249.
    [57]Bradbury JH. The structure and chemistry of keratin fibers[J]. Advances in protein chemistry,1973,27:111-211.
    [58]Bradbury JH, Peters DE. Chemical composition of wool. IX. Separation and analysis of macrofibrils[J]. Textile Research Journal,1972,42 (8):471-474.
    [59]Kulkami VG, Bradbury JH. The chemical composition of wool XII. Further studies on cortial cells and macrofibrils[J]. Australian Journal of Biological Sciences, 1974,27 (4):383-396.
    [60]Bradbury JH, Kulkarni VG. The chemical composition of Wool XIII Separation and analysis of microfibrils[J]. Textile Research Journal,1975,45 (1): 79-83.
    [61]Kulkarni VG, Bradbury JH. The chemical composition of wool XIV. The microfibrils[C]. Aachen, Germany 1975:139-151.
    [62]Kulkarni VG, Bradbury JH. The chemical composition of wool, part XIV:the microfibrils[C],1976:139-151.
    [63]范杰.羊毛角蛋白晶须分离及其应用研究[D].上海:东华大学,2009.
    [64]马祖礼.生物与仿生[M].天津:天津科学技术出版社,1984:21.
    [65]陈洪渊.仿生材料与微系统[J].科学中国人,2004,4:28-28.
    [66]Vincent JFV. Biomimetics--a review[J]. Journal of Engineering in Medicine, 2009,223 (8):919-939.
    [67]崔福斋,郑传林.仿生材料[M].北京:化学工业出版社,2004:76.
    [68]贾贤.天然生物材料及其仿生工程材料[M].北京:化学工业出版社,2007:112-113.
    [69]Tirrell DA. Putting a new spin on spider silk[J]. Science,1996,271 (5245): 39-40.
    [70]Hinman M, Dong Z, Xu M, et al. Spider silk:a mystery starting to unravel[J], Results and Problems in Cell Differentiation,1992,19:227-254.
    [71]Thiel BL, Viney C. Beta sheets and spider silk[J]. Science,1996,273 (5281): 1480-1481.
    [72]万军军.以丝素蛋白质为模型研究蜘蛛丝仿生纺丝技术[D]:东华大学,2004.
    [73]Termonia Y. Molecular Modeling of Spider Silk Elasticity[J]. Macromolecules,1994,27 (25):7378-7381.
    [74]许箐.再生蜘蛛丝的成丝方法及其结构与性能[D]:苏州大学,2005.
    [75]毛良,李盛贤,张欣.蜘蛛丝蛋白的结构及其应用[J].生物技术,1999,(05):38-41.
    [76]牛恒尧,王义琴,等.在大肠杆菌中表达蜘蛛拖丝融合蛋白[J].高技术通讯,2001,11(11):5-7.
    [77]刘敏.蜘蛛丝成丝机理的研究[D]:苏州大学,2004.
    [78]潘志娟.蜘蛛丝优异力学性能的结构机理及其模化[D].苏州:苏州大学,2002.
    [79]于文吉,江泽慧,叶克林.竹材特性研究及其进展[J].世界林业研究,2002,(02):50-55.
    [80]Parameswaran N, Liese W. On the fine structure of bamboo fibers[J]. Wood Sci Technol,1976,10 (4):231-246.
    [81]刘文川,邓景屹,魏永良.碳纤维增强C-SiC梯度基复合材料研究[J].高技术通讯,1997,(04):1-6.
    [82]杜金红,苏革,白朔,et al.气相生长纳米碳纤维表面化学镀镍[J].新型炭材料,2000,(04):49-53.
    [83]Li SH, Zhang. RH, Fu SY, et al. A Biomimetic Model of Fiber-reinforced Composite Materials[J]. Journal of Materials Sciences & Technology,1994,10 (1): 34-38.
    [84]Zhou BL. Biomimetic design and test of composite materials[J]. Journal of Materials Science & Technology (Shenyang, China),1993,9(1):9-19.
    [85]田晓滨,赵晓鹏,周本濂.短纤维增强复合材料的仿生模型——Ⅰ哑铃状短纤维增强复合材料的应力分析[J].金属学报,1994,(16):180-186.
    [86]Li BQ. Processing of metals and advanced materials:modeling, design and properties[M]. TMS,1998:251-259.
    [87]Zhu YT, Valdez JA, Shi N, et al. A composite reinforced with bone-shaped short fibers[J]. Scripta Materialia,1998,38 (9):1321-1325.
    [88]Zhu YT, Valdez JA, Beyerlein IJ, et al. Mechanical properties of bone-shaped-short-fiber reinforced composites[J]. Acta Materialia,1999,47 (6): 1767-1781.
    [89]Zhu YT, Beyerlein IJ, Valdez JA, et al. Fracture toughness of a composite reinforced with bone-shaped short fibers[J]. Materials Science & Engineering, A Structural Materials Properties, Microstructure and Processing,2001, A317 (1-2): 93-100.
    [90]Jiang HG, Valdez JA, Zhu YT, et al. The strength and toughness of cement reinforced with bone-shaped steel wires[J]. Composites Science and Technology, 2000,60(9):1753-1761.
    [91]Zhu YT, Beyerlein IJ. Bone-shaped short fiber composites-an overview[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2002,326 (2):208-227.
    [92]Beyerlein IJ, Phoenix SL, Sastry AM. Comparison of shear-lag theory and continuum fracture mechanics for modeling fiber and matrix stresses in an elastic cracked composite lamina[J]. International Journal of Solids and Structures,1996,33 (18):2543-2574.
    [93]白朔,成会明,苏革,et al.哑铃形碳化硅晶须生长的机理[J].材料研究学报,2002,(02):136-140.
    [94]Zhou BL. Improvement of mechanical properties of materials by biomimetic treatment[J]. Fracture and Strength of Solids,1998,145-149 (1,2):765-773.
    [95]Zhou BL. Bio-inspired study of structural materials[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems,2000,11 (1):13-18.
    [96]Zhou BL, He GH, Guo JD. Bio-inspired study on the structure and process of smart materials and structures[J]. Solid Mechanics and Its Applications,2001,89 (Smart Structures and Structronic Systems):73-80.
    [97]周本濂.复合材料的仿生研究[J].物理杂志,1995,24(10):577-582.
    [98]杨亚洲.仿生哑铃型黄麻纤维增强摩擦材料[D]:吉林大学,2006.
    [99]Fu SY, Zhou BL, Lung CW. On the pull-out of fibers with fractal-tree structure and the inference of strength and fracture toughness of composites[J]. Scripta Metallurgica et Materialia,1992, (4):180.
    [100]王玉庆,周本濂,师昌绪.仿生材料学——一门新型的交叉学科[J].材料导报,1995,(04):1-4.
    [101]Gao J, Pan N, Yu WD. A fractal approach to goose down structure[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2006,7(1): 113-116.
    [102]毛传斌,李恒德,崔福斋,et al.无机材料的仿生合成[J].化学进展,1998,(03):12-20.
    [103]刘海涛.无机材料合成[M].北京:化学工业出版社材料科学与工程出版中心,2003:
    [104]张伟刚,成会明,周龙江,et al.纳米陶瓷/炭复合材料自愈合抗氧化行为[J].材料研究学报,1997,(05):487-490.
    [105]陈立庄,高延敏,缪文桦.偶联剂在涂料中的作用机理及其应用[J].全面腐蚀控制,2005,(04):24-27.
    [106]Fan J, Liu JF, He JH. Hierarchy of wool fibers and fractal dimensions[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2008,9 (3): 293-296.
    [107]Fan J, Yu WD. Biomaterials from wool wastes:characterization of cortical cells/chitosan composite[J]. Waste Management & Research,28 (1):44-50.
    [108]Branbury JH, Ley KF, Peters DE. Separation of orthocortical and paracortical cells from wool[J]. Textile Research Journal,1971,43:87-88.
    [109]Bradbury JH, Peters DE. The chemical composition of wool IX. Separation analysis of macrofibrils[J]. Textile Research Journal,1972,42 (8):471-475.
    [110]Kulkarni VG. Further studies on the microfibrils from wool keratin I. The isolation of micro fibrils[J]. Textile Research Journal,1976,48 (11):833-835.
    [111]Irwin GR. Onset of fast crack propagation in high strength steel and alumimum alloys[C]. Italy,1956:289-305.
    [112]Feughelman M, Robinson MS. Some mechanical properties of wool fibers in the "Hookean" region from zero to 100%relative humidity[J]. Textile Research Journal,1975,41:469-474.
    [113]陈惠钊.陈惠钊[M].北京:中国计量,1994:19.
    [114]张晓彤,云自厚,傅若农.液相色谱检测方法[M].北京:化学工业出版社,2000:51-53.
    [115]Ratho T, Panda BC. Estimation of molecular weight of macromolecular proteins in wool fibers by low-angle x-ray scattering[J]. Science and Culture,1969,35 (7):349-351.
    [116]Sambrook J, Fritsch EF, Maniatis T. Molecular cloning:a laboratory manual[M]. Cold Spring Harbor, N.Y.:Cold Spring Harbor Laboratory,1989:67-69.
    [117]莽克强.聚丙烯酰胺凝胶电泳[M].北京:科学出版社,1975:89-103.
    [118]陈来同,唐运.生物化学产品制备技术1[M].北京:科学技术文献出版社,2003:
    [119]黄量,于德泉.紫外光谱在有机化学中的应用[M].北京:科学出版社,1988:33-34.
    [120]清华大学分析化学教研室.现代仪器分析[M].北京:清华大学出版社,1983:657-713.
    [121]Klug HP, Alexander LE,盛世雄.X射线衍射技术:多晶体和非晶质材料[M].北京:冶金工业出版社,1986:422-453.
    [122]Zhu YT, Blumenthal WR, Lowe TC. The tensile strength of short fibre-reinforced composites[J]. Journal of Materials Science,1997,32 (8):2037-2043.
    [123]靳治良,张志宏,李武.无机盐晶须材料的研究进展[J].海湖盐与化工,2002,(05):4-13.
    [124]田雅娟,陈尔凡,程远杰,et al.四脚状氧化锌晶须及应用[J].硅酸盐学报,2000,(02):165-168.
    [125]司徒杰生.化工产品手册.无机化工产品[M].北京:化学工业出版社,2004:113-115.
    [126]沈荣熹.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社,2004:56-57.
    [127]王善元.纤维增强复合材料[M].上海:中国纺织大学出版社,1998:76-77.
    [128]周曦亚.复合材料[M].北京:化学工业出版社,2005:127-128.
    [129]Asloun EM, Nardin M, Schultz J. Stress transfer in single-fiber composites: effect of adhesion, elastic modulus of fiber and matrix and polymer chain mobility[J]. Journal of Materials Science,1989,24 (5):1835-1844.
    [130]Drzal LT. The effect of polymeric matrix mechanical properties on the fiber-matrix interfacial shear strength[J]. Materials Science & Engineering, A Structural Materials Properties, Microstructure and Processing,1990, A126:289-293.
    [131]Netravali AN, Schwartz P, Phoenix SL. Study of interfaces of high-performance glass fibers and DGEBA-based epoxy resins using single-fiber-composite test[J]. Polymer Composites,1989,10 (6):385-388.
    [132]Rao V, Drzal LT. The dependence of interfacial shear strength on matrix and interphase properties[J]. Polymer Composites,1991,12 (1):48-56.
    [133]Zhou XF, Wagner HD, Nutt SR. Interfacial properties of polymer composites measured by push-out and fragmentation tests[J]. Composites, Part A Applied Science and Manufacturing,2001,32A(11):1543-1551.
    [134]Feresenbet E, Raghavan D, Holmes GA. The influence of silane coupling agent composition on the surface characterization of fiber and on fiber-matrix interfacial shear strength[J]. Journal of Adhesion,2003,79 (7):643-665.
    [135]Hampe A, Marotzke C. Experimental results of a pull-out test performed with single-and multi-fiber samples[J]. Journal of Adhesion,2002,78 (2):167-187.
    [136]Kim JK, Zhou LM, Mai YW. Interfacial debonding and fiber pull-out stresses. Part III. Interfacial properties of cement matrix composites[J]. Journal of Materials Science,1993,28 (14):3923-3930.
    [137]Wada A, Fukuda H. Evaluation of fiber/matrix interfacial shearing properties by means of microbond test and finite element analysis[J]. Nippon Fukugo Zairyo Gakkaishi,2000,26 (2):58-64.
    [138]Zhandarov S, Maeder E. Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pull-out tests. Part II:Critical energy release rate[J]. Journal of Adhesion Science and Technology,2003,17 (7):967-980.
    [139]Avella M, Martuscelli E, Raimo M, et al. Polypropylene reinforced with silicon carbide whiskers[J]. Journal of Materials Science,1997,32 (9):2411-2416.
    [140]Plueddemann EP. Silane coupling agents in reinforced plastics[J]. Applied Polymer Symposia,1970, No.14:95-106.
    [141]Pape PG, Plueddemann EP. Improvements in silane coupling agents for more durable bonding at the polymer-reinforcement interface[J]. Annual Technical Conference-Society of Plastics Engineers,1991,49th:1870-1875.
    [142]隗学礼,赵宽放.晶须及其增强塑料复合材料[J].现代塑料加工应用,2001,(6):52-56.
    [143]Mazingue G, Ponchel P, Lubrez JP. The composition and properties of the wool cuticle[J]. Applied Polymer Symposium,1971,18:209-216.
    [144]罗登林,丘泰球,卢群.超声波技术及应用(Ⅲ)——超声波在分离技术方面的应用[J].日用化学工业,2006,36:46-48.
    [145]于伟东,陈莉萍,章悦庭.从羊毛中溶解羊毛角朊蛋白的助剂、及其制备方法和用途[P].2004.200410052924.2.
    [146]于伟东,陈莉萍,章悦庭.一种羊毛角朊蛋白及其制品的制备方法[P].2004.200410052922.3.
    [147]陈国珍.紫外:可见光分光光度法[M].北京:原子能出版社,1983:87-89.
    [148]吴瑾光.近代傅立叶变换红外光谱技术及应用(上卷)[M].北京:科学出版社,1994:143-146.
    [149]翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005:294-295.
    [150]Xie MX, Liu Y. Studies on the hydrogen bonding of aniline's derivatives by FT-IR[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2002,58 (13):2817-2826.
    [151]Pielesz A, Wlochowicz A, Binias W. The evaluation of structural changes in wool fibre keratin treated with azo dyes by Fourier Transform Infrared Spectroscopy[J]. Spectrochimica Acta Part A-molecular And Biomolecular Spectroscopy,2000,56 (7):1409-1420.
    [152]Sefara NL, Magtoto NP, Richardson HH. Structural characterization of beta-lactoglobulin in solution using two-dimensional FT mid-infrared and FT near-infrared correlation spectroscopy[J]. Applied Spectroscopy,1997,51 (4): 536-540.
    [153]Diz M, Jocic D, Infante MR, et al. Reaction of a new thiol cationic surfactant with bunte salt in wool fibers[J]. Textile Research Journal,1997,67 (7): 486-493.
    [154]Gomez N, Julia MR, Lewis DM, et al. The use of FTIR to investigate modifications to wool treated with sodium sulphite and cationic protein hydrolysate[J]. Journal of the Society of Dyers and Colourists,1995,111 (9):281-284.
    [155]Erra P, Gomez N, Dolcet LM, et al. FTIR analysis to study chemical changes in wool following a sulfitolysis treatment[J]. Textile Research Journal,1997, 67 (6):397-401.
    [156]Bendit EG. A quantitative X-ray diffraction atudy of the alpha-beta transformation in wool keratin[J]. Textile Research Journal,1960,30:547-555.
    [157]Cao J, Billows CA. Crystallinity determination of native and stretched wool by W-ray diffraction[J]. Polymer International,1999,48:1027-1033.
    [158]侯秀良,刘启国,王善元.采用WAXD, DSC技术研究山羊绒、羊毛纤维的结晶结构[J].东华大学学报(自然科学版),2004,3(30):87-89.
    [159]Williams ML. The stresses around fault or crack in dissimilar media[J]. Bulletin of the Seismological Society of America,1959,49 (2):199-204.
    [160]Tjong SC, Jiang W. Mechanical and thermal behavior of poly(acrylonitrile-butadiene-styrene)/polycarbonate blends reinforced with potassium titanate whiskers[J]. Polymer Composites,1999,20 (6):748-757.
    [161]Tjong SC, Meng YZ. Morphology and performance of potassium titanate whisker-reinforced polypropylene composites[J]. Journal of Applied Polymer Science, 1998,70 (3):431-439.
    [162]Tjong SC, Meng YZ. Performance of potassium titanate whisker reinforced polyamide-6 composites[J]. Polymer,1998,39 (22):5461-5466.
    [163]马晓燕,袁莉,贾巧英,et al.钛酸钾晶须增强双马来酰亚胺树脂体系的研究[J].材料科学与工艺,2004,12(3):320-323.
    [164]Babout L, Brechet Y, Maire E, et al. On the competition between particle fracture and particle decohesion in metal matrix composites[J]. Acta Materialia,2004, 52 (15):4517-4525.
    [165]Mammoli AA, Bush MB. Effects of reinforcement geometry on the elastic and plastic behavior of metal matrix composites[J]. Acta Metallurgica et Materialia, 1995,43(10):3743-3754.
    [166]Beyerlein IJ. On the influence of fiber shape in bone-shaped short-fiber composites[J]. Composites Science and Technology,2001,61:1341-1357.
    [167]Wetherhold RC, Lee FK. Shaped ductile fibers to improve the toughness of epoxy-matrix composites[J]. Composites Science and Technology,2001,61 (4): 517-530.
    [168]Sujivorakul C, Waas AM, Naaman AE. Pullout response of a smooth fiber with an end anchorage[J]. Journal of Engineering Mechanics-Asce,2000,126 (9): 986-993.
    [169]Chanvillard G. Modeling the pullout of wire-drawn steel fibers[J]. Cement and Concrete Research,1999,29 (7):1027-1034.
    [170]曾滨,金芷生.钢纤维混凝土纤维增强作用[J].北京科技大学学报,1995,17(5):485-488.
    [171]Alwan JM, Naaman AE, Hansen W. Pull-out work of steel fibers from cementitious composites:analytical investigation[J]. Cement & Concrete Composites, 1991,13 (4):247-255.
    [172]Mandelbrot BB. The fractal geometry of nature[M]. San Francisco:W.H. Freeman,1982:78-88.
    [173]姚金波,杨锁廷,刘建中,et al.超拉伸细化羊毛聚集态结构的研究[J].毛纺科技,2003,06:8-11.
    [174]李金萍.分形理论的发展及其研究前景[J].英才高职论坛,2008,4:55-59.
    [175]张成虎,吴发灿,赵龙.分形理论在经济学中的应用[J].统计与决策,2009,25:158-159.
    [176]董连科.分形理论及其应用[M].沈阳:辽宁科学技术出版社,1991:161-162.
    [177]Xie HP. The fractal effect of irregularity of crack branching on the fracture-toughness of brittle materials[J]. International Journal of Fracture,1989,41 (4):267-274.
    [178]赵渠森.复合材料[M].北京:国防工业出版社,1979:51.
    [179]Cox HL. The elasticity and strength of paper and other fibrous materials[J]. British Journal of Applied Physics,1952,3:72-79.
    [180]Chang CS, Conway HD. Bond stresses in fiber reinforced composites subjected to uniform tension[J]. Journal of Composite Materials,1968,2:168-169.
    [181]Fukuda H, Chou TW. A probabilistic theory of the strength of short-fibre composites with variable fibre length and orientation[J]. Journal of Materials Science, 1982,17(4):1003-1011.
    [182]Kelly A. Strong Solids[M]. Oxford:Clarendon Press,1973:78.
    [183]Kelly A, Tyson WR. Tensile properties of fiber-reinforced metals. Copper/tungsten and copper/molybdenum[J]. Journal of the Mechanics and Physics of Solids,1965,13 (6):329-350.
    [184]Ohsawa T, Nakayama A, Miwa M, et al. Temperature dependence of critical fiber length for glass fiber-reinforced thermosetting resins[J]. Journal of Applied Polymer Science,1978,22 (11):3203-3212.
    [185]Duggan TV, Byrne J. Fatigue as a design criterion[M]. London:Macmillan, 1977:66-67.
    [186]Griffith AA. Phenomena of pupture and flow in solid[J]. Philosophical transactions of the royal society,1920, A221:163-198.
    [187]Cohen LJ, Romualdi JP. Stress, strain and displacement fields in a composile material reinforced with discontinuous fibers[J]. Journal of the Franklin Institute,1967,284 (6):388-406.
    [188]Swamy RN, Mangat PS. A theory for the flexural strength of steel fiber reinforced concrete[J]. Cement and Concrete Research,1974,4 (2):313-325.
    [189]Tandon GP, Pagano NJ. Modeling of interfacial debonding in brittle matrix composites[C],1992:307-316.
    [190]Xu HH. Whisker-reinforced heat-cured dental resin composites:effects of filler level and heat-cure temperature and time[J]. Journal of Dental Research,2000, 79(6):1392-1397.
    [191]Xu HH, Martin TA, Antonucci JM, et al. Ceramic whisker reinforcement of dental resin composites[J]. Journal of Dental Research,1999,78 (2):706-712.
    [192]]王耀先.复合材料结构设计[M].北京:化学工业出版社,2001:59-64.
    [193]Dow NF. Study of stresses near a discontinuity in a filamen-reinforced composite metal[R]. Spaee Sei. Lab. Missile and Space Div. Report GECT.1963.
    [194]Carrara AS, McGarry FJ. Matrix and interface stresses in a discontinuous fiber composite model [J]. Journal of Composite Materials,1968,2 (2):222-243.
    [195]Chen PE. Strength properties of discontinuous fiber composites[J]. Polymer Engineering and Science,1971,11 (1):51-56.
    [196]王同国,马克强,王科理.高分子材料弹性模量、泊松系数、切变模的测试[J].试验技术与试验机,2006,46(3):45-46.
    [197]Chabrier F, Lloyd CH, Scrimgeour SN. Measurement at low strain rates of the elastic properties of dental polymeric materials[J]. Dental Materials,1999,15 (1):33-38.
    [198]刘瑞堂,刘文博,刘锦云.工程材料力学性能[M].哈尔冰:哈尔滨工业大学出版社,2001:99-102.
    [199]Brandrup J, Immergut EH. Polymer handbook[M]. New York:Wiley,1989: 81-83.
    [200]Fukuda H, Chou T. An Advanced Shear-Lag Model Applicable to Discontinuous Fiber Composites[J]. Journal of Composite Materials,1981,15:79-91.
    [201]Goh KL, Aspden RM, Hukins DWL. Review:finite element analysis of stress transfer in short-fibre composite materials[J]. Composites Science and Technology,2004,64 (9):1091-1100.
    [202]Xia Z, Curtin WA, Okabe T. Green's function vs. shear-lag models of damage and failure in fiber composites[J]. Composites Science and Technology,2002, 62(10-11):1279-1288.
    [203]Balasivanandha Prabu S, Karunamoorthy L. Microstructure-based finite element analysis of failure prediction in particle-reinforced metal-matrix composite[J]. Journal of Materials Processing Technology,2008,207 (1-3):53-62.
    [204]Gent AN, Wang C. Matrix cracking initiated by fiber breaks in model composites[J]. Journal of Materials Science,1992,27 (9):2539-2548.
    [205]Jacobs E, Verpoest I. Finite element modeling of damage development during longitudinal tensile loading of coated fiber composites[J]. Composites, Part A Applied Science and Manufacturing,1998,29A (9-10):1007-1012.
    [206]Johnson AC, Hayes SA, Jones FR. An improved model including plasticity for the prediction of the stress in fibres with an interface/interphase region[J]. Composites, Part A Applied Science and Manufacturing,2004,36A (2):263-271.
    [207]Kim JK, Lu S, Mai YW. Interfacial debonding and fiber pull-out stresses. Part IV. Influence of interface layer on the stress transfer[J]. Journal of Materials Science,1994,29 (2):554-561.
    [208]Yeoh OH. Strain energy release rates for some classical rubber test pieces by finite element analysis[J]. Elastomers and Components,2006:75-89.
    [209]Banthia N, Sheng J. MICRO-FIBER REINFORCED CEMENT COMPOSITES.2. FLEXURAL RESPONSE AND FRACTURE STUDIES[J]. Canadian Journal of Civil Engineering,1995,22 (4):668-682.
    [210]Banthia N, Sheng J. Fracture toughness of micro-fiber reinforced cement composites[J]. Cement & Concrete Composites,1996,18 (4):251-269.
    [211]Lange DA, Ouyang C, Shah SP. Behavior of cement based matrices reinforced by randomly dispersed microfibers[J]. Advanced Cement Based Materials, 1996,3(1):20-30.
    [212]Lange DA, Ouyang C, Shah SP. Behavior of cementitious composites with randomly dispersed microfibers[J]. Materials for the New Millennium, Proceedings of the Materials Engineering Conference,4th, Washington, D C, Nov 10-14,1996,1996, 1:281-287.
    [213]Mobasher B, Stang H, Shah SP. Microcracking in fiber reinforced concrete[J]. Cement and Concrete Research,1990,20 (5):665-676.
    [214]Sih GC, DiTommaso A. Fracture mechanics of concrete:structural application and numerical calculation[M]. MA, USA:Kluwer Academic Publishers, 1985:77-79.
    [215]王瑁成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997:122-123.
    [216]刘国庆,杨庆东.ANSYS工程应用教程.机械篇[M].北京:中国铁道出版社,2003:31-33.
    [217]Peng X, Cao J. A dual homogenization and finite element approach for material characterization of textile composites[J]. Composites Part B:Engineering, 2002,33(1):45-56.
    [218]Hassani B, Hinton E. A review of homogenization and topology opimization II--analytical and numerical solution of homogenization equations[J]. Computers & Structures,1998,69 (6):719-738.
    [219]Hassani B, Hinton E. A review of homogenization and topology optimization I--homogenization theory for media with periodic structure[J]. Computers & Structures,1998,69 (6):707-717.
    [220]Geni M, Kikuchi M. Damage analysis of aluminum matrix composite considering non-uniform distribution of SiC particles[J]. Acta Materialia,1998,46 (9): 3125-3133.
    [221]Segurado J, Gonzalez C, Llorca J. A numerical investigation of the effect of particle clustering on the mechanical properties of composites[J]. Acta Materialia, 2003,51 (8):2355-2369.
    [222]Lloyd DJ. Aspects of fracture in particulate-reinforced metal matrix composites[J]. Acta Metallurgica et Materialia,1991,39 (1):59-71.
    [223]Geni M, Kikuchi M, Hirano K. Fracture-analysis of whisker reinforced aluminum-alloys[C],1991:929-934.
    [224]Yang QS, Becker W. Numerical investigation for stress, strain and energy homogenization of orthotropic composite with periodic microstructure and non-symmetric inclusions[J]. Computational Materials Science,2004,31 (1-2): 169-180.
    [225]雷友锋,魏德明,高德平.细观力学有限元法预测复合材料宏观有效弹性模量[J].燃气涡轮试验与研究,2003,16(3):11-15,18.
    [226]龚曙光,陈艳萍,谢桂兰.均匀化理论在多孔板结构优化中的应用研究[J]. 机械科学与技术,2004,23 (8):995-998.
    [227]武达机.羊毛拉伸关键因素的研讨[J].染整科技,2004,3:20-22.
    [228]Tripathi D, Chen F, Jones FR. A comprehensive model to predict the stress fields in a single fiber composite[J]. Journal of Composite Materials,1996,30 (14): 1514-1538.
    [229]Li ZJ, Sun BZ, Gu BH. FEM simulation of 3D angle-interlock woven composite under ballistic impact from unit cell approach[J]. Computational Materials Science,2010,49(1):171-183.
    [230]Cox BN, Dadkhah MS, Inman RV, et al. Mechanisms of compressive failure in 3D composites[J]. Acta Metallurgica et Materialia,1992,40 (12): 3285-3298.
    [231]Pegoretti A, Accorsi ML, Dibenedetto AT. Fracture toughness of the fiber-matrix interface in glass-epoxy composites[J]. Journal of Materials Science, 1996,31 (23):6145-6153.
    [232]盛和太,喻海良,范训益ANSYS有限元原理与工程应用实例大全[M].北京:清华大学出版社,2006:91-93.
    [233]Holmes GA, Peterson RC, Hunston DL, et al. E-glass/DGEBA/m-PDA single fiber composites:interface debonding during fiber fracture[J]. Polymer Composites,2007,28 (5):561-574.
    [234]Fraser WA, Ancker FH, Dibenedetto AT, et al. Evaluation of surface treatments for fibers in composite materials[J]. Polymer Composites,1983,4 (4): 238-248.
    [235]Nairn JA. A variational mechanics analysis of the stresses around breaks in embedded fibers[J]. Mechanics of Materials,1992,13 (2):131-154.
    [236]Rice JR, Sih GC. Plane problems of cracks in dissimilar media[J]. Journal of applied mechanics,1965,32:418-423.
    [237]Rosen BW, Zweben CH. Tensile failure criteria for fiber composite materials[R]. Mater. Sci. Corp.,Blue Bell,PA,USA.1972,162.
    [238]Feillard P, Desarmot G, Favre JP. Theoretical aspects of the fragmentation test[J]. Composites Science and Technology,1993,50 (2):265-279.
    [239]McCartney LN. New theoretical model of stress transfer between fiber and matrix in a uniaxially fiber-reinforced composite[R]. Div. Mater. Appl.Natl. Phys. Lab., Teddington/Middlesex,UK.1988,215-244.
    [240]Melanitis N, Galiotis C, Tetlow PL, et al. Interfacial shear stress distribution in model composites. Part 2:Fragmentation studies on carbon fiber-epoxy systems[J]. Journal of Composite Materials,1992,26 (4):574-610.
    [241]Tripathi D, Jones FR. Single fiber fragmentation test for assessing adhesion in fiber reinforced composites[J]. Journal of Materials Science,1998,33 (1):1-16.
    [242]Guild FJ, Vlattas C, Galiotis C. Modeling of stress transfer in fiber composites[J]. Composites Science and Technology,1994,50 (3):319-332.
    [243]张建民,秦荣.等参奇异裂纹单元的研究[J].广西科学,2000,7(4):257-259.
    [244]Nairn JA, Liu YC, Galiotis C. Analysis of stress transfer from the matrix to the fiber through an imperfect interface:Application to Raman data and the single-fiber fragmentation test[J]. ASTM Special Technical Publication,1996, STP 1290 (Fiber, Matrix, and Interface Properties):47-66.
    [245]Liu HY, Zhou LM, Mai YW, et al. Fibre-matrix interface characterization and fibre fragmentation test[J]. Interfacial Effects in Particulate, Fibrous and Layered Composite Materials,1996,116-:121-132.
    [246]Liu HY, Mai YW, Ye L, et al. Stress transfer in the fibre fragmentation test.3. Effect of matrix cracking and interface debonding[J]. Journal of Materials Science,1997,32 (3):633-641.
    [247]Liu HY, Mai YW, Ye L. Finite element analysis of stress distributions in a fibre/matrix fragment[J]. Fracture and Strength of Solids, Pts 1 and 2,1998,145-9: 613-619.
    [248]Fukuda H, Kawata K. Stress distribution of laminates including discontinuous layers[J]. Fibre Science and Technology,1980,13 (4):255-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700