用户名: 密码: 验证码:
直接甲酸燃料电池催化剂的设计、制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于传统化石燃料的过度利用带来的环境污染、气候变化和能源危机,人们已经强烈的意识到未来的可持续社会,必然需要建立在可持续能源的开发和利用的基础上。而燃料电池作为一种高效的将化学能转化为电能的能源转化装置,在可持续能源利用环节具有重要地位。其中质子交换膜燃料电池由于工作温度低、结构紧凑,在汽车等移动设备上具有潜在的应用前景。当阳极燃料使用携带方便的液态燃料时,质子交换膜燃料电池在小型可移动电子装备上具有重要应用价值。目前阻碍质子交换膜燃料电池发展的主要障碍是大量贵金属催化剂的使用导致的价格昂贵。当阳极使用纯氢作为燃料时,由于氢气的氧化过程非常快,阳极催化剂载量可以降到很低,而阴极氧气的还原却是个非常缓慢的过程,因而需要大量的催化剂,所以阴极催化剂的性能是限制氢氧燃料电池发展的主要障碍。当阳极使用液体燃料比如甲醇、甲酸等时,由于这些有机小分子的氧化过程比较缓慢,而且氧化过程中还极易生成使催化剂中毒的一氧化碳中间产物,因而对于直接液体燃料电池,阳极和阴极都需要高效催化剂的设计和开发。在液体燃料电池中,直接甲酸燃料电池由于具有较高的理论开路电压、较低的燃料渗透、无毒、不易燃等优点,表现出比直接甲醇燃料电池更大的应用前景,最近几年引起了越来越多研究者的兴趣。本论文主要针对直接甲酸燃料电池阳极和氢氧燃料电池阴极进行催化剂的设计和制备。具体的研究内容如下:
     1)纳米多孔金属负载铂催化剂,特别是纳米多孔金负载单原子层铂催化剂,表现出比传统的Pt/C催化剂更高的铂利用率和电催化活性。但是由于纯铂表面容易被甲酸氧化过程中产生的一氧化碳中间产物所毒化,催化剂的整体催化效率很低。大量电化学和表面科学的研究证明较小的铂原子有利于甲酸通过直接氧化路径进行反应,而产生一氧化碳中毒产物则需要较大的铂原子组合。基于甲酸电氧化不同路径需要不同结构铂原子组合的认识,以及我们对于纳米多孔金负载单层铂催化剂的制备经验,我们设计并制备了一种低铂、高效、高稳定性的甲酸电催化剂。我们通过欠电位沉积结合原位置换的方法,将一个原子层的铂沉积到纳米多孔金薄膜表面,然后通过相同的方法将亚单原子层的金沉积到单原子层铂表面,由于只有一个原子层,铂的载量在2微克每平方厘米,为历来报道的最低值。由于外层的金原子簇将本来连续的单原子层铂分割成不连续的小的铂的原子组合,甲酸在小的铂的原子组合上通过直接路径进行反应,避免了一氧化碳的产生,从而使催化剂的活性提高了140多倍。这种路径的改变也通过原位电化学红外光谱实验进行了证实。同时,由于外层金的覆盖使铂更加难以被氧化,从而提高了催化剂的稳定性。经过2800圈的循环伏安扫描,其电催化性能降低仅为17.4%,稳定性甚至超过了碳载铂催化剂(性能降低40%)。
     2)传统的将铂沉积到纳米多孔金表面的方法(气液相化学镀法和欠电位沉积结合原位置换法)通常制备出来的铂表面都是连续的原子,因而在甲酸通氧化过程中容易产生一氧化碳从而使催化剂中毒。通过将亚单原子层金沉积到铂的表面可以将连续的铂分割成小的铂的原子组合,但是这样被金覆盖的铂将被浪费掉。我们发展了一种新的将铂沉积到纳米多孔金表面的方法:分子吸附-电化学还原法。我们发现氯铂酸根离子可以吸附在纳米多孔金表面,通过电化学还原,吸附的离子可以被还原成铂原子并沉积到纳米多孔金表面。由于铂的覆盖度只有1/7个原子层,而且纳米多孔金孔壁上丰富的台阶,沉积的铂原子很难团聚形成大的原子组合。通过电化学研究发现,通过该方法制备的对甲酸电催化表现出极高的催化活性,接近了通过铋覆盖铂纳米颗粒催化剂计算出来的理论最高催化活性,是Pt/C催化剂的380倍。同时该催化剂在燃料电池中也表现出较高的铂质量比性能。通过重复的吸附沉积,可以控制铂的沉积量和结构,从而制备出对其他有机小分子氧化反应活性很高的催化剂。我们的研究发现,该方法制备的催化剂对甲醇和乙醇氧化都表现出比商业Pt/C催化剂高一个数量级的活性。
     3)传统的碳载铂催化剂在燃料电池膜电极组合体制备过程中,需要和Nafion混合刷涂到碳纸表面,而这种方法通常会导致催化层中电子的传导受到影响,而当催化层较厚时,对溶液的传质也会不利,从而使电池性能受到限制。虽然比铂碳催化剂性能提高上百倍的催化剂大量存在,但是很少有能够在燃料电池中表现出同样性能的催化剂结构。根据我们对甲酸氧化过程的理解以及对燃料电池中阳极催化层结构的认识,我们制备了一种高效的直接甲酸燃料电池阳极催化剂:纳米多孔金薄膜负载铂铋催化剂。由于高的催化效果和理想的电极结构,纳米多孔金薄膜负载铂铋催化剂在铂载量低至3微克每平方厘米时,在燃料电池中仍然表现出较高的催化活性。和商业Pt/C催化剂相比,纳米多孔金薄膜负载铂铋催化剂归一化到铂载量的性能普遍提高1-2个数量级。而且该催化剂对于甲酸中常见的杂质分子比如甲醇、甲酸甲酯和乙酸等具有较强的抵抗能力。经过半年多的寿命检测,纳米多孔金负载铂铋催化剂性能未见明显衰减。基于该催化剂我们组装了一个最高功率为40W的电堆,并研究了催化剂在电堆中的性能。结果发现,由于甲酸较低的燃料渗透性,其燃料利用率比甲醇燃料电池高很多,而能量效率和基于传统的碳载铂催化齐J相当,具有很大的应用前景。
     4)因为具有三维多孔结构、高比表面积、动力学可控的孔壁尺寸和优良的导电性,去合金化法制备的纳多孔金属已经被证实在催化、传感、传动装置及电催化领域具有广泛的应用价值。特别是,大面积、无支撑和无裂缝的纳米多孔金薄膜材料可以通过在硝酸溶液表面腐蚀商业金银合金薄膜而获得。这种先进的材料已被证实可作为高效的电极材料应用于燃料电池、超级电容器和锂离子电池中。但是传统的基于腐蚀法制备纳米多孔金属的过程都需要强腐蚀性溶液的使用,或者需要电化学辅助,这对操作人员、设备及环境都是潜在的威胁。我们发现通过金属离子和合金中活泼金属的置换反应可以制备纳米多孔金属。该方法不涉及强腐蚀性溶液的使用,是一种环保简便的制备纳米多孔金属的方法。通过氯铂酸和金银合金薄膜之间的置换反应,我们制备了具有高比表面积的纳米多孔铂金合金薄膜。由于材料中铂的含量很低,大部分铂以小的原子组合存在,我们发现该方法制备的纳米多孔铂金合金薄膜具有较高的甲酸电氧化催化活性和稳定性。这种新型、高效、绿色的纳米多孔金属制备方法不但开拓了纳米多孔金属的制备方法,还为纳米多孔金属的实际应用奠定了基础。
     5)设计和制备高活性、高稳定性的氧还原催化剂对质子交换膜燃料电池的应用具有重要意义。目前,质子交换膜燃料电池阴极催化剂是基于碳载铂催化剂的。尽管铂纳米颗粒被高度负载在碳粉上,但是Pt/C催化剂的铂质量比活性仍然要提高最少4倍,才能满足商业需要。另外,由于铂纳米颗粒和碳粉之间仅有弱的吸附作用,在长期的工作状态下,铂纳米颗粒容易团聚成大的颗粒从而失去比表面积和活性。通过简单的两步腐蚀法,Pt/Ni/Al三元合金中的活性组分被依次高度控制的腐蚀出来,从而制备了一种新颖的纳米多孔表面合金结构。该结构不但具有开孔的双连续泡沫状结构,其3纳米左右大小的孔壁还具有合金的内核和基本纯铂的表面。由于没有任何载体的支撑,这种纳米多孔表面合金结构在氧还原反应中表现出比Pt/C催化剂更高的稳定性和催化活性。在相对于可逆氢电极(RHE)0.9V情况下,纳米多孔Pt/Ni表面合金结构表现出高达1.23mA cm-2的比表面积活性。由于制备方法简单,具有干净的催化剂表面,高的氧还原活性和稳定性,这种纳米多孔结构有望作为阴极催化剂应用在质子交换膜燃料电池中。
The extensive usage of fossil fuel has caused significant environmental pollution, climate change and energy crisis. Our future sustainable society has to be built on the basis of development and utilization of sustainable energy. As an efficient kind of energy conversion devices, fuel cells play critical role in the energy utilization sector. With compact structure and low operation temperature, polymer electrolyte membrane fuel cells (PEMFCs) have great application potential in automobiles. When powered by portable liquid fuels, PEMFCs could be used as power sources of portable electronic devices. Now, the large scale application of PEMFCs has been greatly hindered by the high cost which was caused by massive usage of precious metals as catalysts. When fueled by pure hydrogen, the obstacle of PEMFCs is the cathode side because the hydrogen oxidation is a very fast process and catalyst loading at anode could be very low. In contact, the oxygen reduction reaction at cathode side is very slow even on the most active metal surface. When powered by liquid fuels such as methanol and formic acid, both anode and cathode catalysts should be improve to decrease the catalyst loadings as the oxidations of liquid fuels are very slow and catalysts could be readily poisoned by carbon monoxide intermediate. With higher theoretical open circuit potential, lower fuel cross over, non-toxic and non-flammable properties compared with methanol, formic acid is a more promising fuel for liquid fuel cells. In this dissertation, we developed high performance electrocatalysts for both PEMFCs cathode and direct formic acid fuel cells (DFAFCs) anode.
     1) Nanoporous metal supported catalysts, especially nanoporous gold supported monolayer Pt catalysts, exhibit much higher catalytic activity and Pt utilization compared with traditional Pt/C catalysts. However, as pure Pt surface could be easily poisoned by CO intermediate in formic acid electrooxidation reaction, the catalytic activity of this kind of material should be much improved. Extensive electrochemistry and surface science researches have demonstrated that small Pt ensembles could facilitate the direct reaction path in formic acid electrooxidation, while the formation of CO poisoning intermediate need much larger Pt ensembles. We have developed a low Pt loading, high performance and high stability electrocatalyst based on our understanding of formic acid electrooxidation mechanism and experience in nanoporous metal fabrication. Using under potential deposition mediated method, we deposited monolayer Pt and sub-monolayer Au sequentially on nanoporous gold membrane substrate. With only monolayer Pt, the Pt loading reaches2μg cm-2, which is one of the lowest values reported. As the Pt monolayer was divided into small Pt ensembles, formic acid electrooxidation take place via the direct path and the formation of CO was greatly inhibited and results in a140-fold catalytic activity enhancement compared with Pt/C catalyst. The changing of reaction paths was demonstrated by in-situ surface enhanced infrared spectroscopy. In addition, with the protection of outer layer Au clusters, the catalyst exhibits high stability which was caused by the inhibition of Pt oxidation. After2800cycles'excursion, the catalytic activity decline of this catalyst is only17.4%which is much lower than Pt/C catalyst (declined for40%).
     2) The Pt surfaces made by traditional plating methods (gas-liquid phase chemical plating method and under potential deposition mediated method) are usually continuous which are easily poisoned by CO intermediate during the formic acid electrooxidation. Further depositing sub-monolayer Au could divide the surface into small Pt ensembles; however, large amount of Pt atoms will be covered by Au and wasted. We have developed a molecule self-assembly and electro-reduction method to deposit Pt onto nanoporous gold. We found that PtCl62-ions could form a stable monolayer structure on the ligament surface of nanoporous gold. With electro-reduction, Pt atoms could be deposited onto nanoporous gold. As the Pt coverage is only1/7monolayer and the extensive existed steps on the ligament surface of nanoporous gold, it is hard for Pt atoms to form large ensembles. With perfect Pt utilization and structure, this material shows380-fold enhanced Pt mass specific catalytic activity compared with Pt/C catalyst and approaching the theoretically highest value calculated based on Bi covered Pt catalyst. More importantly, this catalyst show much improved Pt mass specific performance in real fuel compared with Pt/C catalyst and good stability. Repeating the molecule self-assembly and electro-reduction method, the Pt loading and structure could be tuned easily. A series of high performance catalysts could be prepared easily with typically one order of magnitude enhanced activities toward small molecule oxidation such as methanol and ethanol compared with Pt/C catalyst.
     3) Within the membrane electrode assembly (MEA) preparation using the traditional Pt/C based catalyst, binders such as Nafion ionomers should be used to fix Pt/C particles onto the diffusion layers which would inevitably increase the electron transportation resistance. Moreover, as Pt/C catalysts are easily poisoned by carbon monoxide intermediate, large amount of catalysts should be used to overcome the large over-potential which in turn further increase the electronic resistance and reactants diffusion resistance. This is why there are lots of high activity electrocatalyst but can not show the same high performance in real fuel cells. On the basis of our understanding on formic acid electrooxidation mechanism and the desired anode structure, we developed a high performance anode for direct formic acid fuel cells which consists of a PtBi catalyst supported on nanoporous gold membrane substrate (NPG-Pt-Bi). With high performance and unique structure, the anode Pt loading of NPG-Pt-Bi catalyst could approach micrograms per centimeters with the same maximum power density with Pt/C anode with Pt loading of2.2mg cm-2. Typically, the Pt mass specific performances of NPG-Pt-Bi catalysts are1-2orders of magnitude higher than commercial Pt/C catalyst. The fuel cell with NPG-Pt-Bi catalyst could be fueled with formic acid with some commonly contaminants such as methanol, methyl formate and acetic acid. During the half-year stability test, the fuel cell with NPG-Pt-Bi catalyst show almost no performance decline which means good stability. Then we assembled a fuel cell stack with maximum power of40W. Compared with stacks using methanol as fuel, the NPG-Pt-Bi catalyst based stack show much improved fuel utilization because of the less fuel cross over of formic acid and the energy efficiency is comparable with reported stacks with Pt/C catalyst.
     4) With3-D porous structure, high surface area, kinetically controlled ligament size, and good electrical conductivity, nanoporous metals made by dealloying has been demonstrated for a variety of interesting applications such as catalysis, sensing, actuation, and electrocatalysis. Particularly, large area, free standing, and crack free nanoporous gold leaf could be made by dealloying commercially available white gold leaf on the solution surface of nitric acid. This kind of advanced materials has been demonstrated to be highly effective electrode substrate in fuel cells, supercapacitors, and Li ion batteries. However, the commonly used dealloying method involves the use of harsh corrosion regents such as HNO3and sometimes electrochemical method is needed to assist the dealloying process. We found the galvanic replacement reaction between noble metal ions and active component in alloy could result in nanoporous metals. Without the usage of harsh corrosion regent, this method is a green and facile method to make nanoporous metals. We have prepared high surface area nanoporous PtAu alloy leaf using the galvanic replacement reaction between white gold leaf and H2PtCl6solution. With small Pt ensemble on the surface, we found nanoporous PtAu alloy leaf show high active and stability in formic acid electrooxidation reaction. This facile and green method have open a new way to make nanoporous metals and pave the way for the application of this kind of important materials.
     5) It is of critical importance to design and fabricate highly active and durable oxygen reduction reaction (ORR) catalysts for the application of proton exchange membrane fuel cells (PEMFCs). At present, the state-of-the-art commercial cathode catalysts for PEMFCs are in the form of carbon supported Pt nanoparticles. Despite the high dispersion of Pt particles, the mass specific activity of Pt/C should be increased at least four times in order to meet the application demand. Moreover, as the Pt nanoparticles only have weak interactions with the carbon support, they tend to aggregate to lose surface area and performance during the long-term operation. By a simple two-step dealloying process, the active components in a Pt/Ni/Al ternary alloy were sequentially leached out in a highly controllable manner, generating a novel nanoporous surface alloy structure. Characterized by an open bicontinuous spongy morphology, the resulting nanostructure is interconnected by~3nm diameter ligaments which are comprised of a Pt/Ni alloy core and a nearly pure Pt surface. In the absence of any catalyst support, these nanoporous surface alloys show much enhanced durability and electrocatalytic activity for ORR as compared to the commercial Pt/C catalyst. At a high potential, such as0.9V versus RHE, nanoporous Pt/Ni surface alloys show a remarkable specific activity of1.23mA cm-2. These nanomaterials thus hold great potential as cathode catalysts in PEMFCs in terms of facile preparation, clean catalyst surface, and enhanced ORR activity and durability.
引文
[1]N. S. Lewis, D. G. Nocera, Powering the planet:Chemical challenges in solar energy utilization, PNAS,2006,103,15729-15735.
    [2]Q. Schiermeier, J. Tollefson, T. Scully, A. Witze, O. Morton, Electricity without carbon, Nature,2008,454(14),816-823.
    [3]Committee on Alternatives and Strategies for Future Hydrogen Production and Use, The hydrogen economy:opportunities, costs, barriers, and R&D needs, USA: National Research Council, National Academies Press,2004.
    [4]M. Z. Jacobson, W. G. Colella, D. M. Golden, Cleaning the air and improving health with hydrogen fuel-cell vehicles, Science,2005,308,1901-1905.
    [5]F. R. Service, New catalyst marks major step in the march toward hydrogen fuel, Science,2008,321,620.
    [6]W. R. Grove, On voltaic series and the combination of gases by platinum, Philosophical Magazine and Journal of Science,1839,14(86),127-130.
    [7]http://en.wikipedia.org/wiki/Fuel_cell#cite_note-3
    [8]http://www.fuelcelltoday.com/about-fuel-cells/history
    [9]B. C. H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature,2001,414, 345-352.
    [10]Basic Research Needs for the Hydrogen Economy Report on the Basic Energy Sciences Workshop on Hydrogen Production, Storage, and Use, Second Printing, February 2004. http://www.sc.doe.gov/bes/hydrogen.pdf
    [11]S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Khob, T. H. Lee, Effects of Nafion impregnation on performances of PEMFC electrodes, Electrochimica Acta,1998,43(24),3693-3701,.
    [12]G. Li, P. G. Pickup, Ionic conductivity of PEMFC electrodes-effect of Nafion loading, Journal of The Electrochemical Society,2003,150(11),745-752.
    [13]I. Bar-Ona, R. Kirchaina, R. Roth, Technical cost analysis for PEM fuelcells, Journal of Power Sources,2002,109,71-75.
    [14]E. J. Carlson, P. Kopf, J. Sinha, S. Sriramulu, Y. Yang, Cost analysis of PEM fuel cell systems for transportation, Subcontract Report NREL/SR-560-39104,2005.
    [15]Y. Sun, J. Lu, L. Zhuang, Rational determination of exchange current density for hydrogen electrode reactions at carbon-supported Pt catalysts, Electrochimica Acta,2010,55,844-850.
    [16]B. Genorio, D. Strmcnik, R. Subbaraman, D. Tripkovic, G. Karapetrov, V. R. Stamenkovic, S. Pejovnik, N. M. Markovic, Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules, Nat. Mater,2010,9,998-1003.
    [17]B. Genorio, R. Subbaraman, D. Strmcnik, D. Tripkovic, V. R. Stamenkovic, N. M. Markovic, Tailoring the selectivity and stability of chemically modified platinum nanocatalysts to design highly durable anodes for PEM fuel cells, Angew. Chem. Int. Ed.,2011,50,5468-5472.
    [18]S. Wasmusa, A. Kuver, Methanol oxidation and direct methanol fuel cells:a selective review, Journal of Electroanalytical Chemistry,1999,461(1-2),14-31.
    [19]A. Heinzel, V. M. Barragan, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells, Journal of Power Sources,1999,84, 70-74.
    [20]M. Neurock, M. Janikb, A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt, Faraday Discuss.,2008,140,363-378.
    [21]Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, Formate, an active intermediate for direct oxidation of methanol on Pt electrode, J. Am. Chem. Soc.,2003,125, 3680-3681.
    [22]H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D. P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell, Journal of Power Sources,2006, 155,95-110.
    [23]L. Zhuang, J. Jin, H. D. Abruna, Direct observation of electrocatalytic synergy, J. Am. Chem. Soc.,2001,129,11033-11035.
    [24]E. Antolini, Formation of carbon-supported PtM alloys for low temperature fuel cells:a review, Materials Chemistry and Physics,2003,78(3),563-573.
    [25]B. E. Hayden, M. E. Rendall, O. South, Electro-oxidation of carbon monoxide on well-ordered Pt(111)/Sn surface alloys, J. Am. Chem. Soc.,2003,125, 7738-7742.
    [26]E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin, T. E. Mallouk, Combinatorial electrochemistry:a highly parallel, optical screening method for discovery of better electrocatalysts, Science,1998, 280,1735-1737.
    [27]H. Yang, J. Zhang, K. Sun, S. Zou, J. Fang, Enhancing by weakening: electrooxidation of methanol on Pt3Co and Pt nanocubes, Angew. Chem. Int. Ed.,2010,49,6848-6851.
    [28]A. Cuesta, At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum, J. Am. Chem. Soc.,2006,125, 13332-13333.
    [29]X. Yu, P. G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC), Journal of Power Sources,2008,182,124-132.
    [30]C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, Tom Barnard, Direct formic acid fuel cells, Journal of Power Sources,2002,111,83-89.
    [31]K. J. Jeong, C. M. Miesse, J. H. Choi, J. Lee, J. Hanb, S. P. Yoon, S. W. Namb, T. H. Limb, T. G. Lee, Fuel crossover in direct formic acid fuel cells, Journal of Power Sources,2007,168,119-125.
    [32]H. Miyake, T. Okada, G. Samjeske, M. Osawa, Formic acid electrooxidation on Pd in acidic solutions studied by surface enhanced infrared absorption spectroscopy, Phys. Chem. Chem. Phys.,2008,10,3662-3669.
    [33]J. Wang, H. Zhang, K. Jiang, W. Cai, From HCOOH to CO at Pd electrodes:a surface-enhanced infrared spectroscopy study, J. Am. Chem. Soc.,2011,133, 14876-14879.
    [34]R. Parsons, T. J. VanderNoot, The oxidation of small organic molecules:A survey of recent fuel cell related research, J. Electroanal. Chem.,1988,257,9-45.
    [35]G. Samjeske, A. Miki, S. Ye, M. Osawa, Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy, J. Phys. Chem. B,2006,110, 16559-16566.
    [36]G. Samjesk, M. Osawa, Current oscillations during formic acid oxidation on a Pt electrode:insight into the mechanism by time-resolved IR spectroscopy, Angew. Chem. Int. Ed.,2005,44,5694-5698.
    [37]Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm, Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell, Angew. Chem. Int. Ed.,2006,45,981-985.
    [38]Y. Chen, M. Heinen, Z. Jusys, R. J. Behm, Bridge-bonded formate:active intermediate or spectator species in formic acid oxidation on a Pt film electrode?, Langmuir,2006,22,10399-10408.
    [39]M. Osawa, K. Komatsu, G. Samjeske, T. Uchida, T. Ikeshoji, A. Cuesta, C. Gutierrez, The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum, Angew. Chem. Int. Ed.,2011,50, 1159-1163.
    [40]M. Weber, J. T. Wang, S. Wasmus, R. F. Savinell, Formic acid oxidation in a polymer electrolyte fuel cell, J. Electrochem. Soc.,1996,143,158-160.
    [41]D. Pletcher, V. Solis, A further investigation of the catalysis by lead ad-atoms of formic acid oxidation at a platinum anode, J. Electroanal. Chem.,1982,131, 309-323.
    [42]M. J. Llorca, E. Herrero, J. M. Feliu, A. Aldaz, Formic acid oxidation on Pt(111) electrodes modified by irreversibly adsorbed selenium, J. Electroanal. Chem., 1994,373,217-225.
    [43]E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, T. Vazquez-Alvarez, A. C. D. Angelo, F. J. DiSalvo, H. D. Abruna, Electrocatalytic activity of ordered intermetallic phases for fuel cell applications, J. Am. Chem. Soc.,2004,126,4043-4049.
    [44]J. Clavilier, A. Fernandez-Vega, J. M. Feliu, A. Aldaz, Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms:Part I. Formic acid oxidation on the Pt (111)-Bi system. J. Electroanal. Chem.,1989,258,89-100.
    [45]S. A. Campbell, R. Parsons, Effect of Bi and Sn adatoms on formic acid and methanol oxidation at well defined platinum surfaces, J. Chem. Soc., Faraday Trans.,1992,88,833-841.
    [46]X. C. Zhou, W. Xing, C. P. Liu, T. H. Lu, Platinum-macrocycle co-catalyst for electro-oxidation of formic acid, Electrochem. Commun.,2007,9,1469-1473.
    [47]Z. G. Zhang, X. C. Zhou, C. P. Liu, W. Xing, The mechanism of formic acid electrooxidation on iron tetrasulfophthalocyanine-modified platinum electrode, Electrochem. Commun.,2008,10,131-135.
    [48]Z. Y. Zhou, J. Ren, X. Kang, Y. Song, S. G. Sunb, S. Chen, Butylphenyl-functionalized Pt nanoparticles as CO-resistant electrocatalysts for formic acid oxidation, Phys. Chem. Chem. Phys.,2012,14,1412-1417.
    [49]N. Kristian, Y. Yan, X. Wang, Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation, Chem. Commun.,2008,3,353-355.
    [50]X. L. Ji, K. T. Lee, R. Holden, L. Zhang, J. J. Zhang, G. A. Botton, M. Couillard, L. F. Nazar, Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes, Nature Chem.,2010,2,286-293.
    [51]S. Uhm, H. J. Lee, Y. Kwon, J. Lee, A stable and cost-effective anode catalyst structure for formic acid fuel cells, Angew. Chem. Int. Ed.,2008,47(52), 10163-10166.
    [52]M. W. Kanan, D. G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+, Science,2008,321,1072-1075;
    [53]N. M. Markovic, P. N. Ross Jr., Surface science study of model fuel cell electrocatalysts, Surface Science Reports,2002,4,117-229.
    [54]B. Winther-Jensen,O. Winther-Jensen, M. Forsyth, D. R. MacFarlane, High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode, Science, 2008,321,671-674.
    [55]M. Lefevre, E. Proietti, F. Jaouen, J. P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, Science, 2009,324,71-74.
    [56]G. Wu, K. L. More, C. M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science,2011,332,443-447.
    [57]E. Proietti 1, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, J. Dodelet, Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells, Nature Commun.,2011,2,416-424.
    [58]H. A. Gasteiger, N. M. Markovic, Just a dream—or future reality?, Science,2009. 324,48-49.
    [59]A. Morozan, B. Jousselme, S. Palacin, Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes, Energy Environ. Sci.,2011,4,1238-1254.
    [60]C. Sealy, The problem with platinum, Materials Today,2008,11,65-68.
    [61]H. A. Gasteiger, S. Kocha, B. Sompalli, F. T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy. and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal. B,2005,56,9-35.
    [62]C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, Proton exchange membrane fuel cells with carbon nanotube based electrodes, Nano Letters,2004, 4(2),345-348.
    [63]Y. Ding, M. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis, J. Am. Chem. Soc.,2004,126,6876-6877.
    [64]R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev.,2007,107,3904-3951.
    [65]B. Hammer, J. K. Norskov, Why gold is the noblest of all the metals, Nature, 1995,376,238-240.
    [66]B. Hammer, Y. Morikawa, J. K. Norskov, CO chemisorption at metal surfaces and overlayers, Phys. Rev. Lett.,1996,76,2141-2144.
    [67]J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic, Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates, Angew. Chem. Int. Ed.,2005,44,2132-2135.
    [68]V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Norskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure, Angew. Chem. Int. Ed.,2006,45,2897-2901.
    [69]V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys:Pt-skin versus Pt-skeleton surfaces, J. Am. Chem. Soc.,2006,128,8813-8819.
    [70]V. R. Stamenkovic, B. S. Mum, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nature Materials,2007,6,241-247.
    [71]J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeis, I. Chorkendorff, J. K. Norskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nature Chemistry, 2009,1,552-556.
    [72]S. Chen, P. J. Ferreira, W. Sheng, N. Yabuuchi, L. F. Allard, S. Yang, Enhanced activity for oxygen reduction reaction on "Pt3Co" nanoparticles:direct evidence of percolated and sandwich-segregation structures J. Am. Chem. Soc.,2008,130, 13818-13819.
    [73]S. Koh, P. Strasser, Electrocatalysis on bimetallic surfaces:modifying catalytic reactivity for oxygen reduction by vollammetric surface dealloying,J.Am.Chem. Soc.,2007,129,12624-12625.
    [74]P. Strasser,S.Koh,T.Anniyev,J.Greeley,K.More,C.Yu,Z.Liu,S.Kaya,D. Nordlund,H.Ogasawara,M.F.Toney,A.Nilsson,Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts,Nature Chemistry,2010,2, 454-460.
    [75]R.R.Adzic,J.Zhang,K.Sasaki,M.B.Vukmirovic,M.Shao,J.X.Wang,A.U. Nilekar,M.Mavrikakis,J.A.Valerio,F.Uribe,Platinum monolayer fuel cell electrocatalysts,Top Cata.,2007,46,249-262.
    [76]W.Zhou,X.Yang,M.B.Vukmirovic,B.E.Koel,J.Jiao,G. Peng,M. Mavrikakis,R.R.Adzic,Improving electrocatalysts for 02 reduction by fine-tuning the Pt-support interaction:Pt monolayer on the surfaces of a Pd3Fe(111)single-crystal alloy,J.Am.Chem.Soc.,2009,131,12755-12762.
    [77]M.Shao,K.Shoemaker,A.Peles,K.Kaneko,L.Protsailo,Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts,Am.Chem.Soc. 2010,132,9253-9255.
    [78]K.Sasaki,H.Naohara,Y. Cai,Y M.Choi,P.Liu,M.B.Vukmirovic,J.X.Wang, R. R.Adzic, Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes,Angew. Chem.Int.Ed.,2010,49, 8602-8607.
    [79]K.Gong,D.Su,R.R.Adzic,Platinum-monolayer shell on AuNi0.5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction,J.Am.Chem.Soc.,2010,132,14364-14366.
    [80]J.Zhang,K.Sasaki,E.Sutter,R.R.Adzic,Stabilization of platinum oxygen-reduction electrocatalysts using goldclusters,Science,2007,315, 220-222.
    [81]Y Ding,A.Mathur,M.Chen,J.Erlebacher,Epitaxial casting of nanotubular mesoporous platinum,Amgew Chem.Int. Ed.,2005,44,4002-4006.
    [82]Z.Chen,M.Waje,W.Li,Y Yan,Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions,Angew Chem.Int Ed.,2007,46, 4060-4063
    [83]C. Xu, L. Wang, R. Wang, K. Wang, Y. Zhang, F. Tian, Y. Ding, Nanotubular mesoporous bimetallic nanostructures with enhanced electrocatalytic performance,Adv. Mater.,2009,21,2165-2169.
    [84]C. Xu, Y. Zhang, L. Wang, L. Xu, X. Bian, H. Ma, Y. Ding, Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction, Chem. Mater.,2009,21,3110-3116.
    [85]H. Liang, X. Cao, F. Zhou, C. Cui, W. Zhang, S. Yu, A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction, Adv. Mater.,2011,23,1467-1471.
    [86]J. X. Wang, C. Ma, Y. Choi, D. Su, Y. Zhu, P. Liu, R. Si, M. B. Vukmirovic, Y. Zhang, R. R. Adzic, Kirkendall effect and lattice contraction in nanocatalysts:a new strategy to enhance sustainable activity, J. Am. Chem. Soc,2011,133, 13551-13557.
    [87]J. X. Wang, H. Inada, L. Wu, Y. Zhu, Y. Choi, P. Liu, W. Zhou, R. R. Adzic, Oxygen reduction on well-defined core-shell nanocatalysts:particle size, facet, and Pt shell thickness effects, J. Am. Chem. Soc.,2009,131,17298-17302.
    [88]V. Mazumder, M. Chi, K. L. More, S. Sun, Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction, J. Am. Chem. Soc. 2010,132,7848-7849.
    [89]C. Wang, D. van der Vliet, K. L. More, N. J. Zaluzec, S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J. Pearson, A. P. Paulikas, G. Karapetrov, D. Strmcnik, N. M. Markovic, V. R. Stamenkovic, Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst, Nano Lett.,2011,11,919-926.
    [90]C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G Wang, V. Komanicky, K. Chang, A. P. Paulikas, D. Tripkovic, J. Pearson, K. L. More, N. M. Markovic, V. R. Stamenkovic, Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces, J. Am. Chem. Soc.,2011,133,14396-14403.
    [91]D. Wang, H. L. Xin, Y. Yu, H. Wang, E. Rus, D. A. Muller, H. D. Abruna, Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction, J. Am. Chem. Soc., 2010,132,17664-17666.
    [92]B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction, Science, 2009,324,1302-1305.
    [93]Z. Peng, H. Yang, Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures, J. Am. Chem. Soc.,2009,131 (22), 7542-7543.
    [94]B. Lim, Y. Xia, Metal nanocrystals with highly branched morphologies, Angew. Chem. Int. Ed.,2011,50,76-85.
    [95]Y. Kim, J. W. Hong, Y. W. Lee, M. Kim, D. Kim, W. S. Yun, S. W. Han, Synthesis of AuPt heteronanostructures with enhanced electrocatalytic activity toward oxygen reduction, Angew. Chem. Int. Ed.,2010,49,10197-10201.
    [96]S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, X. Sun, A highly durable platinum nanocatalyst for proton exchange membrane fuel cells:multiarmed starlike nanowire single crystal, Angew. Chem. Int. Ed.,2011,50,422-426.
    [97]V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science,2007,315,493-497.
    [98]I. E. L. Stephens, A. S. Bondarenko, F. J. Perez-Alonso, F. Calle-Vallejo, L. Bech, T. P. Johansson, A. K. Jepsen, R. Frydendal, B. P. Knudsen, J. Rossmeisl, I. Chorkendorff, Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying, J. Am. Chem. Soc.,2011,133,5485-5491.
    [99]J. Wu, J. Zhang, Z. Peng, S. Yang, F. T. Wagner, H. Yang, Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts, J. Am. Chem. Soc.,2010,132, 4984-4985.
    [100]J. Zhang, H. Yang, J. Fang, S. Zou, Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra, Nano Lett.,2010,10,638-644.
    [101]B. C. Tappan, S. A. Steiner Ⅲ, E. P. Luther, Nanoporous metal foams, Angew. Chem. Int. Ed.,2010,49,4544-4565.
    [102]J. Erlebacher, R. Seshadri, Hard materials with tunable porosity, MRS Bulletin, 2009,34,561-568.
    [103]O. D. Velev, P. M. Tessier, A. M. Lenhoff, E. W. Kaler, A class of porous metallic nanostructures, Nature,1999,401,548.
    [104]G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, J. H. Wang, Mesoporous platinum film from lyotropic liquid crystalline phase, Science,1997,278,838-840.
    [105]D. R. Rolison, Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity, Science,2003,299,1698-1701.
    [106]J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, Nature,2001,410,450-453.
    [107]Y. Ding, Y. J. Kim, J. Erlebacher, Nanoporous gold leaf:"ancient technology"/ advanced material, Adv. Mater.,2004,16,1897-1900.
    [108]T. Fujita, H. Okada, K. Koyama, K. Watanabe, S. Maekawa, M. W. Chen, Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields, Phys. Rev. Lett.,2008,101,166601.
    [109]A. J. Forty, Corrosion micromorphology of noble metal alloys and depletion gilding, Nature,1979,282,597-598.
    [110]R. C. Newman, K. Sieradzki, Alloy corrosion, MRS Bull.,1999,24,12-15.
    [111]M. Raney, U.S. Patent,1927,1,628,190.
    [112]H. W. Pickering, Characteristic features of alloy polarization curves, Corros. Sci.,1983,23,1107-1109,1111-1120.
    [113]D. E. Williams, R. C. Newman, Q. Song, R. G. Kelly, Passivity breakdown and pitting corrosion of binary alloys, Nature,1991,350,216-219.
    [114]R. C. Newman, K. Sieradzki, Metallic corrosion, Science,1994,263, 1708-1709.
    [115]H. W. Pickering, P. R. Swann, Electron metallography of chemical attack upon some alloys susceptible to stress, Corrosion Cracking, Corrosion,1963,19,373.
    [116]P. R. Swann, Stress corrosion via localized anodic dissolution in Cu-Au alloys, Corrosion,1969,25,280.
    [117]K. Sieradzki, R. C. Newman, U.S. Patent,1990,4,977,038.
    [118]I. C. Oppenheim, D. J. Trevor, C. E. D. Chidsey, P. L. Trevor, K. Sieradzki, In situ scanning tunneling microscopy of corrosion of silver-gold alloys, Science, 1991,254,687-689.
    [119]S. Corcoran, in Critical Factors in Localized Corrosion Ⅲ (eds Kelly, R. G, Frankel, G. S., Natishan, P. M.& Newman, R. C.) 500-507 (Electrochemical Society, Pennington, New Jersey,2000).
    [120]H. W. Pickering, C. Wagner, Electrolytic dissolution of binary alloys containing a noble metal, J. Electrochem. Soc.,1967,114,698-706.
    [121]K. Sieradzki, R. R. Corderman, K. Shukla, R. C. Newman, Computer simulations of corrosion:Selective dissolution of binary alloys, Phil. Mag. A, 1989,59,713-746.
    [122]K. Sieradzki, Curvature effects in alloy dissolution, J. Electrochem. Soc.,1993, 140,2868-2872.
    [123]Y. Ding, J. Erlebacher, Nanoporous metals with controlled multimodal pore size distribution, J. Am. Chem. Soc.,2003,125,7772-7773.
    [124]J. Biener, A. M. Hodge, A. V. Hamza, L. M. Hsiung, J. H. Satcher Jr, Nanoporous Au:a high yield strength materials. J. Appl. Phys.,2005,97, 024301.
    [125]J. Biener, A. M. Hodge, J. R. Hayes, C. A. Volkert, L. A. Zepeda-Ruiz, A. V. Hamza, F. F. Abraham, Size effects on the mechanical behavior of nanoporous Au, Nano. Lett.,2006,6,2379-2382.
    [126]C. A. Volkert, E. T. Lilleodden, D. Kramer, J. Weissmuller, Approaching the theoretical strength in nanoporous Au, Appl. Phys. Lett.,2006,89,061920.
    [127]F. Yu, S. Ahl, A. Caminade, J. Majoral, W. Knoll, J. Erlebacher, Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes, Anal. Chem.,2006,78,7346-7350.
    [128]S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, A. V. Hamza, Surface-enhanced Raman scattering on nanoporous Au, Appl. Phys. Lett.,2006, 89,053102.
    [129]L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, Surface enhanced Raman scattering of nanoporous gold:smaller pore sizes stronger enhancements, Appl. Phys. Lett.,2007,90,15312.
    [130]L. H. Qian, A. Inoue, M. W. Chen, Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold, Appl. Phys. Lett., 2008,92,093113.
    [131]L. Zhang, X. Y. Lang, A. Hirata, M. W. Chen, Wrinkled nanoporous gold films with ultrahigh surface-enhanced raman scattering enhancement, ACS Nano, 2011,5,4407-4413.
    [132]Y. Ding, M. W. Chen, Nanoporous metals for catalytic and optical applications, Mrs Bull.,2009,34,569-576.
    [133]J. Weissmuller, R. C. Newman, H. J. Jin, A. M. Hodge, J. W. Kysar, Nanoporous metals by alloy corrosion:formation and mechanical properties, Mrs Bull., 2009,34,577-586.
    [134]J. Biener, A. Wittstock, L. A. Zepeda-Ruiz, M. M. Biener, V. Zielasek, D. Kramer, R. N. Viswanath, J. Weissmuller, M. Baumer, A. V. Hamza, Surface-chemistry-driven actuation in nanoporous gold, Naure. Mater.,2009,8, 47-51.
    [135]H. J. Jin, J. Weissmuller, A material with electrically tunable strength and flow stress, Science,2011,332,1179-1182.
    [136]C. X. Xu, J. X. Su, X. H. Xu, P. P. Liu, H. J. Zhao, F. Tian, Y. Ding, Low temperature CO oxidation over unsupported nanoporous gold, J. Am. Chem. Soc.,2007,129,42-43.
    [137]V. Zielasek, B. Jurgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, M. Baumer, Gold catalysts:nanoporous gold foams, Angew. Chem. Int. Ed.,2006, 45,8241-8244.
    [138]M. Haruta, New generation of gold catalysts:nanoporuos foams and tubes-ss unsupported gold catalytically active?, Chem. Phys. Chem.,2007,8,1911-1913.
    [139]A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, M. Baumer, Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature, Science,2010,327,319-322.
    [140]N. Asao, Y. Ishikawa, N. Hatakeyama, Menggenbateer, Y. Yamamoto, M. W. Chen, W. Zhang, A. Inoue, Nanostructured materials as catalysts: nanoporous-gold- catalyzed oxidation of organosilanes with water, Angew. Chem. Int. Ed.,2010,49,10093-10095.
    [141]J. T. Zhang, P. P. Liu, H. Y. Ma, Y. Ding, Nanostructured porous gold for methanol electro-oxidation, J. Phys. Chem. C,2007,111,10382-10388.
    [142]C. X. Xu. R. Y. Wang, M. W. Chen, Y. Zhang, Y. Ding, Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties, Phys. Chem. Chem. Phys.,2010,12,239-246.
    [143]C. X. Xu, L. Wang, X. L. Mu, Y. Ding, Nanoporous PtRu alloys for electrocatalysis, Langmuir,2010,26,7437-7443.
    [144]J. Snyder, T. Fujita, M. W. Chen, J. Erlebacher, Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts, Nature Materials,2010,9, 904-907.
    [145]R. Zeis, T. Lei, K. Sieradzki, J. Snyder, J. Erlebacher, Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold, J. Catal.,2008,253, 132-138.
    [146]R. Zeis, A. Mathur, G. Fritz, J. Lee, J. Erlebacher, Platinum-plated nanoporous gold:An efficient, low Pt loading electrocatalyst for PEM fuel cells, Journal of Power Sources,2007,165,65-72.
    [147]Xingbo Ge, Rongyue Wang, Pengpeng Liu, Yi Ding, Platinum-decorated nanoporous gold leaf for methanol electrooxidation, Chem. Mater.,2007,19, 5827-5829.
    [148]P. Liu, X. Ge, R. Wang, H. Ma, Y. Ding, Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction, Langmuir,2009,25 (1),561-567.
    [1]B. C. H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature,2001,414, 345-352.
    [2]X. W. Yu, P. G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC), J. Power Sources,2008,182,124-132.
    [3]H. Miyake, T. Okada, G. Samjeske, M. Osawa, Formic acid electrooxidation on Pd in acidic solutions studied by surfaceenhanced infrared absorption spectroscopy, Phys. Chem. Chem. Phys.,2008,10,3662-3669.
    [4]F. Besenbacher, I. Chorkendorff, B. S. Clausen, B. Hammer, A. M. Molenbroek, J. K. Norskov, I. Stensgaard, Design of a surface alloy catalyst for steam reforming, Science,1998,279,1913-1915.
    [5]M. S. Chen, D. Kumar, C. W. Yi, D. W. Goodman, The promotional effect of gold in catalysis by palladium-gold, Science,2005,310,291-293.
    [6]A. Cuesta, At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum, J. Am. Chem. Soc.,2006,128, 13332-13333.
    [7]F. Maroun, F. Ozanam, O. M. Magnussen, R. J.Behm, The role of atomic ensembles in the reactivity of bimetallic electrocatalysts, Science,2001,293, 1811-1814.
    [8]G. Samjeske, A. Miki, S. Ye, M. Osawa, Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy, Phys. Chem. B,2006,110, 16559-16566.
    [9]M. Neurock, M. Janik, A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt, Faraday Discuss.,2008,140,363-378.
    [10]S. Trasatti, O. A. Petrii, Real surface area measurements in electrochemistry, Pure Appl. Chem.,1991,63,711-734.
    [11]H. Miyake, S. Ye, M. Osawa, Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry, Electrochem. Commun., 2002,4,973-977.
    [12]Y. Ding, Y. J. Kim, J. Erlebacher, Nanoporous gold leaf:"ancient technology"/advanced material, Adv. Mater.,2004,16,1897-1900.
    [13]T. Fujita, H. Okada, K. Koyama, K. Watanabe, S. Maekawa, M. W. Chen, Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields, Phys. Rev. Lett.,2008,101,166601.
    [14]C. X. Xu, J. X. Su, X. H. Xu, P. P. Liu, H. J. Zhao, F. Tian, Y. Ding, Low temperature CO oxidation over unsupported nanoporous gold, J. Am. Chem. Soc., 2007,129,42-43.
    [15]Y. Ding, M. W. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis, J. Am. Chem. Soc.,2004,126,6876-6877.
    [16]P. P. Liu, X. B. Ge, R. Y. Wang, H. Y. Ma, Y. Ding, Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction, Langmuir,2009,25,561-567.
    [17]J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Stabilization of platinum oxygen-reduction electrocatalysts using fold clusters, Science,2007,315, 220-222.
    [18]Y X. Chen, M. Heinen, Z. Jusys, R. J. Behm, Kinetics and mechanism of formic acid electrooxidation-Spectro-electrochemical studies in a novel flow cell configuration, Angew. Chem. Int. Ed.,2006,45,981.
    [19]A. Cuesta, C. Gutierrez, Study by fourier transform infrared spectroscopy of the adsorption of carbon monoxide on a nickel electrode at pH 3-14, Langmuir, 1998,14,3397-3404.
    [20]Z. W. Chen, M. Waje, W. Z. Li, Y. S. Yan, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions, Angew. Chem. Int. Ed.,2007,46, 4060-4063.
    [21]R. Ferrando, J. Jellinek, R. L. Johnston, Nanoalloys:from theory to applications of alloy clusters and nanoparticles, Chem. Rev.,2008,108, 845-910.
    [22]H. B. Liu, U. Pal, J. A. Ascencio, Thermodynamic stability and melting mechanism of bimetallic Au-Pt nanoparticles, J. Phys. Chem. C,2008,112, 19173-19177.
    [1]B. C. H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature,2001,414, 345-352.
    [2]M. Z. Jacobson, W. G. Colella, D. M. Golden, Cleaning the air and improving health with hydrogen fuel-cell vehicles, Science,2005,308,1901-1905.
    [3]R. F. Service, Shrinking fuel cells promise power in your pocket, Science,2002, 296,1222-1224.
    [4]C. M. Miesse, W. S. Jung, K. J. Jeong, J. K. Lee, J. Lee, J. Han, S. P. Yoon, S. W. Nam, T. H. Lim, S. A. Hong, Direct formic acid fuel cell portable power system for the operation of a laptop computer, J. Power Sources,2006,162,532-540.
    [5]X. Yu, P. G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC), Journal of Power Sources,2008,182,124-132.
    [6]C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, Direct formic acid fuel cells, Journal of Power Sources,2002,111,83-89.
    [7]K. J. Jeong, C. M. Miesse, J. H. Choi, J. Lee, J. Hanb, S. P. Yoon, S. W. Namb, T. H. Limb, T. G. Lee, Fuel crossover in direct formic acid fuel cells, Journal of Power Sources,2007,168,119-125.
    [8]C. Sealy, The problem with platinum, Materials Today,2008,11,65-68.
    [9]R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells, Nature,2006,443,63-66.
    [10]M. Lefevre, E. Proietti, F. Jaouen, J. P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, Science, 2009,324,71-74.
    [11]H. A. Gasteiger, N. M. Markovic, Just a dream—or future reality?, Science,2009, 324,48-49.
    [12]B. Beden, A. Bewick, C. Lamy, A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic acid at a platinum electrode, J. Electroanal Chem.,1983,148,147-160.
    [13]G. Samjeske, A. Miki, S. Ye, M. Osawa, Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy, J. Phys. Chem. B,2006,110, 16559-16566.
    [14]Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm, Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell, Angew. Chem. Int. Ed.,2006,45,981-985.
    [15]M. Osawa, K. Komatsu, G. Samjeske, T. Uchida, T. Ikeshoji, A. Cuesta, C. Gutierrez, The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum, Angew. Chem. Int. Ed.,2011,50, 1159-1163.
    [16]M. Neurock, M. Janikb, A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt, Faraday Discuss.,2008,140,363-378.
    [17]J. Clavilier, A. Fernandez-Vega, J. M. Feliu, A. Aldaz, Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms:Part I. Formic acid oxidation on the Pt (111)-Bi system. J. Electroanal. Chem.,1989,258,89-100.
    [18]A. Lopez-Cudero, F. J. Vidal-Iglesias, J. Solla-Gullon, E. Herrero, A. Aldaz, J. M. Feliu, Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles, Phys. Chem. Chem. Phys.,2009,11,416-424.
    [19]R. Wang, C. Wang, W. Cai, Y. Ding, Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures, Adv. Mater.,2010,22,1845-1848.
    [20]E. Leiva, T. lwasita, E. Herrero, J. M. Feliu, Effect of adatoms in the electrocatalysis of HCOOH oxidation. A theoretical model, Langmuir,1997,13, 6287-6293.
    [21]A. Cuesta, M. Escudero, B. Lanova, H. Baltruschat, Cyclic voltammetry, FTIRS, and DEMS study of the electrooxidation of carbon monoxide, formic acid, and methanol on cyanide-modified Pt(111) electrodes, Langmuir,2009,25, 6500-6507.
    [22]E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, T. Vazquez-Alvarez, A. C. D. Angelo, F. J. DiSalvo, H. D. Abruna, Electrocatalytic activity of ordered intermetallic phases for fuel cell applications, J. Am. Chem. Soc.,2004,126,4043-4049.
    [23]X. L. Ji, K. T. Lee, R. Holden, L. Zhang, J. J. Zhang, G. A. Botton, M. Couillard, L. F. Nazar, Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes, Nature Chem.,2010,2,286-293.
    [24]K. Sasaki, H. Naohara, Y. Cai, Y. M. Choi, P. Liu, M. B. Vukmirovic, J. X. Wang, R. R. Adzic, Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes, Angew. Chem. Int. Ed.,2010,49, 8602-8607.
    [25]D. Wang, H. L. Xin, Y. Yu, H. Wang, E. Rus, D. A. Muller, H. D. Abruna, Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction, J. Am. Chem. Soc., 2010,132,17664-17666.
    [26]M. Shao, K. Shoemaker, A. Peles, K. Kaneko, L. Protsailo, Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts, J. Am. Chem. Soc., 2010,132,9253-9255.
    [27]S. B. Brummer, A. C. Makrides, Surface oxidation of gold electrodes, J. Electrochem. Soc.,1964,111,1122-1128.
    [28]S. Trasatti, O. A. Petrii, Real surface area measurements in electrochemistry, Pure Appl. Chem.,1991,63,711-734.
    [29]Y. Ding, Y. J. Kim, J. Erlebacher, Nanoporous gold leaf:"ancient technology"/ advanced material, Adv. Mater.,2004,16,1897-1900.
    [30]Y. Ding, M. W. Chen, Nanoporous metals for catalytic and optical applications, Mrs Bull.,2009,34,569-576.
    [31]A. Wittstock. V. Zielasek, J. Biener, C. M. Friend, M. Baumer, Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature, Science,2010,327,319-322.
    [32]K. Uosaki, S. Ye, Y. Oda, T. Haba, K. Hamada, Adsorption of hexachloroplatinate complex on Au(111) electrode. An in situ scanning tunneling microscopy and electrochemical quartz microbalance study, Langmuir,1997,13,594-596.
    [33]Y. Nagahara, M. Hara, S. Yoshimoto, J. Inukai, S. L. Yau, K. Itaya, In situ scanning tunneling microscopy examination of molecular adlayers of haloplatinate complexes and electrochemically produced platinum nanoparticles on Au(111), J. Phys. Chem. B,2004,108,3224-3230
    [34]J. Kim, C. Jung, C. K. Rhee, T. Lim, Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111), Langmuir,2007,23,10831-10836
    [35]S. Uhm, H. J. Lee, Y. Kwon, J. Lee, A stable and cost-effective anode catalyst structure for formic acid fuel cells, Angew. Chem. Int. Ed.,2008,47, 10163-10166.
    [36]J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Stabilization of platinum oxygen-reduction electrocatalysts using goldclusters, Science,2007,315, 220-222.
    [37]B. Du, Y. Tong, A coverage-dependent study of Pt spontaneously deposited onto Au and Ru surfaces:direct experimental evidence of the ensemble effect for methanol electro-oxidation on Pt, J. Phys. Chem. B,2005,109,17775-17780.
    [1]B. C. H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature,2001,414, 345-352.
    [2]M. Z. Jacobson, W. G. Colella, D. M. Golden, Cleaning the air and improving health with hydrogen fuel-cell vehicles, Science,2005,308,1901-1905.
    [3]R. F. Service, Shrinking fuel cells promise power in your pocket, Science,2002, 296,1222-1224.
    [4]C. M. Miesse, W. S. Jung, K. Jeong, J. K. Lee, J. Lee, J. Han, S. P. Yoon, S. W. Nam, T. Lim, S. Hong, Direct formic acid fuel cell portable power system for the operation of a laptop computer, J. Power Sources,2006,162,532-540.
    [5]X. Yu, P. G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC), Journal of Power Sources,2008,182,124-132.
    [6]C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, Tom Barnard, Direct formic acid fuel cells, Journal of Power Sources,2002,111,83-89.
    [7]K. J. Jeong, C. M. Miesse, J. H. Choi, J. Lee, J. Hanb, S. P. Yoon, S. W. Namb, T. H. Limb, T. G. Lee, Fuel crossover in direct formic acid fuel cells, Journal of Power Sources,2007,168,119-125.
    [8]C. Sealy, The problem with platinum, Materials Today,2008,11,65-68.
    [9]B. Beden, A. Bewick, C. Lamy, A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic acid at a platinum electrode. J. Electroanal. Chem.,1983,148,147-160.
    [10]E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, T. Vazquez-Alvarez, A. C. D. Angelo, F. J. DiSalvo, H. D. Abruna, Electrocatalytic activity of ordered intermetallic phases for fuel cell applications, J. Am. Chem. Soc.,2004,126,4043-4049.
    [11]J. Clavilier, A. Fernandez-Vega, J. M. Feliu, A. Aldaz, Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms:Part I. Formic acid oxidation on the Pt (111)-Bi system. J. Electroanal. Chem.,1989,258,89-100.
    [12]D. Pletcher, V. Solis, A further investigation of the catalysis by lead ad-atoms of formic acid oxidation at a platinum anode, J. Electroanal. Chem.,1982,131, 309-323.
    [13]R. Y. Wang, C. Wang, W. B. Cai, Y. Ding, Ultra-low Pt loading, high performance nanoporous electrocatalysts with nanoengineered surface structures, Adv. Mater.,2010,22,1845-1848.
    [14]X. L. Ji, K. T. Lee, R. Holden, L. Zhang, J. J. Zhang, G. A. Botton, M. Couillard, L. F. Nazar, Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes, Nature Chem.,2010,2,286-293.
    [15]S. Hwang, J. E. Bonevich, J. J. Kim, T. P. Moffata, Formic acid oxidation on Pt100-xPbx thin films electrodeposited on Au, Journal of The Electrochemical Society,2011,158(8),1019-1028.
    [16]S. Uhm, S. T. Chung, J. Lee, Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell, Electrochem. Commun.,2007,9,2027-2031.
    [17]S. Uhm, H. J. Lee, Y. Kwon, J. Lee, A stable and cost-effective anode catalyst structure for formic acid fuel cells, Angew. Chem. Int. Ed.,2008,47(52), 10163-10166.
    [18]X. Yu, P. G. Pickup, Pb and Sb modified Pt/C catalysts for direct formic acid fuel cells, Electrochimica Acta,2010,55,7354-7361.
    [19]X. Yu, P. G. Pickup, Carbon supported PtBi catalysts for direct formic acid fuel cells, Electrochimica Acta,2011,56,4037-4043.
    [20]C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, Proton exchange membrane fuel cells with carbon nanotube based electrodes, Nano Letters,2004. 4(2),345-348.
    [21]J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, Nature,2001,410,450-453.
    [22]Y. Ding, Y. J. Kim, J. Erlebacher, Nanoporous gold leaf:"ancient technology"/ advanced material, Adv. Mater.,2004,16,1897-1900.
    [23]Y. Ding, J. Erlebacher, Nanoporous metals with controlled multimodal pore size distribution, J. Am. Chem. Soc.,2003,125,7772-7773.
    [24]T. Fujita, H. Okada, K. Koyama, K. Watanabe, S. Maekawa, M. W Chen, Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields, Phys. Rev. Lett,2008,101,166601.
    [25]A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, M. Baumer, Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature, Science,2010,327,319-322.
    [26]Y. Ding, M. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis, J. Am. Chem. Soc.,2004,126,6876-6877.
    [27]P. Liu, X. Ge, R. Wang, H. Ma, Y. Ding, Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction, Langmuir,2009,25 (1),561-567.
    [28]G. Samjeske, A. Miki, S. Ye, M. Osawa, Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy, J. Phys. Chem. B,2006,110, 16559-16566.
    [29]A. Lopez-Cudero, F. J. Vidal-Iglesias, J. Solla-Gullon, E. Herrero, A. Aldaz, J. M. Feliu, Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles, Phys. Chem. Chem. Phys.,2009,11,416-424.
    [30]E. Leiva, T. Iwasita, E. Herrero, J. M. Feliu, Effect of adatoms in the electrocatalysis of HCOOH oxidation:a theoretical model, Langmuir,1997,13, 6287-6293.
    [31]J. G. Liu, T. S. Zhao, R. Chen, C. W. Wong, The effect of methanol concentration on the performance of a passive DMFC, Electrochemistry Communications, 2005,7288-294.
    [1]J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, Nature,2001,410,450-453.
    [2]J. Erlebacher, R. Seshadri, Hard materials with tunable porosity, MRS Bulletin, 2009,54,561-568.
    [3]Y. Ding, Y. J. Kim, J. Erlebacher, Nanoporous gold leaf:"ancient technology"/advanced material, Adv. Mater.,2004,16,1897-1900.
    [4]T. Fujita, H. Okada, K. Koyama, K. Watanabe, S. Maekawa, M. W. Chen, Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields, Phys. Rev. Lett.,2008,101,166601.
    [5]J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, S. A. Maier, Nanoporous plasmonic metamaterials, Adv. Mater.,2008,20,1211-1217.
    [6]L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, Surface enhanced Raman scattering of nanoporous gold:Smaller pore sizes stronger enhancements, Appl. Phys. Lett.,2007,90,153120.
    [7]L. H. Qian, A. Inoue, M. W. Chen, Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold, Appl Phys. Lett.,2008, 92,093113.
    [8]X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, M. W. Chen, Geometric effect on surface enhanced Raman scattering of nanoporous gold:Improving Raman scattering by tailoring ligament and nanopore ratios, Appl. Phys. Lett.,2009,94, 213109.
    [9]L. Zhang, X. Y. Lang, A. Hirata, M. W. Chen, Wrinkled nanoporous gold films with ultrahigh surface-enhanced raman scattering enhancement, ACS Nano,2011, 5,4407-4413.
    [10]Z. Liu, P. C. Searson, Single nanoporous gold nanowire sensors, J. Phys. Chem. B,2006,110,4318-4322.
    [11]K. C. Hu, D. X. Lan, X. M. Li, S. S. Zhang, Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes, Anal. Chem.,2008,80,9124-9130.
    [12]B. Seo, J. Kim, Electrooxidation of glucose at nanoporous gold surfaces: structure dependent electrocatalysis and its application to amperometric detection, Electroanalysis,2010,22,939-945.
    [13]H. J. Qiu, L. Y. Xue, G. L. Ji, G. P. Zhou, X. R. Huang, Y. B. Qu, P. J. Gao, Enzyme-modified nanoporous gold-based electrochemical biosensors, Biosensors and Bioelectronics,2009,24,3014-3018.
    [14]Z. N. Liu, J. G. Du, C. C. Qiu, L. H. Huang, H. Y. Ma, D. Z. Shen, Y. Ding, Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold, Electrochemistry Communications,2009,11,1365-1368.
    [15]J. Weissmuller, R. C. Newman, H. J. Jin, A. M. Hodge, J. W. Kysar, Nanoporous metals by alloy corrosion:formation and mechanical properties, Mrs Bull,2009, 34,577-586.
    [16]J. Biener, A. Wittstock, L. A. Zepeda-Ruiz, M. M. Biener, V. Zielasek, D. Kramer, R. N. Viswanath, J. Weissmuller, M. Baumer, A. V. Hamza, Surface-chemistry-driven actuation in nanoporous gold, Naure. Mater.,2009,8, 47-51.
    [17]H. J. Jin, J. Weissmuller, A material with electrically tunable strength and flow stress, Science,2011,332,1179-1182.
    [18]A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, M. Baumer, Nanoporous gold catalysts for selective gas-phase oxi dative coupling of methanol at low temperature, Science,2010,327,319-322.
    [19]C. X. Xu, J. X. Su, X. H. Xu, P. P. Liu, H. J. Zhao, F. Tian, Y. Ding, Low temperature CO oxidation over unsupported nanoporous gold, J. Am. Chem. Soc., 2007,129,42-43.
    [20]V. Zielasek, B. Jurgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, M. Ba-umer, Gold catalysts:nanoporous gold foams, Angew. Chem. Int. Ed.,2006,45, 8241-8244.
    [21]N. Asao, Y. Ishikawa, N. Hatakeyama, Menggenbateer, Y. Yamamoto, M. W. Chen, W. Zhang, A. Inoue, Nanostructured materials as catalysts: nanoporous-gold-catalyzed oxidation of organosilanes with water, Angew. Chem. Int. Ed.,2010,49,10093-10095.
    [22]Y. Ding, M. W. Chen, Nanoporous metals for catalytic and optical applications, Mrs Bull.,2009,34,569-576.
    [23]R. Y. Wang, C. Wang, W. B. Cai, Y. Ding, Ultra-low Pt loading, high performance nanoporous electrocatalysts with nanoengineered surface structures, Adv. Mater.,2010,22,1845-1848.
    [24]Y. Ding, M. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis, J. Am. Chem. Soc.,2004,126,6876-6877.
    [25]R. Zeis, A. Mathur, G. Fritz, J. Lee, J. Erlebacher, Platinum-plated nanoporous gold:An efficient, low Pt loading electrocatalyst for PEM fuel cells, Journal of Power Sources,2007,165,65-72.
    [26]Xingbo Ge, Rongyue Wang, Pengpeng Liu, Yi Ding, Platinum-decorated nanoporous gold leaf for methanol electrooxidation, Chem. Mater.,2007,19, 5827-5829.
    [27]P. Liu, X. Ge, R. Wang, H. Ma, Y. Ding, Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction, Langmuir,2009,25 (1),561-567.
    [28]X. Y. Lang, A. Hirata, T. Fujita, M. W. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature Nanotech.,2011,6, 232-236.
    [29]F. H. Meng, Y. Ding, Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities, Adv. Mater.,2011,23,4098-4102.
    [30]Y. Yu, L. Gu, X. Y. Lang, C. B. Zhu, T. Fujita, M. W. Chen, J. Maier, Li Storage in 3D nanoporous Au-supported nanocrystalline Tin, Adv. Mater.,2011,23, 2443-2447.
    [31]J. Snyder, P. Asanithi, A. B. Dalton, J. Erlebacher, Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors, Adv. Mater.,2008,20,4883-4886.
    [32]H. J. Jin, X. L. Wang, S. Parida, K. Wang, M. Seo, J. Weissmuller, Nanoporous Au-Pt alloys as large strain electrochemical actuators, Nano Lett.,2010,10, 187-194.
    [33]C. X. Xu, R. Y. Wang, M. W. Chen, Y. Zhang, Y. Ding, Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties, Phys. Chem. Chem. Phys.,2010,12,239-246.
    [34]Y. G. Sun, Y. N. Xia, Shape-controlled synthesis of old and silver nanoparticles, Science,2002,298,2176-2179.
    [35]Y. G. Sun, B. T. Mayers, Y. N. Xia, Template-engaged replacement reaction:a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors, Nano Lett.,2002,2,481-485.
    [36]Y. G Sun, B. Mayers, Y. N. Xia, Metal nanostructures with hollow interiors, Adv. Mater.,2003,15,641-646.
    [37]S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, Y. N. Xia, Gold nanocages:synthesis, properties, and applications, Acc. Chem. Res.,2008, 41,1587-1595.
    [38]H. P. Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan, C. L. Bai, Pt hollow nanospheres:facile synthesis and enhanced electrocatalysts, Angew. Chem. Int. Ed.,2004,116,1566-1569.
    [39]C. X. Xu, L. Q. Wang, R. Y. Wang, K. Wang, Y. Zhang, F. Tian, Y. Ding, Nanotubular mesoporous bimetallic nanostructures with enhanced electrocatalytic performance, Adv. Mater,2009,21,2165-2169.
    [40]G. X. Zhang, S. H. Sun, R. Y. Li, X. L. Sun, New insight into the conventional replacement reaction for the large-scale synthesis of various metal nanostructures and their formation mechanism, Chem. Eur. J.,2010,16,10630.
    [41]V. Bansal, H. Jani, J. D. Plessis, P. J. Coloe, S. K. Bhargava, Galvanic replacement reaction on metal films:a one-step approach to create nanoporous surfaces for catalysis. Adv. Mater.,2008,20,717-723.
    [42]Z. W. Cao, D. B. Xiao, L. T. Kang, Z. L. Wang, S. X. Zhang, Y. Ma, H. B. Fu, J. N. Yao, Superhydrophobic pure silver surface with flower-like structures by a facile galvanic exchange reaction with [Ag(NH3)2]OH, Chem. Commun.,2008, 2692-2694,
    [43]S. Van Petegem, S. Brandstetter, R. Maass, A. M. Hodge, B. S. El-Dasher, J. Biener, B. Schmitt, C. Borca, H. Van Swygenhoven, On the microstructure of nanoporous gold:an X-ray diffraction study, Nano Lett.,2009,9,1158-1163.
    [44]L. H. Qian, M. W. Chen, Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation, Appl. Phys. Lett.,2007,91, 083105.
    [45]Y.-F. Han, J.-H. Wang, D. Kumar, Z. Yan, D. W. Goodman, A kinetic study of vinyl acetate synthesis over Pd-based catalysts:kinetics of vinyl acetate synthesis over Pd-Au/SiO2 and Pd/SiO2 catalysts, J. Catal.,2005,232,467-475.
    [46]R. Ferrando, J. Jellinek, R. L. Johnston, Nanoalloys:from theory to applications of alloy clusters and nanoparticles, Chem. Rev.,2008,108,845-910.
    [47]J. Clavilier, A. Fernandez-Vega, J. M. Feliu, A. Aldaz, Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms:Part I. Formic acid oxidation on the Pt (111)-Bi system, J. Electroanal. Chem.,1989,258,89-100.
    [48]S. P. E. Smith, K. F. Ben-Dor, H. D. Abruna, Structural effects on the oxidation of HCOOH by bismuth-modified Pt(111) electrodes with (100) monatomic steps, Langmuir,1999,15,7325-7332.
    [49]E. Leiva, T. Iwasita, E. Herrero, J. M. Feliu, Effect of adatoms in the electrocatalysis of HCOOH oxidation:a theoretical model, Langmuir,1997,13, 6287-6293.
    [50]A. Lopez-Cudero, F. J. Vidal-Iglesias, J. Solla-Gullon, E. Herrero, A. Aldaz, J. M. Feliu, Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles, Phys. Chem. Chem. Phys.,2009,11,416-424.
    [51]M. Neurock, M. Janik, A. Wieckowski, A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol, Faraday Discuss.,2008,140,363-378.
    [1]B. C. H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature,2001,414, 345-352.
    [2]M. Z. Jacobson, W. G. Colella, D. M. Golden, Cleaning the air and improving health with hydrogen fuel-cell vehicles, Science,2005,308,1901-1905.
    [3]H. A. Gasteiger, S. Kocha, B. Sompalli, F. T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal. B,2005,56,9-35.
    [4]H. A. Gasteiger, N. M. Markovic, Just a dream-or future reality?, Science,2009, 324,48-49.
    [5]A. Morozan, B. Jousselme, S. Palacin, Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes, Energy Environ. Sci.,2011,4,1238-1254.
    [6]C. Sealy, The problem with platinum, Materials Today,2008,11,65-68.
    [7]R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev.,2007,107,3904-3951.
    [8]K. Hartl, M. Hanzlik, M. Arenz, IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports, Energy Environ. Sci.,2011,4,234-238.
    [9]Z. Z. Jiang, Z. B. Wang, Y. Y. Chu, D. M. Gu, G. P. Yin, Ultrahigh stable carbon riveted Pt/TiO2-C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell, Energy Environ. Sci.,2011,4,728-735.
    [10]J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Stabilization of platinum oxygen-reduction electrocatalysts using goldclusters, Science,2007,315, 220-222.
    [11]K. Gong, D. Su, R. R. Adzic, Platinum-monolayer shell on AuNi0.5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction, J. Am. Chem. Soc.,2010,132,14364-14366.
    [12]C. Wang, D. van der Vliet, K. L. More, N. J. Zaluzec, S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J. Pearson, A. P. Paulikas, G. Karapetrov, D. Strmcnik, N. M. Markovic, V. R. Stamenkovic, Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst, Nano Lett.,2011,11,919-926.
    [13]Z. Chen, M, Waje, W. Li, Y. Yan, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions, Angew. Chem. Int. Ed.,2007,46, 4060-4063.
    [14]S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, X. Sun, A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal, Angew. Chem. Int. Ed.,2011,50,422-426.
    [15]H. Liang, X. Cao, F. Zhou, C. Cui, W. Zhang, S. Yu, A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction, Adv. Mater.,2011,23,1467-1471.
    [16]C. Wang, D. van der Vilet, K. C. Chang, H. D. You, D. Strmcnik, J. A. Schlueter, N. M. Markovic, V. R. Stamenkovic, Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction:size-dependent activity, J. Phys. Chem. C,2009,113,19365-19368.
    [17]J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeis, I. Chorkendorff, J. K. Norskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nature Chemistry, 2009,1,552-556.
    [18]V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science,2007,315,493-497.
    [19]V. R. Stamenkovic, B. S. Mum, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nature Materials,2007,6,241-247.
    [20]I. E. L. Stephens, A. S. Bondarenko, F. J. Perez-Alonso, F. Calle-Vallejo, L. Bech, T. P. Johansson, A. K. Jepsen, R. Frydendal, B. P. Knudsen, J. Rossmeisl, I. Chorkendorff, Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying, J. Am. Chem. Soc.,2011,133,5485-5491.
    [21]P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, A. Nilsson, Lattice-strain control of the actiVity in dealloyed core-shell fuel cell catalysts,Nature Chemistry,2010,2, 454-460.
    [22]J.Erlebacher,M.J.Aziz,A.Karma,N.Dimitrov,K.Sieradzki,Evolution of nanoporosity in dealloying,Nature,2001,410,450一453.
    [23]Y. Ding,Y J.Kim,J.Erlebacher,Nanoporous gold leaf:"ancient technology"/ advanced material,Adv.Mater.,2004,16,1897-1900.
    [24]T Fujita,H.Okada,K.Koyama,K.Watanabe,S.Maekawa,M.M. Chen, Unusually small electrical resistance of three-dimensional nanoporous gold in extemal magnetic fields,Phys.Rev.Lett.,2008,101,166601.
    [25]Y Ding,M.W.Chen,Nanoporous metals for catalytic and optical applications, Mrs Bull.,2009,34,569-576.
    [26]R.Y Wang,C.Wang,W.B.Cai,Y Ding,Ultra-low Pt loading,high performance nanoporous electrocatalysts with nanoengineered surface structures,Adv.Mater.,2010,22,1845-1848.
    [27]J.S.Yu,Y Ding,C.X.Xu,A.Inoue,T.Sakurai,M.W. Chen,Nanoporous metals by dealloying multicomponent metallic glasses,Chem.Mater:,2008,20, 4548-4550.
    [28]X.Y. Lang,H.Guo,L.Y Chen,A.Kudo,J.S.Yu,W.zhang,A.Inoue,M.W. Chen,Novel nanoporous Au-Pd alloy with high catalytic activity and excel lent electrochemical stabilitv,J.Phys.Chem.C,2010,J114,2600-2603.
    [29]J.Snyder,T.Fujita,M.W. Chen,J.Erlebacher,Oxygen reduction in nanoporous metal一ionic liquid composite electrocatalysts,Nature Material,2010,9, 904-907.
    [30]L.F.Liu,E.Pippel,R.Scholz,U.Gosele,Nanoporous Pt-Co alloy nanowires: fabrication,characterization,and electrocatalytic properties,Nano Lett.,2009,9, 4352.4358.
    [31]L.F.Liu,R.Scholz,E.Pippel,U.Gosele,Microstructure,electrocatalytic and sensing properties of nanloporous Pt46Ni54 alloy nanowires fabricated by mild dealloying,J.Mater.Chem.,2010,2o,5621-5627.
    [32]C.X.Xu,R.Y Wang,M.W Chen,Y Zhang,Y. Ding,Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties,Phys.Chem. Chem.Phys.,2010,12,239-246.
    [33]Z.H.Zhang,Y. Wang,Z.Qi,W. H.Zhang,J.Y Qin,J.Frenzel,Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying, J. Phys. Chem. C,2009,113,12629-12636.
    [34]M. Raney, Catalysts from alloys, Ind. Eng. Chem.,1940,32,1199-1203.
    [35]H. J. Jin, J. Weissmuller, A material with electrically tunable strength and flow stress, Science,2011,332,1179-1182.
    [36]V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys:Pt-skin versus Pt-skeleton surfaces, J. Am. Chem. Soc.,2006,128,8813-8819.
    [37]S. Chen, P. J. Ferreira, W. Sheng, N. Yabuuchi, L. F. Allard, S. Yang, Enhanced activity for oxygen reduction reaction on "Pt3Co" nanoparticles:direct evidence of percolated and sandwich-segregation structures J. Am. Chem. Soc.,2008,130, 13818-13819.
    [38]S. Van Petegem, S. Brandstetter, R. Maass, A. M. Hodge, B. S. El-Dasher, J. Biener, B. Schmitt, C. Borca, H. Van Swygenhoven, On the microstructure of nanoporous gold:an X-ray diffraction study, Nano Lett.,2009,9,1158-1163.
    [39]M. Watanabe, K. Tsurumi, T. Mizukami, T. Nakamura, P. Stonehart, Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells, J. Electrochem. Soc.,1994,141,2659-2668.
    [40]J. Wu, J. Zhang, Z. Peng, S. Yang, F. T. Wagner, H. Yang, Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts, J. Am. Chem. Soc.,2010,132, 4984-4985.
    [41]D. Wang, H. L. Xin, Y. Yu, H. Wang, E. Rus, D. A. Muller, H. D. Abruna, Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction, J. Am. Chem. Soc., 2010,132,17664-17666.
    [42]J. Erlebacher, An atomistic description of dealloying, J. Electrochem. Soc.,2004, 151, C614-C626.
    [1]B. C. H. Steele, A. Heinzel, Nature 2001,414,345.
    [2]X. W. Yu, P. G. Pickup, J. Power Sources 2008,182,124.
    [3]H. Miyake, T. Okada, G. Samjeske, M. Osawa, Phys. Chem. Chem. Phys.2008, 10,3662.
    [4]a) F. Besenbacher, I. Chorkendorff, B. S. Clausen, B. Hammer, A. M. Molenbroek, J. K. Norskov, I. Stensgaard, Science 1998,279,1913; b) M. S. Chen, D. Kumar, C. W. Yi, D. W. Goodman, Science 2005,310,291.
    [5]A. Cuesta, J. Am. Chem. Soc.2006,128,13332.
    [6]F. Maroun, F. Ozanam, O. M. Magnussen, R. J. Behm, Science 2001,293,1811.
    [7]G. Samjeske, A. Miki, S. Ye, M. Osawa, Phys. Chem. B 2006,110,16559.
    [8]L. Zhuang, J. Jin, H. D. Abruna, J. Am. Chem. Soc.2007,129,11033.
    [9]a) S. P. E. Smith, K. F. Ben-Dor, H. D. Abruna, Langmuir 1999,15,7325; b) S. Uhm, H. J. Lee, Y. Kwon, J. Lee, Angew. Chem. Int. Ed.2008,47,10163; c) A. Lopez-Cudero, F. J. Vidal-Iglesias, J. Solla-Gullon, E. Herrero, A. Aldaz, J. M. Feliu, Phys. Chem. Chem. Phys.2009,11,416.
    [10]a) S. R. Brankovic, J. X. Wang, R. R. Adzic, Surf. Sci.2001,474, L173; b) S. H. Yoo, S. Park, Adv. Mater.2007,19,1612; c) P. P. Liu, X. B. Ge, R. Y. Wang, H. Y. Ma, Y. Ding, Langmuir 2009,25,561.
    [11]Y. Ding, Y. J. Kim, J. Erlebacher, Adv. Mater.2004,16,1897.
    [12]T. Fujita, H. Okada, K. Koyama, K. Watanabe, S. Maekawa, M. W. Chen, Phys. Rev. Lett.2008,101,166601.
    [13]C. X. Xu, J. X. Su, X. H. Xu, P. P. Liu, H. J. Zhao, F. Tian, Y. Ding, J. Am. Chem. Soc.2007,129,42.
    [14]Y. Ding, M. W. Chen, J. Erlebacher, J. Am. Chem. Soc.2004,126,6876.
    [15]J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Science 2007,315,220.
    [16]M. Neurock, M. Janik, A. Wieckowski, Faraday Discuss.2008,140,363.
    [17]Y. X. Chen, M. Heinen, Z. Jusys, R. B. Behm, Angew. Chem. Int. Ed. 2006,45, 981.
    [18]A. Cuesta, C. Gutierrez, Langmuir 1998,14,3397.
    [19]Z. W. Chen, M. Waje, W. Z. Li, Y. S. Yan, Angew. Chem. Int. Ed.2007,46, 4060.
    [20]R. Ferrando, J. Jellinek, R. L. Johnston, Chem. Rev.2008,108,845.
    [21]H. B. Liu, U. Pal, J. A. Ascencio, J. Phys. Chem. C2008,112,19173.
    [22]S. Trasatti, O. A. Petrii, Pure Appl. Chem.1991,63,711-734.
    [23]H. Miyake, S. Ye, M. Osawa, Electrochem. Commun.2002,4,973-977.
    [1]a) B. C. H. Steele, A. Heinzel, Nature 2001,414,345; b) M. Z. Jacobson, W. G. Colella, D. M. Golden, Science 2005,308,1901.
    [2]a) R. F. Service, Science 2002,296,1222; b) C. M. Miesse, W. S. Jung, K. J. Jeong, J. K. Lee, J. Lee, J. Han, S. P. Yoon, S. W. Nam, T. H. Lim, S. A. Hong, J. Power Sources 2006,162,532.
    [3]a) X. W. Yu, P. G. Pickup, J. Power Sources 2008,182,124; b) C. Rice, R. I. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, J. Power Sources 2002, 111,83; c) K. J. Jeong, C. A. Miesse, J. H. Choi, J. Lee, J. Han, S. P. Yoon, S. W. Nam, T. H. Lim, T. G. Lee, J. Power Sources 2007,168,119.
    [4]C. Sealy, Mater. Today 2008,11,65.
    [5]a) R. Bashyam, P. Zelenay, Nature 2006,443,63; b) M. Lefevre, E. Proietti, F. Jaouen, J. P. Dodelet, Science 2009,324,71:c) H. A. Gasteiger, N. M. Markovic, Science 2009,324,48.
    [6]B. Beden, A. Bewick, C. Lamy, J. Electroanal. Chem.1983,148,147.
    [7]a) G. Samjeske, A. Miki, S. Ye, M. Osawa. J. Phys. Chem. B 2006,110,16559; b) Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm, Angew. Chem. Int. Ed.2006,45, 981; c) M. Osawa, K. Komatsu, G. Samjeske, T. Uchida, T. Ikeshoji, A. Cuesta, C. Gutierrez, Angew. Chem. Int. Ed.2011,50,1159.
    [8]M. Neurock, M. Janik, A. Wieckowski, Faraday Discuss.2008,140,363.
    [9]a) J. Clavilier, A. Fernandez-Vega, J. M. Feliu, A. Aldaz, J. Electroanal. Chem. 1989,258,89; b) A. Lopez-Cudero, F. J. Vidal-Iglesias, J. Solla-Gullon, E. Herrero, A. Aldaz, J. M. Feliu, Phys. Chem. Chem. Phys.2009,11,416; c) R. Y. Wang, C. Wang, W. B. Cai, Y. Ding, Adv. Mater.2010,22,1845; d) E. Leiva, T. Iwasita, E. Herrero, J. M. Feliu, Langmuir 1997,13,6287; e) A, Cuesta, M. Escudero, B. Lanova, H. Baltruschat, Langmuir 2009,25,6500.
    [10]a) E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, T. Vazquez-Alvarez, A. C. D. Angelo, F. J. DiSalvo, H. D. Abruna, J. Am. Chem. Soc.2004,126,4043; b) X. L. Ji, K. T. Lee, R. Holden, L. Zhang, J. J. Zhang, G. A. Botton, M. Couillard, L. F. Nazar, Nature Chem.2010,2,286.
    [11]a) K. Sasaki, H. Naohara, Y. Cai, Y. M. Choi, P. Liu, M. B. Vukmirovic, J. X. Wang, R. R. Adzic, Angew. Chem. Int. Ed.2010,49,8602; b) D. L. Wang, H. L. Xin, Y. C. Yu, H. S. Wang, E. Rus, D. A. Muller, H. D. Abruna, J. Am. Chem. Soc.2010,132,17664; c) M. H. Shao, K. Shoemaker, A. Peles, K. Kaneko, L. Protsailo, J. Am. Chem. Soc.2010,132,9253.
    [12]a) Y. Ding, Y. J. Kim, J. Erlebacher, Adv. Mater.2004,16,1897; b) Y. Ding, M. W. Chen, Mrs Bull.2009,34,569.
    [13]A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, M. Baumer, Science 2010, 527,319.
    [14]a) K. Uosaki, S. Ye, Y. Oda, T. Haba, K. Hamada, Langmuir,1997,13,594; b) Y. Nagahara, M. Hara, S. Yoshimoto, J. Inukai, S. L. Yau, K. Itaya, J. Phys. Chem.52004,708,3224.
    [15]J. Kim, C. Jung, C. K. Rhee, T. Lim, Langmuir,2007,23.10831.
    [16]S. Uhm, H. J. Lee, Y. Kwon, J. Lee, Angew. Chem. Int. Ed.2008,47,10163.
    [17]J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Science 2007,315,220.
    [18]Brummer, S. B., Makrides, A. C. Surface oxidation of gold electrodes. J. Electrochem. Soc. 111,1122-1128 (1964).
    [19]Trasatti, S., Petrii, O. A. Real surface area measurements in electrochemistry. Pure Appl. Chem.63,711-734 (1991).
    1. B. C. H. Steele and A. Heinzel, Nature,2001,414,345-352.
    2. M. Z. Jacobson, W. G. Colella and D. M. Golden, Science,2005,308,1901-1905.
    3. H. A. Gasteiger, S. S. Kocha, B. Sompalli and F. T. Wagner, Appl. Catal. B: Environ.,2005,56,9-35.
    4. H. A. Gasteiger and N. M. Markovic, Science,2009,324,48-49.
    5. A. Morozan, B. Jousselme and S. Palacin, Energy Environ. Sci.,2011,4, 1238-1254.
    6. C. Sealy, Mater. Today,2008,11,65-68.
    7. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. I. Kimijima and N. Iwashita, Chem. Rev.,2007,107,3904-3951.
    8. K. Hartl, M. Hanzlik and M. Arenz, Energy Environ. Sci.,2011,4,234-238.
    9. Z. Z. Jiang, Z. B. Wang, Y. Y. Chu, D. M. Gu and G. P. Yin, Energy Environ. Sci., 2011,4,728-735.
    10. J. Zhang, K. Sasaki, E. Sutter and R. R. Adzic, Science,2007,315,220-222.
    11. K. P. Gong, D. Su and R. R. Adzic, J. Am. Chem. Soc.,2010,132,14364-14366.
    12. C. Wang, D. van der Vliet, K. L. More, N. J. Zaluzec, S. Peng, S. H. Sun, H. Daimon, G. F. Wang, J. Greeley, J. Pearson, A. P. Paulikas, G. Karapetrov, D. Strmcnik, N. M. Markovic and V. R. Stamenkovic, Nano Lett.,2011,11,919-926.
    13. Z. W. Chen, M. Waje, W. Z. Li and Y. S. Yan, Angew. Chem. Int. Ed.,2007,46, 4060-4063.
    14. S. H. Sun, G. X. Zhang, D. S. Geng, Y. G. Chen, R. Y. Li, M. Cai and X. L. Sun, Angew. Chem. Int. Ed.,2011,50,422-426.
    15. H. W. Liang, X. A. Cao, F. Zhou, C. H. Cui, W. J. Zhang and S. H. Yu, Adv. Mater., 2011,23,1467-1471.
    16. C. Wang, D. van der Vilet, K. C. Chang, H. D. You, D. Strmcnik, J. A. Schlueter, N. M. Markovic and V. R. Stamenkovic, J. Phys. Chem. C,2009,113,19365-19368.
    17. J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff and J. K. Norskov, Nature Chem.,2009,1, 552-556.
    18. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. F. Wang, P. N. Ross, C. A. Lucas and N. M. Markovic, Science,2007,315,493-497.
    19. V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. F. Wang, P. N. Ross and N. M. Markovic, Nature Mater.,2007,6,241-247.
    20.1. E. L. Stephens, A. S. Bondarenko, F. J. Perez-Alonso, F. Calle-Vallejo, L. Bech, T. P. Johansson, A. K. Jepsen, R. Frydendal, B. P. Knudsen, J. Rossmeisl and I. Chorkendorff, J. Am. Chem. Soc.,2011,133,5485-5491.
    21. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. F. Yu, Z. C. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney and A. Nilsson, Nature Chem.,2010,2, 454-460.
    22. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov and K. Sieradzki, Nature,2001, 410,450-453.
    23. Y. Ding, Y. J. Kim and J. Erlebacher, Adv. Mater,2004,16,1897-1900.
    24. T. Fujita, H. Okada, K. Koyama, K. Watanabe, S. Maekawa and M. W. Chen, Phys. Rev. Lett,2008,101,166601.
    25. Y. Ding and M. W. Chen, MRS Bull.,2009,34,569-576.
    26. R. Y. Wang, C. Wang, W. B. Cai and Y. Ding, Adv. Mater.,2010,22,1845-1848.
    27. J. S. Yu, Y. Ding, C. X. Xu, A. Inoue, T. Sakurai, and M. W. Chen, Chem. Mater., 2008,20,4548-4550.
    28. X. Y. Lang, H. Guo, L. Y. Chen, A. Kudo, J. S. Yu, W. Zhang, A. Inoue, and M. W. Chen, J. Phys. Chem. C,2010,114,2600-2603.
    29. J. Snyder, T. Fujita, M. W. Chen and J. Erlebacher, Nature Mater,2010,9, 904-907.
    30. L. F. Liu, E. Pippel, R. Scholz and U. Gosele, Nano Lett.,2009,9,4352-4358.
    31. L. F. Liu, R. Scholz, E. Pippel and U. Gosele, J. Mater. Chem.,2010,20, 5621-5627.
    32. C. X. Xu, R. Y. Wang, M. W. Chen, Y. Zhang and Y. Ding, Phys. Chem. Chem. Phys.,2010,12,239-246.
    33. Z. H. Zhang, Y. Wang, Z. Qi, W. H. Zhang, J. Y. Qin and J. Frenzel, J. Phys. Chem. C,2009,113,12629-12636.
    34. M. Raney, Ind. Eng. Chem.,1940,32,1199-1203.
    35. V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross and N. M. Markovic, J. Am. Chem. Soc.,2006,128,8813-8819.
    36. S. Chen, P. J. Ferreira, W. C. Sheng, N. Yabuuchi, L. F. Allard and Y. Shao-Horn, J. Am. Chem. Soc.,2008,130,13818-13819.
    37. S. Van Petegem, S. Brandstetter, R. Maass, A. M. Hodge, B. S. El-Dasher, J. Biener, B. Schmitt, C. Borca and H. Van Swygenhoven, Nano Lett.,2009,9, 1158-1163.
    38. M. Watanabe, K. Tsurumi, T. Mizukami, T. Nakamura and P. Stonehart, J. Electrochem. Soc.,1994,141,2659-2668.
    39. J. B. Wu, J. L. Zhang, Z. M. Peng, S. C. Yang, F. T. Wagner and H. Yang, J. Am. Chem. Soc.,2010,132,4984-4985.
    40. D. L. Wang, H. L. Xin, Y C. Yu, H. S. Wang, E. Rus, D. A. Muller and H. D. Abruna, J. Am. Chem. Soc.,2010,132,17664-17666.
    41. J. Erlebacher, J. Electrochem. Soc.,2004,151, C614-C626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700