用户名: 密码: 验证码:
错位桨搅拌假塑性流体流动与混合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多过程工业都会涉及到高粘非牛顿流体的搅拌混合,这是搅拌技术的难点之一。具有一定初始屈服应力的假塑性流体是一种最常见的非牛顿流体,呈现出剪切稀化的流动特性,在层流搅拌时会产生洞穴效应,洞穴内部流体混合较好,而外部的流体则处于停滞或缓慢流动状态,这对流体混匀极为不利。另外,当流体粘度较大或者对剪切力敏感时,搅拌只能处于层流或较低雷诺数的过渡流状态,此时在叶片的上下方附近会形成环形的混合隔离区,隔离区内部介质只能依靠分子的扩散运动与外部实现传质过程,混合效果很不理想。为此,本文通过数值模拟方法,采用错位六弯叶涡轮搅拌器,对假塑性流体的宏观流场特征、洞穴变化规律以及混沌混合特性展开研究,为高效搅拌装置开发打下理论基础。
     通过流变仪测试了黄原胶水溶液(一种典型的假塑性流体)的流变学参数,分析了流体表观粘度与切应变速率的关系,探讨了质量浓度和温度等因素对流变参数的影响规律。黄原胶水溶液的表观粘度随切应变速率的增大而减小,表现出良好的剪切稀化性,表观粘度与切应变速率的关系符合Herschel-BuIkIey流变模型,流变指数随流体浓度升高呈下降趋势,受温度的影响较小,实验测试得到的流变参数为后续的模拟研究提供了依据。选用甘油进行了层流搅拌功率实验,用纯净水进行了PIV湍流实验,实验数据与相应的数值模拟结果均吻合较好,因此可以用CFD方法来预测流体的流动及混合特性,从而验证了本文所建立的层流和κ-ε湍流模型计算结果的可靠性。
     基于层流粘性模型,对错位桨和六弯叶桨在假塑性流体搅拌过程中的洞穴变化规律进行了研究,给出了较为适宜的洞穴边界速度的确定方法,分析了洞穴形状、直径以及高径比随表观雷诺数Re*的变化规律,描述了洞穴的发展过程。研究表明,洞穴形状随Re*的增大均呈现圆柱形的变化规律,符合洞穴圆柱形模型(EN模型)的描述;在双对数坐标中,Dc/D-NpRey的变化规律以及洞穴高径比的变化与假塑性流体流变指数无关。然而,洞穴高度的轴向扩展系数β明显不同,六弯叶桨β=0.55,错位桨β=0.79,错位桨搅拌更有利于消除流场洞穴效应。
     对错位桨和六弯叶桨在牛顿流体和假塑性流体中的搅拌功耗及搅拌槽内的压力分布进行了数值模拟研究,探讨了错位桨搅拌效果改善的机理,建立起错位桨功率常数K。和Metzner-Otto数Ks与搅拌桨几何尺寸的关联式。在层流区域内,由表观粘度法得到假塑性流体的功率曲线和牛顿流体的功率曲线是重合的,牛顿流体的临界雷诺数为10,假塑性流体为30;错位桨Metzner-Otto数Ks与流变指数n基本无关,随转速的升高,错位桨节能效果逐渐显现;在Coriolis力的作用下,错位桨搅拌槽内流体可形成较为强烈的旋流运动,这对搅拌效果的改善是极为有利的;利用K。和ks的关联式,可以较为准确地预测错位桨搅拌假塑性流体的功率消耗和槽内平均剪切特性。
     采用k-ε湍流模型,对错位桨、六弯叶桨及双层桨组合形式在假塑性流体搅拌中的流场特性和混合过程进行了对比研究,阐述了错位桨诱发混沌流动的特性,探讨了错位桨搅拌转速对流场的切应变速率、排出流率以及泵送效率的影响,分析了组合桨层间距对搅拌流场结构的影响,确定了在不同搅拌转速下较为适宜的层间距。研究表明,桨叶错位能够产生不对称流场结构,有效消除混合隔离区,诱发流体的整体混沌流。混合过程与流场结构密切相关,错位桨在混合速率和混合效率方面均高于六弯叶桨,其中错位桨的单位体积混合能只有六弯叶桨的52%,体现出它的优越性。底部为错位六弯叶桨、上层采用45°斜叶桨的组合形式,用于假塑性流体搅拌混合过程具有明显优势,并将该组合形式应用于中型FCC催化剂成胶搅拌过程,催化剂颗粒的耐磨性得到了较大提高,颗粒磨损指数由2.6提高到了1.9,产品质量得以提高,证明该组合形式可以满足催化剂成胶搅拌的需求,值得推广应用。
Mixing of viscous non-Newtonian fluids are commomly encountered operation in many process industries, which is one of the difficulties for stirring technology. Pseudoplastic fluids possesing a yield stress are most common class of non-Newtonian fluids, exhibiting the shear-thinning viscosity property. Mixing of such fluids result in the formation of a well-mixed region (so called cavern) around the impeller surrounded by stagnant and/or slow-moving fluids elsewhere in the mixing vessel. These poor mixing conditions have been implicated in lower mass tranfer rates. Moreover, Mixing is often obliged to be conducted under low Reynolds number conditions due to the high viscosity fluids and shear-sensitiveness of materials. These low Reynolds number flow conditions may bring the isolated mixing regions (IMRs), which comprise two troidal vortices formed respectively above and below an impeller, in stirred tank. These regions exchange materials with the bulk of the flow only through diffusion, which is slow relative to convective processes. Therefore, the flow feature, cavern development and efficiently chaotic mixing performance of pseudoplastic fluids in a stirred tank equipped with the6PBT impeller are investigated by numerical simulation method in this paper. The research results promote the understanding of the mixing mechanism of pseudoplastic fluids, lay a theoretical basis and provide valuable instructions for the design of the efficient agitation equipments.
     The rheological measurements of xanthan gum solutions (a typical kind of pseudoplastic fluid possessing a yield stress) were carryed out by rheometer for analyzing the relationship between apparent viscosity and shear rate and the influence of mass concentration and temperature on the rheological parameters. It is found that apparent viscosity of the solutions decreases sharply as shear rate increases, which exhibits a good shear-thinning rheology, and the solutions rheology is well fitted to the Herschel-Bulkley rheological model. The flow behavior index of solutions decreases as mass concentration increases, but it almost independent of temperature variations. The resulting rheological data can provide a basis for numerical simulation later. The computed data of power consumption agree well with the measured data in experiment of stirring glycerine, and the numerical results of the flow macro structure and velocity distribution by k-ε turbulent model also agree well with PIV experimental data in water, which validated the CFD model developed in laminar flow and turbulent flow regime. These results show that CFD calcalations can pick up the features of flow fields and can be effectively used to predict the flow and mixing characteristics of fluids.
     Based on laminar viscosity model, cavern development during agitation of pseudoplastic fluids with the impeller of perturbed six-bent-bladed turbine (6PBT) and impeller of six-bent-bladed turbine (6BT) was studied by numerical simulation. The cavern boumdary velocity was properly determined and the cavern dimensions of shape, diameter and height to diameter ratio versus Reynolds number were analysed, in the meantime, the course of cavern development was also described. The results show that the cylindrical cavern development can be found as Reynolds number increases, which shows a good agreement with the representation of the cylindrical model (Elson s model). The slope from a log-log plot of Dc/D verse NpRey, as well as the variations of cavern height to diameter ratio, have nothing to do with the rheological behavior index of fluids all together. However, the rate constant of axial fluid expansion describing cavern height once the cavern touches the vessel base and wall,β, is not alike,β=0.55for6BT impeller,β=0.79for6PBT impeller, respectively, so6PBT impeller is more beneficial to eliminate the cavern effect in stirring pseudoplastic fluids.
     The power consumption and pressure distribution of Newtonian and pseudoplastic fluids in stirred tank with6PBT and6BT impeller were calculated by the numerical model established. The efficient agitation mechanism of6PBT impeller was made a thorough discussion, and the complete correlations of kp and ks to impeller geometry were established. The results show that, in the laminar flow regime, all the power consumption data obtained on the basis of apparent viscosity concept for various shear thinning fluids are in agreement with those for Newtonian fluids, the critical Reynolds number of Newtonian and pseudoplastic fluids in laminar flow regime is10and30, respectively. In addition, there is no correlation between ks and rheological behavior index, n, on the whole, and6PBT impeller can lead to a saved energy as rotating speed increases. The stronger swirling motion may emerge in stirred tank with6PBT impeller under the action of Coriolis force, which is exceedingly advantageous to promotion of mixing efficiency. Moreover, the power consumption and average shear rate in stirring pseudoplastic fluids may be accurately predicted by the correlations of kp and ks, comparatively.
     The flow fields and mixing characteristics of pseudoplastic fluids in stirred tank with6PBT impeller,6BT impeller and dual-impeller combination were numerically investigated by standard k-ε turbulent model, respectively. The properties of the chaotic flow induced by6PBT impeller were made a thorough inquiry, and the influences of the rotating speed with6PBT impeller on shear rate, flow number and pumping capacity of fluids were also made a detailed discussion. Moreover, the influences of the different layer clearances with dual-impeller combination on the flow structure were analyzed, the proper layer clearance at different speed was determined in the meantime. The results show that, compared with6BT impeller,6PBT impeller can destroy the isolated mixing regions with its dissymmetrical structure of flow field and induce the chaotic flow in whole vessel. The tracer mixing process is close dependent on the flow field structure,6PBT impeller has a major superiority on mixing rate and mixing effiency to6BT impeller, in which, concerning the mixing energy per unit volume,6PBT impeller merely accountes for a52%proportion of6BT impeller. Besides, the dual-impeller combination of6PBT impeller as lower impeller and impeller of three-pitched-bladed turbine as upper one is discovered to have a clear superiority on mixing process of pseudoplastic fluids. At the end, this kind of dual-impeller combination is applied to the medium-sized trial-production stirring process of FCC catalyst gum formation on-the-spot. The wearability of catalyst particle is greatly improved with the increase of particle wear index from2.6to1.9, and the product reaches the high quality. It is concluded that the dual-impeller combination can meet the productive demands in agitation of catalyst gum formation, so is worth application and dissemination.
引文
[1]王凯,虞军著.搅拌设备[M].北京:化学工业出版社,2003
    [2]Pakzad L, Ein-Mozaffari F, Chan P. Using Electrical Resistance Tomography and Computational Fluid Dynamics Modeling to Study the Formation of Cavern in the Mixing of Pseudoplastic Fluids Possessing Yield Stress [J]. Chem. Eng. Sci.,2008,63(9):2508-2522
    [3]Ein-Mozaffari F, Upreti S R. Using Ultrasonic Doppler Velocimetry and CFD Modeling to Investigate the Mixing of Non-Newtonian Fluids Possessing Yield Stress [J]. Chem. Eng. Res. Des.,2009,87(4):515-523
    [4]Galindo E, Nienow A W. Mixing of Highly Viscous Simulated Xanthan Fermentation Broths with the Lightnin A-315 impeller [J]. Bio. Technol. Prog.,1992,8(3):223-239
    [5]Amanullah A, Hjorth S A, Nienow A W. Cavern Sizes Generated in Highly Shear Thinning Viscous Fluids by SCABA 3SHP1 Impeller [J]. Food and Bioproducts Processing,1997,75 (C4):232-238
    [6]王嘉骏,冯连芳,顾雪萍,等.锚式搅拌器功率消耗与Metzner常数研究[J].化学工程,1999,27(6):20-24
    [7]王嘉俊,冯连芳,顾雪萍,等.内外单螺带式搅拌器Metzner常数[J].高校化学工程学报,1999,13(5):442-446
    [8]Stephen J, Afacan A, Williams M C. Experimental Mixing Study of a Yield Stress Fluid in a Laminar Stirred Tank [J]. Ind. Eng. Chem. Res.,2000,39(1):195-202
    [9]Zhang Minge, Zhang Luhong. Jiang Bin, et al. Calculation of Metzner Constant for Double Helical Ribbon Impeller by Computational Fluid Dynamic Method [J]. Chinese Journal of Chemical Engineering,2008,16(5):686-692
    [10]Wang J J, Feng L F, Gu X P, et al. Power Consumption of Inner-Outer Helical Ribbon Impellers in Viscous Newtonian and Non-Newtonian Fluids [J]. Chem. Eng. Sci.,2000, 55(12):2339-2342
    [11]Torrez C, Andre C. Power Consumption of a Rushton Turbine Mixing Viscous Newtonian and Shear-Thinning Fluids:Comparison between Experimental and Numerical Results [J]. Chem. Eng. Technol.,1998,21(7):599-604
    [12]Thakur R K, Vial Ch, Djelveh G, et al. Mixing of Complex Fluids with Flat-Bladed Impellers: Effect of Impeller Geometry and Highly Shear-Thinning Behavior [J]. Chem. Eng. Pro.,2004, 43(10):1211-1222
    [13]Brito-De La Fuente E, Choplin L, Tanguy P A. Mixing with Helical Ribbon Impellers:Effect of Highly Shear Thinning Behaviour and Impeller Geometry [J]. Trans. IChem E.,1997, 75(A):45-52
    [14]Fradette L, Thome G, Tanguy P A, et al. Power and Mixing Time Study Involving a Maxblend Impeller with Viscous Newtonian and Non-Newtonian Fluids [J]. Chem. Eng. Res. Des.,2007,85(Al1):1514-1523
    [15]段所行,苏红军,徐世艾.最大叶片式桨在假塑性流体中的搅拌流场模拟[J].化学工程,2010,38(6):46-49
    [16]张敏革,张吕鸿,姜斌,等.双螺带-螺杆搅拌桨在不同流体中的搅拌流场特性[J].天津大学学报,2009,42(10):884-890
    [17]Shekhar S M, Jayanti S. Mixing of Pseudoplastic Fluids Using Helical Ribbon Impellers [J]. AICHE J.,2004,49(11):2768-2772
    [18]Espinosa-Solares T, Brito-De La Fuente E, Tecante A, et al. Power Consumption of a Dual Turbine-Helical Ribbon Impeller Mixer in Ungassed Conditions [J]. Chem. Eng. Journal, 1997,67(3):215-219
    [19]Tanguy P A, Thibault F, Brito-De La Fuente E, et al. Mixing Performance Induced by Coaxial Flat Blade-Helical Ribbon Impellers Rotating at Different Speeds [J]. Chem. Eng. Sci.,1997, 52(11):1733-1741
    [20]Foucault S, Ascanio G, Tanguy P A. Coaxial Mixer Hydrodynamics with Newtonian and Non-Newtonian Fluids [J]. Chem. Eng. Technol.,2004,27(3):324-329
    [20]Thibault F, Tanguy P A. Power-Draw Analysis of a Coaxial Mixer with Newtonian and Non-Newtonian Fluids in the Laminar Regime [J]. Chem. Eng. Sci.,2002,57(18):3861-3872
    [21]Aubin J, Naude I, Bertrand J, et al. Blending of Newtonian and Shear-Thinning Fluids in a Tank Stirred with a Helical Screw Agitator [J]. ChEBD Trans. IChE.,2000,78(A8):1105-1114
    [22]Rieger F, Novak V. Power Consumption Scale-up in Agitating Non-Newtonian Liquids [J]. Chem. Eng. Sci.,1974,29(11):2229-2234
    [23]Foucault S. Mixing Times in Coaxial Mixers with Newtonian and Non-Newtonian Fluids [J]. Ind. Eng. Chem. Res.,2006,45(1):352-359
    [24]孙会,潘家祯.带有新型内外组合桨的搅拌设备内流场的数值研究[J].化工学报,2006,57(1):13-20
    [25]孙会,潘家祯.新型内外组合搅拌桨的开发及流场特性[J].机械工程学报,2007,43(11):56-62
    [26]武斌,戴干策.搅拌槽内粘稠物系的混合过程[J].高校化学工程学报,1997,11(2):143-149
    [27]包雨云,刘新卫,高正明.组合桨聚合釜内非牛顿流体的混合特性[J].合成橡胶工业,2004,27(3):142-145
    [28]侯运年.高黏度淤浆性流体搅拌器设计[J].石油化工设备技术,1998,19(5):25-27
    [29]于飞,包雨云,黄雄斌.搅拌槽内具滑移特性非牛顿流体的搅拌功率及混合特性研究[J].高校化学工程学报,2009,23(5):878-884
    [30]王凯,冯连芳著.混合设备设计[M].北京:机械工业出版社,2000
    [31]Lamberto D J. Enhancing Laminar Mixing in Stirred Tanks Reactors Using Dynamic Flow Perturbations [D]. The State of University of New Jersey, Rutgers,1997
    [32]Zalc J M, Salai E S, Alvarez M M, et al. Using CFD to Understand Chaotic Mixing in Laminar Stirred Tanks [J]. Fluid Mechanics and Transport Pheno-Mena,2002,48(10):2124-2134
    [33]Lamberto D J, Muzzio F J, Swanson. Using Time Dependent RPM to Enhance Mixing in Stirred Vessels [J]. Chem. Eng. Sci.,1996,53(5):733-741
    [34]Aref H. Stirred by Chaotic Advection [J]. Fluid Mesh,1984,143:1-21
    [35]Aref H, Balachandar S. Chaotic Advection in a Stokes Flow [J]. Phys. Fluids,1986,29: 3515-3521
    [36]Armenante P M, Luo C, Chou C C, et al. Velocity Profiles in a Closed, Unbaffled Vessel: Comparison between Experimental LDV Data and Numerical CFD Prediction [J]. Chem. Eng. Sci.,1997,52(20):3483-3492
    [37]Sahu A K, Kummar P, Joshi J B. Simulation of Flow in Stirred Vessels with Axial Flow Impellers:Zonal Modeling and Optimization of Parameter [J]. Ind. Eng. Chem. Res.,1998, 37(6):2116-2130
    [38]Kelly W, Humphrey A E. Computational Fluid Dynamics Model for Predicting Flow of Viscous Fluids in a Large Ferment or with Hydrofoil Flow Impellers and Internal Cooling Coils [J]. Biotechnol. Prog.,1998,14(2):248-258
    [39]Kelly W, Gigas B. Using CFD to Predict the Behavior of Power Law Fluids Near Axial-Flow Impellers Operating in the Transitional Flow Regime [J]. Chem. Eng. Sci.,2003,58(10):2141-2152
    [40]Murthy S S, Jayanti S. Mixing of Power-Law Fluids Using Anchors:Metzner-Otto Concept Revisited [J]. AIChE J.,2003,49(1):30-40
    [41]Iranshahi A, Heniche M, Bertrand F, et al. Numerical Investigation of the Mixing Efficiency of the Ekato Paravisc Impeller [J]. Chem. Eng. Sci.,2006,61(8):2609-2617
    [42]Mavros P, Mann R, Vlaev S D, et al. Experimental Visualization and CFD Simulation of Flow Patterns Induced by a Novel Energy-Saving Dual-Configration Impeller in Stirred Vessels [J]. Chem. Eng. Res. Des.,2001,79(A):857-866
    [43]Aubin J, Xuereb C. Design of Multiple Impeller Stirred Tanks for the Mixing of Highly Viscous Fluids Using CFD [J]. Chem. Eng. Sci.,2006,61(9):2913-2920
    [44]Yao W, Mishima M, Takahashi K. Numerical Investigation on Dispersive Mixing Characteristics of MAXBLEND and Double Helical Ribbons [J]. Chem. Eng. J.,2001,84(3): 565-571
    [45]饶麒,樊建华,王运东,等.搅拌槽内黏性流体流动的DPIV测量与CFD模拟[J].化工学报,2004,55(8):1374-1379
    [46]Moilanen P, Laakkonen M, Aittamaa J. Modeling Aerated Ferments with Computational Fluid Dynamics [J]. Ind. Eng. Chem. Res.,2006,45(25):8656-8663
    [47]Murthy S S, Jayanti S. Mixing of Power-Law Fluids Using Anchors:Metzner-Otto Concept Revisited [J]. AIChE J.,2003,49(1):30-40
    [48]Ihejirika I, Ein-Mozaffari F. Using CFD and Ultrasonic Velocimetry to Study the Mixing of Pseudoplastic Fluids with a Helical Ribbon Impeller [J]. Chem. Eng. Technol.,2007,30(5): 606-614
    [49]张丽丽,黄雄斌.剪切变稀型流体在搅拌槽中流动与混合特性数值模拟[J].河北科技大学学报,2008,29(3):194-199
    [50]李晶,詹晓北,郑志永,等.不同型式搅拌桨对黄原胶水溶液搅拌效果的CFD数值模拟[J].过程工程学报,2009,9(4):634-640
    [51]周国忠,聂毅强,包雨云,等.搅拌槽内非牛顿流体流动场的数值模拟[J].北京化工大学学报,2002,29(4):4-7
    [52]何庆阳,黄雄斌.假塑性流体搅拌槽内停留时间分布[J].化学反应工程与工艺,2009,25(1):18-22
    [53]张蕊,黄雄斌,何庆阳.连续搅拌槽内假塑性流体停留时间分布的数值模拟[J].北京化工大学学报(自然科学版),2009,36(6):5-10
    [54]丛海峰,高正明,Atibeni R A等.搅拌槽内非牛顿流体的微观混合特性[J].合成橡胶工业,2006,29(1):14-17
    [55]Atibeni R A,高正明,闵健,等.涡轮桨搅拌槽内粘稠物系的微观混合特性[J].过程工程学报,2006,6(1):11-14
    [56]Vichterle K, Wein O. Agitation of Concentrated Suspensions [J]. CHISA,1975, Paper B4.6, Prague, Czechoslovakia
    [57]Vichterle K, Wein O. Threshold of Mixing of Non-Newtonian Liquids [J]. Int. Chem. Eng., 1981,21(1):116-121
    [58]Solomon J,.Elson T P, Niewnow A W. Cavern Sizes in Agitated Fluids with a Yield Stress [J]. Chem. Eng. Commun.,1981,11(1-3):143-164
    [59]Amanullah A, Hjorth S A, Nienow A W. A New Mathematical Model to Predict Cavern Diameters in Highly Shear Thinning, Power-Law Liquids Using Axial Flow Impellers [J]. Chem. Eng. Sci.,1998,53(3):455-469
    [60]Elson T P, Cheesman D J, Nienow A W. X-Ray Studies of Cavern Sizes and Mixing Performance with Fluids Possessing a Yield Stress [J]. Chem. Eng. Sci.,1986,41(10): 2555-2562
    [61]Elson, T. P. Mixing of Fluids Possessing a Yield Stress [C]. In Proceedings of the 6th European Conference on Mixing, Pavia, Italy,1988,485-492
    [62]Nienow A W, Elson T P. Aspects of Mixing in Rheologically Complex Fluids [J]. Chem. Eng. Res. Des.,1988,66(1):5-15
    [63]Elson T P. The Growth of Caverns Formed around Rotating Impellers During the Mixing of a Yield Stress Fluid [J]. Chem. Eng. Commun,1990,96:303-319
    [64]Galindo E, Nienow A W. The Performance of the Scaba 6SRGT Agitator in the Mixing of Simulated Xanthan Gum Broths [J]. Chem. Eng. Technol.,1993,16(2):102-108
    [65]Underwood S. Mixing Performance of the Prochem Maxflo T Impeller in Highly Viscous Model Fluids [D]. MSc Thesis, The University of Birmingham, UK,1994
    [66]Arratia P E, Kukura J, Lacombe J, et al. Mixing of Shear-Thinning Fluids with Yield Stress in Stirred Tanks [J]. AIChE J.,2006,52(7):2310-2322
    [67]Moore I P T, Cossor G, Baker M R. Velocity Distributions in a Stirred Tank Containing a Yield Stress Fluid [J]. Chem. Eng. Sci.,1995,50(15):2467-2481
    [68]Mavros P, Xuereb C, Bertrand J. Determination of 3-D Flow Fields in Agitated Vessels by Laser Doppler Velocimetry:Effect of Impeller Type and Liquid Viscosity on Liquid Flow Patterns [J]. Chem. Eng. Res. Des.,1996,74(A6):658-668
    [69]Hirata Y, Nienow A W, Moore I P T. LDA Studies of Velocity Distributions and Cavern Sizes in a Yield Stress Fluid Agitated by a Rushton Turbine [C]. In:Proceedings of the 7th European Conference Mixing, Brugge, Belgium, KVIV, Belgium,1991,167-172
    [70]Hirata Y, Nienow A W, Moore I P. Estimation of Cavern Sizes in a Shear-thinning Plastic Fluid Agitated by a Rushton Based on LDA Measurements [J]. Journal of Chemical Engineering of Japan,1994,27:235-237
    [71]Jaworski Z, Nienow A W. An LDA Study of the Hydrodynamics of Caverns Formed in a Yield Stress Fluid Agitated by a Hydrofoil Impeller [J]. CHISA 1993, August, Paper H.6.2, Prague, Czech Republic
    [72]Jaworski Z, Nienow A W. LDA Measurements of Flow Fields with Hydrofoil Impellers in Fluids with Different Rheological Properties [C]. In:Proceedings of 8th European Conference on Mixing, Cambridge, UK,1993,105-112
    [73]Jaworski Z, Nienow A.W. On Flow Close to Cavern Boundaries in Yield Stress Fluids [J]. Chem. Eng. Sci.,1994,49(19):3321-3324
    [74]Adams L W, Barigou M. CFD Analysis of Caverns and Pseudo-Caverns Developed During Mixing of Non-Newtonian Fluids [J]. Chem. Eng. Res. Des.,2007,85(A5):598-604
    [75]Pakzad L, Ein-Mozaffari F, Chan P. Using Computational Fluid Dynamics Modeling to Study the Mixing of Pseudoplastic Fluids with a Scaba 6SRGT Impeller [J]. Chem. Eng. Pro.,2008, 47(12):2218-2227
    [76]焦海亮,包雨云,黄雄斌,等.高黏度流体混合研究进展[J].化工进展,2006,26(11):1574-1582
    [77]Lamberto D J, Alvarez M M, Muzzio F J. Experimental and Computational Investigation of the Laminar Flow Structure in the Stirred Tank [J]. Chem. Eng. Sci.,1999,54(7):919-942
    [78]Yoshida M, Shigeyama M, Hiura T, et al. Liquid Flow in Impeller Region of an Unbaffled Agitated Vessel with Unsteadily Forward-Reverse Rotating Impeller [J]. Chem. Eng. Comm., 2007,194(9):1229-1240
    [79]Yoshida M, Hiura T, Yamagiwa K, et al. Liquid Flow in Impeller Region of an Unbaffled Agitated Vessel with an Angularly Oscillating Impeller [J]. Can. J. Chem. Eng.,2008,86(2): 160-167
    [80]Yoshida M, Kimura A, Yamagiwa K, et al. Movement of Solid Particle on and off Bottom of an Unbaffled Vessel Agitated by Unsteadily Forward-Reverse Rotating Impeller [J]. J. Fluid Sci. Technol.,2008,3(2):282-291
    [81]Tezura S, Kimura A, Yoshida M, et al. Agitation Requirement for Complete Solid Suspension in an Unbaffled Agitated Vessel with an Unsteadily Forward-Reverse Rotating Impeller [J]. J. Chem. Technol. Biotechnol.,2007,82(7):672-680
    [82]Tezura S, Kimura A, Yoshida M, et al. Solid-Liquid Mass Transfer Characteristics of an Unbaffled Agitated Vessel with an Unsteadily Forward-Reverse Rotating Impeller [J]. J. Chem. Technol. Biotechnol.,2008,83(5):763-767
    [83]Yang B, Takahashi K, Takeishi M. Unsteady Stirring Method Staged Used in Suspension Polymerization of Styrene [J]. J. Appl. Polym. Sci.,2001,82(8):1873-1881
    [84]Yang B, Takahashi K. Effect of an Unsteady Stirring Method on Drop Coalescence Characteristics in Suspension Polymerization of Styrene [J]. Can. J. Chem. Eng.,2001,79(5): 760-764
    [85]Yoshida M, Yamagiwa K, Ito A, et al. Flow and Mass Transfer in Aerated Viscous Newtonian Liquids in an Unbaffled Agitated Vessel Having Alternating Forward-Reverse Rotating Impeller [J]. J. Chem. Technol. Biotechnol.,2001,76(11):1185-1193
    [86]Yoshida M, Watanabe M, Yamagiwa K, et al. Behaviour of Gas-Liquid Mixture in an Unbaffled Reactor with Unsteadily Forward-Reverse Rotating Impellers [J]. J. Chem. Technol. Biotechnol.,2002,77(6):678-684
    [87]Yoshida M, Taguchi Y, Yamagiwa K, et al. Design and Operation of Unbaffled Aerated Agitated Vessels with Unsteadily Forward-Reverse Rotating Impellers Handing Viscous Newtonian Liquids [J]. J. Chem. Technol. Biotechnol.,2003,78(4):474-483
    [88]Cabaret F, Fradette L, Tanguy P A. Effect of Shaft Eccentricity on the Laminar Mixing Performance of a Radial Impeller [J]. Can. J. Chem. Eng.,2008,86(6):971-977
    [89]Cabaret F, Rivera C, Fradette L, et al. Hydrodynamics Performance of a Dual Shaft Mixer with Viscous Newtonian Liquids [J]. Chem. Eng. Res. Des.,2007,85(5):583-590
    [90]Nishikawa M, Ashiwake K, Hashimoto N, et al. Agitation Power and Mixing Time in Off-Centering Mixing [J]. Int. Chem. Eng.,1979,19(1):153-159
    [91]Karcz J, Szoplik J. An Effect of the Eccentric Position of the Propeller Agitator on the Mixing Time [J]. Chem. Pap.,2004,58(1):9-14
    [92]Karcz J, Cudak M, Szoplik J. Stirring of a Liquid in a Stirred Tank with an Eccentrically Located Impeller [J]. Chem. Eng. Sci.,2005,60(8-9):2369-2380
    [93]Szoplik J, Karcz J. An Efficiency of the Liquid Homogenization in Agitated Vessels Equipped with Off-Centered Impeller [J]. Chem. Pap.,2005,59(6):373-379
    [94]Montante G, Bakker A, Paglianti A, et al. Effect of the Shaft Eccentricity on the Hydrodynamics of Unbaffled Stirred Tanks [J]. Chem. Eng. Sci.,2006,61(9):2807-2814
    [95]Hall J F, Barigou M, Simmons M J H, et al. Mixing in Unbaffled High Throughput Experimentation Reactors [J]. Ind. Eng. Chem. Res.,2004,43(15):4149-4158
    [96]Hall J F, Barigou M, Simmons M J H, et al. Comparative Study of Different Mixing Stategies in Small High Throughput Experimentation Reactors [J]. Chem. Eng. Sci.,2005,60(8-9): 2355-2368
    [97]Hall J F, Barigou M, Simmons M J H, et al. A PIV Study of Hydrodynamics in Gas-Liquid High Throughput Experimentation Reactors with Eceentric Impeller Configurations [J]. Chem. Eng. Sci.,2005,60(22):6403-6413
    [98]Cabaret F, Fradette L, Tanguy P A. Gas-Liquid Mass Tranfer in Unbaffled Dual-Impeller Mixer [J]. Chem. Eng. Sci.,2008,63(6):1636-1647
    [99]Szoplik J, Karcz J. Mixing Time of a Non-Newtonian Liquid in an Unbaffled Agitated Vessel with an Eccentric Propeller [J]. Chem. Pap.,2008,62(1):70-77
    [100]Galletti C, Brunazzi E. On the Main Flow Features and Instabilities in an Unbaffled Vessel Agitated with an Eccentrically Located Impeller [J]. Chem. Eng. Sci.,2008,63(18):4494-4505 [101] Masiuk S, Kawecka J. Mixing Energy Measurements in Liquid Vessel with Pendulum
    Agitators [J]. Chem. Eng. Process.,2004,43(2):91-99 [102] Masiuk S, Rakoczy R. Power Consumption, Mixing Time, Heat and Mass Transfer
    Measurements for Liquid Vessels that are Mixed Using Reciprocating Multiplates Agitators [J]. Chem. Eng. Process.,2007,46(2):89-98 [103] Masiuk S, Rakoczy R, Kordas M. Comparison Density of Maximal Energy for Mixing Process
    Using the Same Agitator in Rotational and Reciprocating Movements [J]. Chem. Eng. Process., 2008,47(8):1252-1260 [104] Hirata Y, Dote T, Yoshioka T. Performance of Chaotic Mixing Caused by a Reciprocating Disk
    in a Cylindrical Vessel [J]. Chem. Eng. Res. Des.,2007,85(5):576-582 [105] Komoda Y, Inoue Y, Hirata Y. Mixing Performance by Reciprocating Disk in Cylindrical
    Vessel [J]. J. Chem. Eng. Jpn.,2000,33(6):879-885 [106] Komoda Y, Inoue Y, Hirata Y. Characteristics of Laminar Flow Induced by Reciprocating Disk
    in Cylindrical Vessel [J]. J. Chem. Eng. Jpn.,2001,34(7):919-928 [107] Kamienski J, Wojtowicz R. Dispersion of Liquid-Liquid Systems in a Mixer with a Reciprocating Agitator [J]. Chem. Eng. Process.,2003,42(12):1007-1017
    [108]Makina T, Kaise T, Ohmura N, et al. Laser-Optical Observation of Chaotic Mixing Structure in a Stirred Vessel [C]. Proceedings of 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics,2000,21.2
    [109]Alvarez M M, Arratia P E, Muzzio F J. Laminar Mixing in Eccentric Stirred Tank Systems [J]. Can. J. of Chem. Eng.,2002,80(8):546-557
    [110]Yao W G, Sato H, Takahashi K, et al. Mixing Performance Experiments in Impeller Stirred Tanks Subjected to Unsteady Rotational Speeds [J]. Chem. Eng. Sci.,1998,53(17):3031-3040
    [111]Ascanio G, Brito-Bazan M, Carreau P J, et al. Unconventional Configuration Studies to Improve Mixing Time in Stirred Tanks [J]. Can. J. Chem. Eng.,2002,80(8):558-565
    [112]Ascanio G, Foucault S, Tanguy P A. Time-Periodic Mixing of Shear-Thinning Fluids [J]. Chem. Eng. Res. Des.,2004,82(A9):1199-1203
    [113]范毓润,卢著敏.偏心圆环中周期性和非周期性混沌混合[J].化工学报,2002,53(6):660-663
    [114]高殿荣,郭明杰,李岩,等.变速搅拌混沌混合的PIV试验研究[J].机械工程学报,2006,42(8):44-48
    [115]李岩.层流搅拌槽内三维混沌混合流场数值模拟及可视化实验研究[D].燕山大学硕士学位论文,2007
    [116]Ottino J M, Leong C W, Rising H, et al. Morphological Structures Produced by Mixing in Chaotic Flows [J]. Nature,1988,333(6172):419-425
    [117]Swanson P D, Ottino J M. Comparative Computational and Experimental Study of Chaotic Mixing of Viscous Fluids [J]. J. Fluid Mesh,1990,213:227-249
    [118]Muzzio F J, Swanson P D, Ottino J M. The Statistics of Stretching and Starting in Chaotic Flows [J]. Phys. Fluids A,1991,3:822-834
    [119]Muzzio F J, Meneveau C, Swanson P D, et al. Scaling and Multifractal Properties of Mixing in Chaotic Flows [J]. Phys. Fluids A,1992,4:1439-1456
    [120]Niederkorn T C, Ottino J M. Chaotic Mixing of Shear-Thinning Fluids [J]. AIChE J.,1994, 40(11):1782-1793
    [121]Yurun F, Zhumin L. Non-Newtonian Effects on Chaotic Mixing between Eccentric Cylinders [J]. Chin. J. Chem. Eng.,2001,9(3):306-309
    [122]陈志平,章序文,林兴华.搅拌与混合设备设计选用手册[M].北京:化学工业出社,2004
    [123]冯连芳,曹松峰,顾雪萍,等.高粘搅拌聚合反应装置[J].合成橡胶工业,2001,24(5):257-261
    [124]欧舒J Y.流体混合技术[M].北京:化学工业出版社,1991
    [125]Delaplace G, Guerin R, Leuliet J C, et al. An Analytical Model for the Prediction of Power Consumption for Shear-Thinning Fluids with Helical Ribbon and Helical Screw Ribbon Impellers [J]. Chem. Eng. Sci.,2006,61(10):3250-3259
    [126]雷鸣,卢晓黎,陈正纲,等.黄原胶在低浓度时的流变特性及影响因素研究[J].食品科学,2000,21(12):16-18
    [127]吴立衡译.聚合物粘弹性引论[M].北京:科学出版社,1986
    [128]许元泽.高分子结构流变学[M].成都:四川教育出版社,1988
    [129]古大治.高分子流体流动[M].成都:四川教育出版社,1988
    [130]卢晓江.假塑性流体的本构方程[J].天津轻工业学院学报,1991,2:63-67
    [131]Saeed S, Ein-Mozaffari F. Using Dynamic Tests to Study the Continuous Mixing of Xanthan Gum Solutions [J]. Chem. Technol. Biotechnol,2008,83(4):559-568
    [132]Speer R A, Tung M A. Concentration and Temperature Dependence of Flow Behavior of Xanthan Gum Dispersions [J]. Journal of Food Science,1986,51(1):96-98
    [133]Hevey P S, Greaves M. Turbulent flow in an agitated vessel [J]. Trans. IChemE.,1982(60): 201-210
    [134]于勇,张俊明,姜连田.FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008
    [135]Luo J Y, Issa R I, Gosman A D. Prediction of Impeller-induced Flows in Mixing Vessels Using Multiple Frames of Reference [J]. Institution of Chemical Engineers Symposium Series 136, Rugby, UK:Institution of Chemical Engineers,1994,549-556
    [136]张国娟.搅拌槽内混合过程的数值模拟[D].北京化工大学硕十论文,2004
    [137]周国忠.搅拌槽内流动与混合过程的实验研究及数值模拟[D].北京化工大学博土论文,2002
    [138]王福军.计算流体动力学分析--CFD软件原理与应用[M].北京:清华大学出版社,2004
    [139]Brucato A, Ciofalo M, Cris F, et al. Numerical Prediction of Flow Fields in Baffled Stirred Vessels:A Comparison of Alternative Modeling Approaches [J]. Chem. Eng. Sci.,1998,53(21): 3653-3684
    [140]Deen N G, Solberg T, Hjertager B H. Flow Generated by Anaerated Rushton Impeller: Two-phase PIV Experiments and Numerical Simulations [J]. Can. J. Chem. Eng.,2002,80: 1-15
    [141]周国忠,施力田,王英琛.搅拌槽内近桨区流动场的数值研究[J].高校化学工程学报,2002,16(1):17-22
    [142]Melling A. Tracer Particals and Seeding for Partical Image Velocimetry [J]. Meas. Sci. Technol.,1997,8(12):1406-1416
    [143]Willert C E, Gharib M. Digital Partical Image Velocimetry [J]. Exp. Fluids,1991,10(4): 181-193
    [144]盛森之,沈熊,舒玮.流速测量技术[M].北京:北京大学出版社,1987
    [145]Keane R D, Adrian R J. Theory of Cross-Correlation Analysis of PIV Images [J]. Appl. Sci. Res.,1992,49(3):191-215
    [146]Stephen J, Afacan A, Williams M C. Experimental Mixing Study of a Yield Stress Fluid in a Laminar Stirred Tank [J]. Ind. Eng. Chem. Res.,2000,39(1):95-202
    [147]Metzner A B, Otto R E. Agitationof non-Newtonian fluids [J]. AIChE J,1957,3(1):3-11
    [148]Rieger F, Novak V. Scale-up Method for Power Consumption of Agitators in the Creeping Flow Regime [J]. Chem. Eng. Sci.,1972,27(1):39-44
    [149]Beckner J L, Smith J M. Anchor-agitated Systems-Power Input with Newtonian and Pseudo-plastic Fluids [J]. Trans. Instn. Chem. Engrs.,1966,44(6):224-236
    [150]Sawinsky J, Balint A, Bende S. Conversion for Laminar Flow of Bingham Plastic Fluids in an Isothermal Tube Reactor [J]. Chem. Eng. Sci.,1988,43(5):1209-1211
    [151]Calderbank P H, Moo-Young M B. Power Characteristics of Agitators for Mixing of Newtonian and Non-Newtonian Fluids [J]. Trans. Instn. Chem. Engrs.,1961,39(5):337-347
    [152]Schilo D. Power Requirements of Tangential Stirrers for Stirring Non-Newtonian Liquids [J]. Chem. Ing. Tech.,1969,41(5-6):253-259
    [153]Sestak J, Zitny R, Houska M. Anchor-agitated Systems:Power Input Correlation for Pseudoplastic and Thixotropic Fluids in Equilibrium Power Requirements of Tangential Stirrers for Stirring Non-Newtonian Liquids [J]. AIChE J,1986,32(1):155-158
    [154]Tanguy P A, Thibault F, De La Fuente E B. A New Investigation of the Metzner-Otto Concept for Anchor Mixing Impellers [J]. Can. J. Chem. Eng.,1996,74(2):222-228
    [155]Pollard J, Kantyka T A. Heat Transfer to Agitated Non-Newtonian Fluids [J]. Trans. Instn. Chem. Engrs.,1969,47(1):21-27
    [156]王英琛,林猛流,施力田.螺旋-螺带-锚组合搅拌器轴功率的测试[J].合成橡胶工业,1982,5(6):433-435,458
    [157]周国忠,王英琛,施力田.用CFD研究搅拌槽内的混合过程[J].化工学报,2003,54(7):886-890
    [158]Jaworski Z, Bujalski W, Otomo N, et al. CFD Study of Homogenization with Dual Rushton Turbines-Comparison with Experimental Rusults:Part Ⅰ:Initial Studies [J]. Chem. Eng. Res. Des.,2000,78(3):327-333
    [159]Lunden M, Stenberg O, Andersson B. Evaluation of a Method of Measuring Mixing Time Using Numerical Simulation and Experimental Data [J]. Chem. Eng. Commun.,1995,139: 115-136
    [160]Bujalski J M, Jaworski Z, Bujalski W, et al. The Influence of the Addition Position of a Tracer on CFD Simulated Mixing Times in a Vessel Agitated by a Rushton Turbine [J]. Trans. IChemE, 2002,80(A):824-831
    [161]Schmalzriedt S, Reuss M. Application of Computational Fluid Dynamics to Simulations of Mixing and Biotechnical Conversion Processes in Stirred Tank Bioreactors[C]. In:Proceedings of 9th Europe Conference on Mixing, Paris,1997:171-178
    [162]李良超,王嘉骏,顾雪萍,等.双层桨搅拌槽内局部气液分散特性研究[J].浙江大学学报(工学版),2009,43(3):463-467
    [163]闵健,高正明,蒋勇,等.多层桨搅拌槽内的微观混合特性[J].过程工程学报,2005,5(5):495-498
    [164]丁文蕴,王英琛,高正明,等.多层CBY组合桨搅拌槽内混合特性的研究[J].高校化学工程学报,1999,13(4):352-357
    [165]苗一,潘家祯,牛国瑞,等.多层桨搅拌槽内的宏观混合特性[J].华东理工大学学报(自然科学版),2006,32(3):357-360
    [166]Joelle Aubin, Catherine Xuereb. Design of Multiple Impeller Stirred Tanks for the Mixing of Highly Viscous Fluids Using CFD [J]. Chem. Eng. Sci.,2006,61(9):2913-2920
    [167]Harvey Ⅲ A D, Wood S P, Leng D E. Experimental and Computational Study of Multiple Impeller Flows [J]. Chem. Eng. Sci.,1997,52(9):1479-1491
    [168]Shewale S D, Pandit A B. Studies in Multiple Impeller Agitated Gas-liquid Contactors [J]. Chem. Eng. Sci.,2006,61(2):489-504
    [169]郝志刚,包雨云,高正明.多层组合桨搅拌槽内气-液分散特性的研究[J].高校化学工程学报,2004,18(5):547-552
    [170]梁瑛娜,高殿荣.双层直斜叶及其组合桨搅拌槽三维流场数值模拟[J].机械工程学报,2008,44(11):290-297
    [171]毛德明.多层桨搅拌釜内流动与混合的基础研究[D].杭州:浙江大学,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700