用户名: 密码: 验证码:
固体酸碱催化剂的制备及在酯交换和烷基化反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对环境保护意识的加强以及环境友好化学的不断发展,绿色化学工艺的研发逐渐成为热点课题。酸碱催化是石油化工及精细化工等领域中涉及最为广泛的一类工艺过程。传统的液体酸碱催化工艺存在着许多缺陷,例如:腐蚀设备、污染环境、分离和循环使用困难等。为了克服上述问题,人们已开展了大量的固体酸碱催化剂的研究工作,并已取得了显著进展。目前,针对一些具有重要应用背景的催化反应工艺过程研究和开发性能优异的固体酸碱催化剂仍是广泛关注的问题。
     本文主要围绕酯交换法合成有机碳酸酯和甲苯-甲醇侧链烷基化反应开展了固体酸碱催化剂的制备、表征及催化性能研究工作。系统考察了不同方法制备的炭载氧化镁、介孔磷酸铝及Cs离子交换IM-5分子筛等催化剂体系对上述反应的催化性能;研究了催化剂组成、结构(孔径大小)和表面酸碱性质对催化剂反应性能的影响规律,并与催化剂的反应性能进行了关联;探讨了催化剂活性位性质和催化作用机制等问题。论文的主要研究内容和结果概述如下:
     (一)炭载氧化镁催化剂在醇酯酯交换反应中的应用:
     分别以三种炭材料(介孔炭NC-2、活性炭AC以及介孔炭CMK-3)为载体,采用浸渍法制备了负载型的MgO催化剂。考察了它们在碳酸二甲酯与乙醇酯交换以及碳酸二乙酯与各种醇类化合物酯交换反应中的催化性能。结果表明,几种炭载氧化镁都对该反应表现出了一定的催化活性,其中,MgO/NC-2材料的催化性能明显优于其它两种炭载氧化镁催化剂;在多相化测试反应中没有发现活性组分的流失现象;反应后的催化剂经过简单的焙烧处理后即可实现多次循环使用,且反应活性基本保持不变,表现出了良好的稳定性和循环性。结合催化剂的表征结果证实NC-2表面存在大量的含氧官能团,这些官能团的存在应该对MgO物种在炭载体表面实现高度分散起到了关键作用。此外,与单纯的MgO相比,负载的MgO/NC-2催化剂的碱性相对较弱,这表明MgO物种与载体NC-2之间存在一定的相互作用,这种相互作用的存在应该有助于提高催化剂的稳定性(抗流失),并且这种较弱的碱中心应该比较适合活化反应物,并能使形成的产物迅速从催化剂表面脱附,从而使MgO/NC-2催化剂表现出很高的催化活性。此外,NC-2载体及MgO/NC-2催化剂表面还含有一定量的含氮官能团,这些含氮官能团可能通过直接参与对反应物的活化或调整催化剂表面的亲疏水性,继而对催化剂反应活性的提高起到了积极的促进作用。
     (二)介孔磷酸铝材料在碳酸二甲酯与碳酸二乙酯酯交换反应中的应用
     采用柠檬酸法制备了介孔磷酸铝材料(AlPO),并将其用于碳酸二甲酯(DMC)与碳酸二乙酯(DEC)酯交换合成碳酸甲乙酯(EMC)的反应中。与微孔磷酸铝、氧化镁以及三氧化二铝等催化剂相比,介孔AlPO表现出很高的催化活性,且能在较低的反应温度下依然保持很高的催化活性,在反应温度为336K时,只需要反应3h反应即可达到反应平衡。在多相化测试反应中没有发现活性组分的流失现象,表明催化剂具有良好的稳定性。此外,反应后的催化剂经过简单的洗涤、干燥后即可实现多次循环使用,且反应活性基本保持不变,表现出了非常好的循环性,性能明显优于文献中报道的其它类型催化剂体系。
     结合X射线粉末衍射、FT-IR、氮气吸附以及CO_2-TPD表征对AlPO催化剂结构以及表面性质进行了系统研究。结果表明,介孔磷酸铝表面存在丰富的弱酸弱碱中心。催化剂表面相邻的弱酸-弱碱对的存在,能够同时活化反应物碳酸二甲酯和碳酸二乙酯并形成活性中间体,如CH3O-和~+COOCH_3以及C2H5O-和+COOC2H5,这些相邻的活性中间体如~+COOCH_3以及C2H5O-之间的空间距离较近,很容易直接发生反应生成碳酸甲乙酯。由此可以认为:介孔磷酸铝催化剂表面存在的相邻的弱酸-弱碱对应该是酯交换反应的主要活性中心。
     (三)铯离子交换分子筛在甲苯与甲醇侧链烷基化反应中的应用
     采用离子交换法制备了铯离子交换的分子筛材料,如Cs-Y、Cs-MCM-56和Cs-IM-5等,并将其用于甲苯与甲醇侧链烷基化反应中。考察了反应温度、空速以及甲苯与甲醇投料比等对催化性能的影响,优化了反应条件。结果表明,Cs-IM-5具有很高的催化活性和对主产物(乙苯和苯乙烯)的选择性。在反应温度为708K、甲苯与甲醇摩尔比为3/1时,Cs-IM-5催化剂上甲苯转化率与苯乙烯收率分别为21.6%和8.1%,性能明显优于文献中报道的其它催化剂体系。催化剂稳定性和再生性的实验结果表明:随着反应进行,Cs-IM-5催化剂表面会形成积碳,从而使反应活性逐渐下降;在氧气气氛下,通过高温焙烧处理可以去除催化剂上的积碳,并使催化剂反应活性基本恢复。此外,采用硝酸回流的方法对IM-5分子筛进行脱铝预处理,可以对Cs-IM-5催化剂的积碳过程产生一定的抑制作用,从而提高了催化剂的稳定性。
     采用原位红外光谱等技术研究了甲醇在Cs-IM-5催化剂表面的吸附行为。结果表明,甲醇的羟基易于同催化剂上的铯离子产生一定的相互作用,并且甲醇分子还能与分子筛的骨架氧形成氢键。结合其它的表征结果,推测催化剂表面存在的适合的Lewis酸和Br nsted碱中心对反应物(甲醇和甲苯)的活化起到至关重要的作用。此外,IM-5分子筛特定的孔道结构对甲苯与甲醇侧链烷基化反应中苯乙烯的生成也应该会起到一定的择形催化作用。
     综上所述,本论文主要开展了一些固体酸碱催化剂(炭载MgO、介孔AlPO以及碱性沸石Cs-IM-5)的制备、表征和催化性能研究工作。得到了几种在酯交换反应以及侧链烷基化反应中催化性能比较优异的催化剂体系;并围绕催化剂活性中心性质以及反应机理等问题进行了探讨,所取得的研究结果将能为高性能固体酸碱催化剂的设计和开发提供一定的依据。
With the continuous development of environmentally friendly chemistry, greatefforts have been made to develop and improve green chemical process, especially inthe fine chemicals. Based on some defects of liquid acid and base in chemicalprocess (e.g., corrosion problem, pollution problem, separation and reuse problem),more attentions are paid to explore solid acid and base catalysts as a substitute.Heterogeneous acid and base catalysts show high catalytic activity and selectivityunder a mild condition, and they can be easily separated from reaction systems.
     In this work, solid acid and base catalysts were synthesized and applied in thetransesterification reaction. The structure and surface properties of solid acid and basematerials were studied. And the effect of the support on the active site was alsoinvestigated. In addition, the catalytic reaction dynamics were studied to determinethe main kinetic parameters, including the reaction rate constant, apparent activationenergy, pre-exponential factors and so on. The main experimental results andconclusions are as follows:
     1. Transesterification of carbonate with alcohols over porous carbon supportedMgO catalysts
     Porous carbon-supported catalysts (MgO/NC-2), prepared by wet impregnationtechnique, showed remarkably high activity, recoverability and stability for thetransesterification of dialkyl carbonate with alcohols to unsymmetrical organiccarbonates. Besides, some characterization means were carried out in order to clarifythe role of surface functional groups of carbon materials in the formation of activesupported MgO catalysts.
     Combined with different characterizations relusts (XRD, N_2adsorption/desorption,CO_2-TPD, TPD-MS, DRIFT and XPS), it is found that well-dispersed MgO/NC-2 material contains a large amount of ion pairs of Mg2+-O2-, attributed to the interactionbetween the rich oxygen-containing surface groups on the NC-2carbon support withMg species. The abundant ion pairs of Mg2+-O2-on the surface of MgO/NC-2materialshould play a critical role in the activation of the reactants in the transesterificationreactions. Besides, other surface functional groups like nitrogen-containing groupsmay also play positive role in activating reactants to produce unsymmetrical organiccarbonates.
     2. Amorphous mesoporous aluminophosphate as highly efficient heterogeneouscatalysts for transesterification of diethyl carbonate with dimethyl carbonate
     Mesoporous aluminophosphate (AlPO), prepared by citric acid route, were appliedto the transesterification of DEC with DMC in comparison with other solid acidand/or base catalysts. It was found that mesoporous AlPO showed high activity andstability. And the catalysts can be easily recycled without any special treatment (e.g.,heat-activation).
     Combined with different characterizations relusts (XRD, N_2adsorption/desorption,and CO_2-TPD), a mechanism for the transesterification of DMC with DEC overAlPO materials was proposed. First, chemisorption of DEC and DMC could occuron the neighboring acid-base pairs simultaneously. Then the two adjacentchemisorbed species (e.g.,+COOC2H5and CH3O-) react directly to form EMC thatdesorbs easily. In addition, the abundant weak acid-base pairs on the surface ofmesoporous AlPO materials should play a critical role in the activation of thereactants in the transesterification reaction.
     3. Side-chain alkylation of toluene with methanol over ion-exchanged Cs-IM-5zeolites
     Cs-IM-5catalysts were prepared by ion-exchange method with cesium acetateaqueous solution. Compared with other basic zeolites (e.g., Cs-Y, Cs-MCM-56),Cs-IM-5zeolites exhibited remarkably high activity and selectivity for side-chainalkylation of toluene with methanol. Cs-IM-5and Cs-IM-5(d) prepared withdealuminated IM-5showed21.6%and26.2%conversion of toluene with8.1%and 6.0%yield of styrene, respectively. Moreover, the two catalysts showed relativelyhigh stability and recyclability.
     By using a variety of characterization means, including XRD, TPD, IR spectra ofCO_2, pyridine and in situ IR spectroscopy, the physicochemical properties ofCs-IM-5zeolites were investigated. It was found that both acidic and basic siteswere present on the surface of Cs-IM-5zeolites. A certain amount Lewis acidic sites(Cs+) could interact with π-electrons of toluene and facilitate the polarization of themethyl C-H bond. And suitable basic centers could dehydrogenate methanol toformaldehyde (a key side-chain alkylating species), thus leading to high selectivitytoward styrene. Besides, the specific topology of IM-5zeolite, such as possessingmultidimensional large-pore system with intersecting12-and10-ring channel, mayprovide enough space for the formation of large intermediates and offershape-selectivity for the side-chain alkylation products.
     In summary, several solid acid and base catalysts including MgO/NC-2, AlPO andCs-IM-5were prepared and investigated for the transesterification reaction andside-chain alkylation with toluene and methanol. Several excellent solid catalystswere obtained and it provides a profound understanding of the nature of the activesite, reaction mechanism and reaction kinetics, which is in favour of the preparationof high active solid acid and base catalysts for the transesterification reaction andside-chain alkylation reaction.
引文
[1] PARRISH J P, SALVATORE R N, JUNG K W. Perspectives on AlkylCarbonates in Organic Synthesis [J]. Tetrahedron,2000,56(42):8207-8237.
    [2] GRYGLEWICZ S, OKO F A, GRYGLEWICZ G. Synthesis of Modern SyntheticOils Based on Dialkyl Carbonates [J]. Ind Eng Chem Res,2003,42(21):5007-5010.
    [3] BURK R M, ROOF M B. A safe and efficient method for conversion of1,2-and1,3-diols to cyclic carbonates utilizing triphosgene [J]. Tetrahedron Lett,1993,34(3):395-398.
    [4] BHANAGE B M, FUJITA S-I, IKUSHIMA Y, et al. Synthesis of dimethylcarbonate and glycols from carbon dioxide, epoxides and methanol usingheterogeneous Mg containing smectite catalysts: effect of reaction variables onactivity and selectivity performance [J]. Green Chem,2003,5(1):71-75.
    [5] CHANG Y, JIANG T, HAN B, et al. One-pot synthesis of dimethyl carbonateand glycols from supercritical CO2, ethylene oxide or propylene oxide, and methanol[J]. Applied Catalysis A: General,2004,263(2):179-186.
    [6] LI Y, ZHAO X-Q, WANG Y-J. Synthesis of dimethyl carbonate from methanol,propylene oxide and carbon dioxide over KOH/4A molecular sieve catalyst [J].Applied Catalysis A: General,2005,279(1-2):205-208.
    [7]王庆印,王越,姚洁等.碳酸二甲酯酯交换反应研究进展[J].天然气化工,2005,30(2):59-64.
    [8] PACHECO M A, MARSHALL C L. Review of Dimethyl Carbonate (DMC)Manufacture and Its Characteristics as a Fuel Additive [J]. Energ Fuel,1997,11(1):2-29.
    [9] SHAIKH A-A G, SIVARAM S. Organic Carbonates [J]. Chem Rev,1996,96(3):951-976.
    [10]黄荣生,莫婉玲,李光兴.氧化羰化法合成碳酸甲乙酯热力学及催化性能的研究[J].燃料化学学报,2004,32(2):129-134.
    [11]莫婉玲,熊辉,李光兴.甲醇羰基化催化剂的合成、表征及溶解性研究[J].燃料化学学报,2001,29(2):165-168.
    [12]李光兴,朱永强,莫婉玲等.乙醇在CuCl/Schiff碱上催化氧化碳化合成碳酸二乙酯[J].应用化学,2003,20(2):163-166.
    [13]梅付名,李光兴.苯酚氧化羰化合成碳酸二苯酯的新型PdCl2-Co(Pyca)2催化体系[J].燃料化学学报,2000,28(6):481-484.
    [14]莫婉玲,黄荣生,辉熊等. CuCl/菲咯琳/甲基咪唑催化甲醇/乙醇氧化羰化一步合成碳酸甲乙酯[J].催化学报,2004,25(3):243-246.
    [15]RAAB V, MERZ M, SUNDERMEYER J. Ligand effects in the copper catalyzedaerobic oxidative carbonylation of methanol to dimethyl carbonate (DMC)[J]. J MolCatal A: Chem,2001,175(1–2):51-63.
    [16]王辰,王越,姚洁.尿素催化醇解合成长碳链脂肪族碳酸二酯[J].应用化工,2003,20(9):879-882.
    [17]王辰,王越,王公应等.尿素醇解合成碳酸酯类化合物技术进展[J].天然气化工,2002,27(6):49-54.
    [18]BATISTELLA L, LERIN L A, BRUGNEROTTO P, et al. Ultrasound-assistedlipase-catalyzed transesterification of soybean oil in organic solvent system [J].Ultrason Sonochem,2012,19(3):452-458.
    [19]SANKARANARAYANAN S, ANTONYRAJ C A, KANNAN S.Transesterification of edible, non-edible and used cooking oils for biodieselproduction using calcined layered double hydroxides as reusable base catalysts [J].Bioresource Technol,2012,109:57-62.
    [20]SHIN H-Y, AN S-H, SHEIKH R, et al. Transesterification of used vegetable oilswith a Cs-doped heteropolyacid catalyst in supercritical methanol [J]. Fuel,2012,96:572-578.
    [21]XIE W, LIU Y, CHUN H. Biodiesel Preparation from Soybean Oil by Using aHeterogeneous CaxMg2-xO2Catalyst [J]. Catal Lett,2012,142(3):352-359.
    [22]áLVAREZ M G, PLí KOVá M, SEGARRA A M, et al. Synthesis of glycerolcarbonates by transesterification of glycerol in a continuous system using supportedhydrotalcites as catalysts [J]. Applied Catalysis B: Environmental,2012,113–114:212-220.
    [23]TANG S, WANG L, ZHANG Y, et al. Study on preparation of Ca/Al/Fe3O4magnetic composite solid catalyst and its application in biodiesel transesterification[J]. Fuel Process Technol,2012,95:84-89.
    [24]GUO F, WEI N-N, XIU Z-L, et al. Transesterification mechanism of soybean oilto biodiesel catalyzed by calcined sodium silicate [J]. Fuel,2012,93:468-472.
    [25]ILGEN O. Reaction kinetics of dolomite catalyzed transesterification of canolaoil and methanol [J]. Fuel Process Technol,2012,95:62-66.
    [26]IVANOVA A S, SHERSTYUK O V, BUKHTIYAROVA M V, et al.Performance of Ba-containing catalysts in the transesterification reaction of rapeseedoil with methanol under flow conditions [J]. Catal Commun,2012,18:156-160.
    [27]ANIKEEV V, ERMAKOVA A. Calculating chemical equilibrium in the stepwisetransesterification reactions of mixed triglycerides of fatty acids [J]. Russian Journalof Physical Chemistry A, Focus on Chemistry,2012,86(2):196-199.
    [28]ZHANG L, NIU D, ZHANG K, et al. Electrochemical activation of CO2in ionicliquid (BMIMBF4): synthesis of organic carbonates under mild conditions [J]. GreenChem,2008,10(2):202-206.
    [29]KIM S-I, CHU F, DUENO E E, et al. Alkyl Carbonates: Efficient ThreeComponent Coupling of Aliphatic Alcohols, CO2, and Alkyl Halides in the Presenceof Cs2CO3[J]. The Journal of Organic Chemistry,1999,64(13):4578-4579.
    [30]SALVATORE R N, FLANDERS V L, HA D, et al. Cs2CO3-Promoted EfficientCarbonate and Carbamate Synthesis on Solid Phase [J]. Org Lett,2000,2(18):2797-2800.
    [31]BRATT M O, TAYLOR P C. Synthesis of Carbonates and Related Compoundsfrom Carbon Dioxide via Methanesulfonyl Carbonates [J]. The Journal of OrganicChemistry,2003,68(14):5439-5444.
    [32]CARLONI S, DE VOS D E, JACOBS P A, et al. Catalytic Activity ofMCM-41–TBD in the Selective Preparation of Carbamates and Unsymmetrical AlkylCarbonates from Diethyl Carbonate [J]. J Catal,2002,205(1):199-204.
    [33]VELDURTHY B, FIGUERAS F. An efficient synthesis of organic carbonates:atom economic protocol with a new catalytic system [J]. Chem Commun,2004,(6):734-735.
    [34]VELDURTHY B, CLACENS J-M, FIGUERAS F. New Highly Active andSelective Heterogeneous Catalytic System for the Synthesis of UnsymmetricalOrganic Carbonates: A Green Protocol [J]. Eur J Org Chem,2005,2005(10):1972-1976.
    [35]VELDURTHY B, CLACENS J-M, FIGUERAS F. Correlation between thebasicity of solid bases and their catalytic activity towards the synthesis ofunsymmetrical organic carbonates [J]. J Catal,2005,229(1):237-242.
    [36]CHOUDARY B M, KANTAM M L, RANGANATH K V S, et al. Bifunctionalnanocrystalline MgO for chiral epoxy ketones via Claisen-Schmidtcondensation-asymmetric epoxidation reactions [J]. J Am Chem Soc,2004,126(11):3396-3397.
    [37]CHOUDARY B M, RANGANATH K V S, PAL U, et al. Nanocrystalline MgOfor asymmetric Henry and Michael reactions [J]. J Am Chem Soc,2005,127(38):13167-13171.
    [38]CHOUDARY B M, RANGANATH K V S, YADAV J, et al. Synthesis offlavanones using nanocrystalline MgO [J]. Tetrahedron Lett,2005,46(8):1369-1371.
    [39]KANTAM M L, CHAKRAPANI L, RAMANI T. Synthesis ofalpha-diazo-beta-hydroxy esters using nanocrystalline MgO [J]. Tetrahedron Lett,2007,48(35):6121-6123.
    [40]KANTAM M L, RANGANATH K V S, MAHENDAR K, et al. AsymmetricMichael addition of malonates to enones catalyzed by nanocrystalline MgO [J].Tetrahedron Lett,2007,48(43):7646-7649.
    [41]BIAN S W, MA Z, CUI Z M, et al. Synthesis of micrometer-sized nanostructuredmagnesium oxide and its high catalytic activity in the Claisen-Schmidt condensationreaction [J]. J Phys Chem C,2008,112(39):15602-15602.
    [42]KANTAM M L, PAL U, SREEDHAR B, et al. An Efficient Synthesis of OrganicCarbonates using Nanocrystalline Magnesium Oxide [J]. Adv Synth Catal,2007,349(10):1671-1675.
    [43]ADAM F, WONG M-S. The synthesis of organic carbonates over nanocrystallineCaO prepared via microemulsion technique [J]. Catal Commun,2011,13(1):87-90.
    [44]ZHOU Y X, LIANG S G, SONG J L, et al. Synthesis of Asymmetrical OrganicCarbonates Catalyzed by Metal Organic Frameworks [J]. Acta Phys-Chim Sin,2010,26(4):939-945.
    [45]SONG J, ZHANG B, WU T, et al. Organotin-oxomolybdate coordinationpolymer as catalyst for synthesis of unsymmetrical organic carbonates [J]. GreenChem,2011,13(4):922-927.
    [46]LUO H P, XIAO W D. A reactive distillation process for a cascade andazeotropic reaction system:carbonylation of ethanol with dimethyl carbonate [J].Chemical Engineerig Science,2001,56403-410.
    [47]姚洁,王越,曾毅等.合成碳酸甲乙酯的研究进展[J].天然化工,2004,29(1):57-59.
    [48]姚洁,王供应.碳酸二甲酯和乙醇酯交换合成碳酸二乙酯的催化剂研究[J].石油与天然气化工,2003,32(5):267-268.
    [49]KNIFTON, JOHN F. Process for cosynthesis of ethylene glycol and dimethylcarbonate: US,4,734,518[P/OL].[1988-03-29].
    [50]DURANLEAU, ROGER G. Process for production of ethylene glycol anddimethylcarbonate: US,4,691,041[P/OL].[1987-09-01].
    [51]ZIELINSKA-NADOLSKA I, WARMUZINSKI K, RICHTER J. Zeolite andother heterogeneous catalysts for the transesterification reaction of dimethyl carbonatewith ethanol [J]. Catal Today,2006,114(2–3):226-230.
    [52]李琳,朱大建,熊辉等.酯交换法合成碳酸甲乙酯[J].合成化学,2004,12(2):197-200.
    [53]KIM S-O, KIM H S, LEE J K. High rate capability of Cu-coated activated carbonelectrodes for Li-ion capacitors using non-aqueous electrolytes [J]. Mater Chem Phys,2012,133(1):38-41.
    [54]WU X, WANG Z, LI X, et al. Effect of lithium difluoro(oxalato)borate andheptamethyldisilazane with different concentrations on cycling performance ofLiMn2O4[J]. J Power Sources,2012,204:133-138.
    [55]BURNS J C, SINHA N N, COYLE D J, et al. The Impact of Varying theConcentration of Vinylene Carbonate Electrolyte Additive in Wound Li-Ion Cells [J].J Electrochem Soc,2012,159(2): A85-A90.
    [56]WANG J, ZHAO H, LIU X, et al. Electrochemical properties of SnO2/carboncomposite materials as anode material for lithium-ion batteries [J]. Electrochim Acta,2011,56(18):6441-6447.
    [57]徐利林.碳酸甲乙酯生产工艺选择与工艺过程控制[J].安徽化工,2006,142(4):35-37.
    [58]屈强好.碳酸二乙酯联产碳酸甲乙酯技术开发及产业化[J].化工中间体,2004,4:29-31.
    [59]SMART M C, RATNAKUMAR B V. Effects of Electrolyte Composition onLithium Plating in Lithium-Ion Cells [J]. J Electrochem Soc,2011,158(4):A379-A389.
    [60]LI H, MA X-T, SHI J-L, et al. Preparation and properties of poly(ethylene oxide)gel filled polypropylene separators and their corresponding gel polymer electrolytesfor Li-ion batteries [J]. Electrochim Acta,2011,56(6):2641-2647.
    [61]LEE B R, NOH H J, MYUNG S T, et al. High-Voltage Performance of Li[NiO0.55.CoO0.15MnO0.30]O2Positive Electrode Material for Rechargeable Li-IonBatteries [J]. J Electrochem Soc,2011,158(2): A180-A186.
    [62]WENG W, ZHANG Z, REDFERN P C, et al. Fused ring and linking groupseffect on overcharge protection for lithium-ion batteries [J]. J Power Sources,2011,196(3):1530-1536.
    [63]ZHANG X, ZUO J, JIAN C. Experimental Isobaric Vapor Liquid Equilibriumfor Binary Systems of Ethyl Methyl Carbonate+Methanol,+Ethanol,+DimethylCarbonate, or+Diethyl Carbonate at101.3kPa [J]. Journal of Chemical&Engineering Data,2010,55(11):4896-4902.
    [64]DARGAVILLE S, FARRELL T W. Predicting Active Material Utilization inLiFePO[sub4] Electrodes Using a Multiscale Mathematical Model [J]. J ElectrochemSoc,2010,157(7): A830-A840.
    [65]TSUCHIYA, ICHIRO HINO J, UEMURA; HIROYUKI HINO J. Recordingsheet for ink-jet recording andinkjet:US,6,057,026[P/OL].[2000-05-02].
    [66]卓广澜,沈振陆,姜玄珍.均相催化合成碳酸甲乙酯[J].催化学报,2004,25(3):171-172.
    [67]SHEN Z L, JIANG X Z, ZHAO W J. A new catalytic transesterification for thesynthesis of ethyl methyl carbonate [J]. Catal Lett,2003,91(1-2):63-67.
    [68]PALANI A, GOKULAKRISHNAN N, PALANICHAMY M, et al.Transesterification of dimethyl carbonate with diethyl carbonate over Al-Zn-MCM-41and Al-MCM-41molecular sieves [J]. Appl Catal A-Gen,2006,304(1):152-158.
    [69]陈英,韩金玉,刘艳平.固体碱催化剂上碳酸甲乙酯的洁净合成[J].天津大学学报,2007,40(3):285-288.
    [70]CHEN Y, HAN J Y, ZHANG H T. Facile synthesis and characterization ofacid-base bifunctionalized mesoporous silica [J]. Appl Surf Sci,2008,254(18):5967-5974.
    [71]ZHOU Y X, SONG J L, LIANG S G, et al. Metal-organic frameworks as an acidcatalyst for the synthesis of ethyl methyl carbonate via transesterification [J]. Journalof Molecular Catalysis A-Chemical,2009,308(1-2):68-72.
    [72]INABA M, HASEGAWA K, SUZUKI T. Production of asymmetric chaincarbonate compound: JP,10,237,026[P/OL].[1998].
    [73]INABA M, HASEGAWA K, HONDA M, et al. Production of asymmetricalchain carbonic acid ester: JP,9,328,453[P/OL].[1997].
    [74]HASEGAWA K, INABA M. Production of asymmetric dialkyl carbonate: JP,200,028,1630[P/OL].[2000].
    [75]沈振陆,赵卫娟,卓广澜等.一种制备碳酸甲乙酯的方法中国,02136322.6
    [P/OL].[2003-02-05].
    [76]魏彤,王谋华,魏伟.氧化钙室温催化碳酸丙烯酯和甲醇的酯交换合成碳酸二甲酯[J].催化学报,2003,24(1):52-56.
    [77]BACKES M J, LUKASKI A C, MUGGLI D S. Active sites and effects of H2Oand temperature on the photocatalytic oxidation of C-acetic acid on TiO2[J]. AppliedCatalysis B: Environmental,2005,61(1–2):21-35.
    [78]饶兴鹤.苯乙烯生产现状及工艺技术进展[J].化工生产与技术,2002,9(5):32-36.
    [79]沈菊华.国内外苯乙烯发展概况[J].化工科技市场,2001,7:12-14.
    [80]王彬.苯乙烯生产最新技术[J].现代化工,2005,25(10):30-32.
    [81]李明,李礼.苯乙烯生产技术及市场分析[J].化工科技市场,2004,11:8-18.
    [82]李玉芳.国内外苯乙烯生产技术及发展趋势[J].化工技术经济,2005,23(10):12-24.
    [83]KUMARI VASANTHY B, PALANICHAMY M, KRISHNASAMY V. Sidechain alkylation of toluene with isopropanol and methanol over alkali exchangedzeolites [J]. Applied Catalysis A: General,1996,148(1):51-61.
    [84]ENGELHARDT J, SZANYI J, VALYON J. Alkylation of toluene with methanolon commercial X zeolite in different alkali cation forms [J]. J Catal,1987,107(2):296-306.
    [85]SEFCIK M D. Investigation of the zeolite catalyzed alkylation of toluene usingcarbon-13nuclear magnetic resonance [J]. J Am Chem Soc,1979,101(8):2164-2170.
    [86]YASHIMA T, SATO K, HAYASAKA T, et al. Alkylation on synthetic zeolites:III. Alkylation of toluene with methanol and formaldehyde on alkali cation exchangedzeolites [J]. J Catal,1972,26(3):303-312.
    [87]武传昌,侯东明,顾良證等.沸石的表面酸、碱性与甲醇、甲苯侧链烷基化反应[J].高等学校化学学报,1989,10(4):383-386.
    [88]张吉武,陈国权,梁娟.甲苯侧脸烷基化沸石催化剂I.研制及反应性能[J].石油化工,15(11):677-682.
    [89]徐军,严爱珍,须沁华. Cs改性X型沸石上甲苯与甲醇的侧链烷基化反应[J].无机化学学报,14(4):426-430.
    [90]徐军,严爱珍,须沁华.硼、钾改性KX沸石上甲苯和甲醇的侧链烷基化反应[J].燃料化学学报,1999,27(3):215-220.
    [91]MAMEDBEKOV S M, SALAYEVA Z C, ALIYEV R M. Cationic forms ofzeolite-containing catalysts in alkylation of toluene by methanol [J]. KhimiyaTverdogo Topliva,1993,2:36-41.
    [92]张贤俊,叶辉,朱国平等. X型沸石改性及失活的研究-催化甲醇与甲苯侧链烷基化反应[J].华东化工学院学报,1988,14(3):350-357.
    [93]ITOH H, HATTORI T, SUZUKI K, et al. Role of acid and base sites in theside-chain alkylation of alkylbenzenes with methanol on two-ion-exchanged zeolites[J]. J Catal,1983,79(1):21-33.
    [94]王建平,畅晋英.甲苯侧链烷基化催化剂的评选及反应性能研究[J].工业催化,1995,2:43-47.
    [95]卫明,沈东敏,王祥生.碱土金属化合物改性KX沸石甲苯-甲醇侧链烷基化性能的研究[J].石油学报,1991,7(1):48-54.
    [96]TANABE K, TAKAHASHI O, HATTORI H. Anomalous Effect of Nitrogen onSide-Chain Alkylation of Toluene with Methanol over Solid Bases [J]. React KinetCatal L,1977,3:347-352.
    [97]FLEGO C, COSENTINO G, TAGLIABUE M. Three-element mixed oxides: anew approach to basic catalysts [J]. Applied Catalysis A: General,2004,270(1–2):113-120.
    [98]MANIVANNAN R, PANDURANGAN A. Formation of ethyl benzene andstyrene by side chain methylation of toluene over calcined LDHs [J]. Applied ClayScience,2009,44(1–2):137-143.
    [99] WANG B, HUANG W, WEN Y, et al. Styrene from toluene by side chainalkylation over a novel solid acid-base catalyst [J]. Catal Today,2011,173(1):38-43.
    [100] OSTROWSKI S, DOBROWOLSKI J C. Mechanism of alkylation of toluene byethene over Na atoms and Na2molecules. A DFT study [J]. Journal of MolecularStructure: THEOCHEM,2010,941(1–3):102-106.
    [101] HUNGER M, SCHENK U, WEITKAMP J. Mechanistic studies of theside-chain alkylation of toluene with methanol on basic zeolites Y by multi-nuclearNMR spectroscopy [J]. J Mol Catal A: Chem,1998,134(1–3):97-109.
    [102] HUNGER M, SCHENK U, SEILER M, et al. In situ MAS NMR spectroscopyof surface compounds formed from methanol and from a toluene/methanol mixture onbasic zeolite X [J]. J Mol Catal A: Chem,2000,156(1–2):153-161.
    [103] SIMPERLER A, ROBERT G B, PHILIPPOU A, et al. Theoretical Study ofToluene Adsorbed on Zeolites X and Y: Calculation of13C NMR Parameters [J]. TheJournal of Physical Chemistry B,2002,106:10944-10954.
    [104] BORGNA A, MAGNI S, SEPúLVEDA J, et al. Side-chain alkylation oftoluene with methanol on Cs-exchanged NaY zeolites: effect of Cs loading [J]. CatalLett,2005,102(1):15-21.
    [105] OSTROWSKI S, DOBROWOLSKI J C, KIJE SKI J. Alkylation of the toluenemethyl group: A DFT study [J]. Catal Commun,2007,8(9):1354-1360.
    [106] BORGNA A, SEPúLVEDA J, MAGNI S I, et al. Active sites in the alkylationof toluene with methanol: a study by selective acid–base poisoning [J]. AppliedCatalysis A: General,2004,276(1–2):207-215.
    [1] BURK R M, ROOF M B. A safe and efficient method for conversion of1,2-and1,3-diols to cyclic carbonates utilizing triphosgene [J]. Tetrahedron Lett,1993,34(3):395-398.
    [2] BHANAGE B M, FUJITA S-I, IKUSHIMA Y, et al. Synthesis of dimethylcarbonate and glycols from carbon dioxide, epoxides and methanol usingheterogeneous Mg containing smectite catalysts: effect of reaction variables onactivity and selectivity performance [J]. Green Chem,2003,5(1):71-75.
    [3]王庆印,王越,姚洁等.碳酸二甲酯酯交换反应研究进展[J].天然气化工,2005,30(2):59-64.
    [4] PACHECO M A, MARSHALL C L. Review of Dimethyl Carbonate (DMC)Manufacture and Its Characteristics as a Fuel Additive [J]. Energ Fuel,1997,11(1):2-29.
    [5] SHAIKH A-A G, SIVARAM S. Organic Carbonates [J]. Chem Rev,1996,96(3):951-976.
    [6]王辰,王越,王公应等.尿素醇解合成碳酸酯类化合物技术进展[J].天然气化工,2002,27(6):49-54.
    [7]王辰,王越,姚洁.尿素催化醇解合成长碳链脂肪族碳酸二酯[J].应用化工,2003,20(9):879-882.
    [8] BATISTELLA L, LERIN L A, BRUGNEROTTO P, et al. Ultrasound-assistedlipase-catalyzed transesterification of soybean oil in organic solvent system [J].Ultrason Sonochem,2012,19(3):452-458.
    [9] SANKARANARAYANAN S, ANTONYRA C A, KANNAN S.Transesterification of edible, non-edible and used cooking oils for biodieselproduction using calcined layered double hydroxides as reusable base catalysts [J].Bioresource Technol,2012,109:57-62.
    [10]SHIN H-Y, AN S-H, SHEIKH R, et al. Transesterification of used vegetable oilswith a Cs-doped heteropolyacid catalyst in supercritical methanol [J]. Fuel,2012,96:572-578.
    [11]LIU G, LIU Y, WANG Z, et al. Direct synthesis of porous carbon via carbonizingprecursors of aluminum phosphate containing citric acid [J]. Micropor Mesopor Mat,2008,116(1-3):439-444.
    [12]JUN S, JOO S H, RYOO R, et al. Synthesis of New, Nanoporous Carbon withHexagonally Ordered Mesostructure [J]. J Am Chem Soc,2000,122(43):10712-10713.
    [13]CARLONI S, DE VOS D E, JACOBS P A, et al. Catalytic Activity ofMCM-41–TBD in the Selective Preparation of Carbamates and Unsymmetrical AlkylCarbonates from Diethyl Carbonate [J]. J Catal,2002,205(1):199-204.
    [14]VELDURTHY B, FIGUERAS F. An efficient synthesis of organic carbonates:atom economic protocol with a new catalytic system [J]. Chem Commun,2004,(6):734-735.
    [15]KANTAM M L, PAL U, SREEDHAR B, et al. An Efficient Synthesis of OrganicCarbonates using Nanocrystalline Magnesium Oxide [J]. Adv Synth Catal,2007,349(10):1671-1675.
    [16]ADAM F, WONG M-S. The synthesis of organic carbonates over nanocrystallineCaO prepared via microemulsion technique [J]. Catal Commun,2011,13(1):87-90.
    [17]HATTORI H, MARUYAMA K, TANABE K. Active sites on barium oxide forisomerization of butenes, exchange of butenes with D2, and H2D2equilibration [J]. JCatal,1976,44(1):50-56.
    [18]KABASHIMA H, TSUJI H, HATTORI H. Michael addition of methyl crotonateover solid base catalysts [J]. Applied Catalysis A: General,1997,165(1–2):319-325.
    [19]AKUTU K, KABASHIMA H, SEKI T, et al. Nitroaldol reaction over solid basecatalysts [J]. Applied Catalysis A: General,2003,247(1):65-74.
    [20]HATTORI H. Solid base catalysts: generation of basic sites and application toorganic synthesis [J]. Applied Catalysis A: General,2001,222(1–2):247-259.
    [21]SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption datafor gas/solid systems with special reference to the determination of surface area andporosity [J]. Pure Appl Chem,1985,57(4):603-619.
    [22]ZHAO D, HUO Q, FENG J, et al. Nonionic Triblock and Star DiblockCopolymer and Oligomeric Surfactant Syntheses of Highly Ordered, HydrothermallyStable, Mesoporous Silica Structures [J]. J Am Chem Soc,1998,120(24):6024-6036.
    [23]HUO Q, MARGOLESE D I, CIESLA U, et al. Generalized synthesis of periodicsurfactant/inorganic composite materials [J]. Nature,1994,368(6469):317-321.
    [24]KIM T-W, PARK I-S, RYOO R. A Synthetic Route to Ordered MesoporousCarbon Materials with Graphitic Pore Walls [J]. Angew Chem Int Ed,2003,42(36):4375-4379.
    [25]KIM C H, LEE D-K, PINNAVAIA T J. Graphitic Mesostructured CarbonPrepared from Aromatic Precursors [J]. Langmuir,2004,20(13):5157-5159.
    [26]YANG H, YAN, LIU Y, et al. A Simple Melt Impregnation Method toSynthesize Ordered Mesoporous Carbon and Carbon Nanofiber Bundles withGraphitized Structure from Pitches [J]. The Journal of Physical Chemistry B,2004,108(45):17320-17328.
    [27]CHENG B C, XIAO Y H, WU G S, et al. Controlled Growth and Properties ofOne-Dimensional ZnO Nanostructures with Ce as Activator/Dopant [J]. Adv FunctMater,2004,14(9):913-919.
    [28]LI W-C, LU A-H, WEIDENTHALER C, et al. Hard-Templating Pathway ToCreate Mesoporous Magnesium Oxide [J]. Chem Mater,2004,16(26):5676-5681.
    [29]LIU G, LIU Y, ZHANG X, et al. Characterization and catalytic performance ofporous carbon prepared using in situ-formed aluminophosphate framework astemplate [J]. J Colloid Interf Sci,2010,342(2):467-473.
    [30]LóPEZ-GARZóN F J, DOMINGO-GARCíA M, PéREZ-MENDOZA M, et al.Textural and Chemical Surface Modifications Produced by Some OxidationTreatments of a Glassy Carbon [J]. Langmuir,2003,19(7):2838-2844.
    [31]SHIN S, JANG J, YOON S H, et al. A study on the effect of heat treatment onfunctional groups of pitch based activated carbon fiber using FTIR [J]. Carbon,1997,35(12):1739-1743.
    [32]ZHOU J-H, SUI Z-J, ZHU J, et al. Characterization of surface oxygen complexeson carbon nanofibers by TPD, XPS and FT-IR [J]. Carbon,2007,45(4):785-796.
    [33]FIGUEIREDO J L, PEREIRA M F R, FREITAS M M A, et al. Modification ofthe surface chemistry of activated carbons [J]. Carbon,1999,37(9):1379-1389.
    [34]ARRIGO R, HAVECKER M, WRABETZ S, et al. Tuning the Acid/BaseProperties of Nanocarbons by Functionalization via Amination [J]. J Am Chem Soc,2010,132(28):9616-9630.
    [1] OKUNO, HIROMI OSAKA J, KOSHINA, et al. Nonaqueous electrolytesecondary batteries: US Patent,5,484,669[P/OL].[1996-01-16].
    [2] OKUNO; HIROMI, KOSHINA; HIZURU, AKIYOSHI M. Non-aqueoussecondary electrochemical battery5,521,027[P/OL].[1996-05-28].
    [3] PLICHTA E J, BEHL W K. A low-temperature electrolyte for lithium andlithium-ion batteries [J]. J Power Sources,2000,88(2):192-196.
    [4] PALANI A, GOKULAKRISHNAN N, PALANICHAMY M, et al.Transesterification of dimethyl carbonate with diethyl carbonate over Al-Zn-MCM-41and Al-MCM-41molecular sieves [J]. Appl Catal A-Gen,2006,304(1):152-158.
    [5] LIU G, WANG Z L, JIA M J, et al. Thermally stable amorphous mesoporousaluminophosphates with controllable P/Al ratio: Synthesis, characterization, andcatalytic performance for selective O-methylation of catechol [J]. J Phys Chem B,2006,110(34):16953-16960.
    [6] LIU G, JIA M J, ZHOU Z, et al. Synthesis of amorphous mesoporousaluminophosphate materials with high thermal stability using a citric acid route [J].Chem Commun,2004,(14):1660-1661.
    [7] SHEN Z L, JIANG X Z, ZHAO W J. A new catalytic transesterification for thesynthesis of ethyl methyl carbonate [J]. Catal Lett,2003,91(1-2):63-67.
    [8] YAN S, KIM M, SALLEY S O, et al. Oil transesterification over calcium oxidesmodified with lanthanum [J]. Applied Catalysis A: General,2009,360(2):163-170.
    [9] ZHAO G, SHI J, LIU G, et al. Efficient porous carbon-supported MgO catalystsfor the transesterification of dimethyl carbonate with diethyl carbonate [J]. J MolCatal A: Chem,2010,327(1-2):32-37.
    [10]刘钢,李雪梅,朱小梅等. AlP_xO催化剂的制备、表征及其在邻苯二酚O-单醚化反应中的催化性能[J]. Chemical Research In Chinese Universities,2005,26(8):1492-1496.
    [11]LI H, MA X-T, SHI J-L, et al. Preparation and properties of poly(ethylene oxide)gel filled polypropylene separators and their corresponding gel polymer electrolytesfor Li-ion batteries [J]. Electrochim Acta,2011,56(6):2641-2647.
    [12]BAUTISTA F M, CAMPELO J M, GARCIA A, et al. Structure, Texture, SurfaceAcidity, and Catalytic Activity of AlPO4–ZrO2(5–50wt%ZrO2) Catalysts Preparedby a Sol–Gel Procedure [J]. J Catal,1998,179(2):483-494.
    [13]CARATI A, FERRARIS G, GUIDOTTI M, et al. Preparation andcharacterisation of mesoporous silica–alumina and silica–titania with a narrow poresize distribution [J]. Catal Today,2003,77(4):315-323.
    [14]WEISZ P B, PRATER C D. Interpretation of measurements in experimentalcatalysis [J]. Advances in Catalysis1954,6:143-196.
    [15]ERCAN C, DAUTZENBERG F M, YEH C Y, et al. Mass-Transfer Effects inLiquid-Phase Alkylation of Benzene with Zeolite Catalysts [J]. Ind Eng Chem Res,1998,37(5):1724-1728.
    [16]TANG D, KERN C, JESS A. Influence of chemical reaction rate, diffusion andpore structure on the regeneration of a coked Al2O3-catalyst [J]. Applied Catalysis A:General,2004,272(1–2):187-199.
    [1]沈菊华.国内外苯乙烯发展概况[J].化工科技市场,2001,7:12-14.
    [2]王彬.苯乙烯生产最新技术[J].现代化工,2005,25(10):30-32.
    [3]李明,李礼.苯乙烯生产技术及市场分析[J].化工科技市场,2004,11:8-18.
    [4]李玉芳.国内外苯乙烯生产技术及发展趋势[J].化工技术经济,2005,23(10):12-24.
    [5] BAERLOCHER C, GRAMM F, MASSüGER L, et al. Structure of thePolycrystalline Zeolite Catalyst IM-5Solved by Enhanced Charge Flipping [J].Science,2007,315(5815):1113-1116.
    [6] BORGNA A, MAGNI S, SEPúLVEDA J, et al. Side-chain alkylation of toluenewith methanol on Cs-exchanged NaY zeolites: effect of Cs loading [J]. Catal Lett,2005,102(1):15-21.
    [7] CONCEPCIóN-HEYDORN P, JIA C, HEREIN D, et al. Structural and catalyticproperties of sodium and cesium exchanged X and Y zeolites, andgermanium-substituted X zeolite [J]. J Mol Catal A: Chem,2000,162(1–2):227-246.
    [8] PARRY E P. An infrared study of pyridine adsorbed on acidic solids.Characterization of surface acidity [J]. J Catal,1963,2(5):371-379.
    [9] WARD J W. The nature of active sites on zeolites: I. The decationated Y zeolite[J]. J Catal,1967,9(3):225-236.
    [10]CORMA A, CHICA A, GUIL J M, et al. Determination of the Pore Topology ofZeolite IM-5by Means of Catalytic Test Reactions and Hydrocarbon AdsorptionMeasurements [J]. J Catal,2000,189(2):382-394.
    [11]MIRTH G, LERCHER J A, ANDERSON M W, et al. Adsorption complexes ofmethanol on zeolite ZSM-5[J]. J Chem Soc, Faraday Trans,1990,86(17):3039-3044.
    [12]KOTRLA J, NACHTIGALLOVá D, KUBELKOVá L, et al. Hydrogen Bondingof Methanol with Bridged OH Groups of Zeolites: Ab Initio Calculation,1H NMRand FTIR Studies [J]. The Journal of Physical Chemistry B,1998,102(14):2454-2463.
    [13]BLASZKOWSKI S R, VAN SANTEN R A. Theoretical Study of the Mechanismof Surface Methoxy and Dimethyl Ether Formation from Methanol Catalyzed byZeolitic Protons [J]. The Journal of Physical Chemistry B,1997,101(13):2292-2305.
    [14]VAYSSILOV G N, LERCHER J A, R SCH N. Interaction of Methanol withAlkali Metal Exchanged Molecular Sieves.2. Density Functional Study [J]. TheJournal of Physical Chemistry B,2000,104(35):8614-8623.
    [15]SERRALLACH A, MEYER R, GüNTHARD H H. Methanol and deuteratedspecies: Infrared data, valence force field, rotamers, and conformation [J]. J MolSpectrosc,1974,52(1):94-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700