用户名: 密码: 验证码:
高山积雪的时空分布特征及融雪模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是中低纬度地区冰冻圈最发育的国家。积雪是冰冻圈要素之一,对气候变化响应敏感,同时影响水文循环系统。本文以积雪的时空分布特征和融雪过程为研究对象,首先通过遥感、气象数据的统计和挖掘,分析大、中尺度上藏东南山区积雪的时空分布特征;再从点尺度上研究雪柱的垂向消融过程,依托于Niwot Ridge(美国Colorado州Rocky Mountains)积雪剖面实测资料,建立并验证基于过程的能量平衡融雪模型Snow Column。
     在大尺度上,提出了区域变动积雪覆盖高程(FSCE)的概念化模型,定量描述高山积雪由于海拔高差导致年内积雪消融时间差异的现象。以藏东南山区15万km~2区域为研究对象,在对25km×25km微波遥感积雪数据有效性验证的基础上,获得了FSCE模型的两个参数:无雪期中期T_m和无雪期持续时间ΔT,建立了FSCE曲线。通过对27年时间序列T_m和ΔT的TFPW-MK趋势检验发现:高海拔处以降水驱动的积雪模式主导,存在积雪期变长的现象;低海拔处以温度驱动为主,存在无雪期变长的现象。
     在中尺度上,基于MODIS空间分辨率500m的雪产品和植被产品数据,以上述研究区域内拉萨河羊八井小流域2665km~2丰雪区为研究对象,分析了积雪~高程和植被~高程的关系。研究发现,在积雪、植被敏感变化的高程带内,积雪~高程和植被~高程为两条近似互为反向的“S”型曲线。这一现象再次提供了积雪和植被在限定范围内的密切相关性的证据,显示了积雪、高程关系和植被、高程关系两者能够互为指示。与大尺度研究相比,更高精度的中尺度数据信息使积雪~高程关系从大尺度的线性关系丰富为中尺度的非线性“S”型曲线。
     在小尺度上,建立了描述单点积雪垂向消融过程的Snow Column模型。通过Niwot Ridge观测站#006雪坑剖面资料对模型验证,表明Snow Column模型能反映雪深、雪温和密度等状态量随时间的变化。通过变化气象输入条件,模型再现了雪柱整层融化、雪深减小、融水出流和雪层部分融化、压实、密度增大两种消融现象。Snow Column模型今后有待于耦合积雪空间分布资料和融水汇流过程,进一步发展为空间分布式融雪模型。
Snow is an essential factor in cryosphere that is of great importance inChina. The snow shows an indicative response to climate change and affectshydrological cycle system. This study explores the characteristics of the snow atvarious scales: the spatiotemporal distribution of seasonal snow in SouthEastern Tibet and local snowmelt process in a snow column.
     At the macro-scale, a conceptualized model of Fluctuating Snow-CoveredElevation (FSCE) is proposed, quantifying differentiated onset of snowmeltattributed to different elevation in mountainous regions. The snow in SouthEastern Tibet of approximately15×104km~2is characterized based onmicrowave remote sensing snow product with a spatial resolution of25km. Twokey parameters in the FSCE model, i.e., the median (T_m) and duration (ΔT) ofsnow-free period, are accordingly determined. Meanwhile, the TFPW-MK trendtest is used to reveal the response of seasonal snow to climate change. Theanalysis of27-year time series of T_mand ΔT shows that: the snow-coveredperiod has decreased at low elevations due to the increase in air temperature,and the snow-free period has decreased at high elevations because the increasein precipitation compensates for the increase in air temperature.
     At the meso-scale, the relationship between snow and elevation and that ofvegetation and elevation are explored for the Yangbajain basin of2665km~2inLhasa River basin. The MODIS snow and vegetation products with a spatialresolution of500m are analyzed. It is shown that there is a pair of “S”-shapedand reversed “S”-shaped profiles for the snow-elevation andvegetation-elevation relationships. This provides an evidence of the closerelationship between the two profiles. It also suggests the effect of spatial scale,that is, the data with the higher spatial resolution provides more information onthe snow-elevation relationship: a non-linear “S”-shaped curve at themeso-scale instead of linear profile at the macro-scale.
     At the micro-scale, the Snow Column model is developed for representinglocal snowmelt processes in the vertical direction. The observed data at#006 snowpit of Niwot Ridge, Colorado, Front Range of Rocky Mountains, is used tovalidate the Snow Column model. It is shown that the developed model iscapable of characterizing the temporal variation of snow depth, temperature anddensity. Analysis of the response of snowpack to meteorological conditionsshows that there exist two phenomena: one is “the whole snow layer meltsresulting in the decrease in depth and flowing out of water” and the other is“some part of the snow layer melts and the remaining part gets densified”. In thefuture, this local scale model could be developed into a spatially distributedmodel through combing spatial snow input and flow routing method.
引文
Anderson E A. A point energy and mass balance model for a snow cover, NOAA Technical reportNWS19[R]. U.S. Department of Commerce,1976.
    Anderson H W, Rice R M, West A J. Snow in forest openings and forest stands[C]. In: Proc. Soc.Am. For.,1958,46-50.
    Anderton S P, White S M, and Alvera B. Evaluation of spatial variability in snow water equivalentfor a high mountain catchment [J]. Hydrological Processes,2004,18:435-453.
    Anderton S P, White S M, and Alvera B. Micro-scale spatial variability and the timing of snow meltrunoff in a high mountain catchment [J]. Journal of Hydrology,2002,268:158-176.
    Armstrong R, and Brodzik M. An earth-gridded SSM/I data set for cryospheric studies and globalchange monitoring [J]. Advanced Space Research,1995,16(10):10155-10163.
    Bamzai A S and Shukla J. Relation between Eurasian snow cover, snow depth, and the Indiansummer monsoon: An observational study [J]. Journal of Climate,1999,12:3117-3132.
    Barnett T P, Adam J C, and Lettenmaier D P. Potential impacts of a warming climate on wateravailability in snow-dominated regions [J]. Nature,2005,438:303-309.
    Barry R G. Mountain Weather and Climate [M]. Routledge: London and New York,1992.
    Bartelt P, and Lehning M. A physical SNOWPACK model for the Swiss avalanche warning Part I:numerical model [J]. Cold Regions Science and Technology,2002,35:123-145.
    Bell V A, and Moore R J. An elevation-dependent snowmelt model for upland Britain[J].Hydrological Processes,1999,13:1887-1903.
    Beniston M. Climatic change in mountain regions: A review of possible impacts[J]. ClimaticChange,2003,59(1-2):5-31.
    Bloschl G, Kirnbauer R. Point snowmelt models with different degrees of complexity—internalprocess [J]. Journal of Hydrology,1991,129:127-147.
    Buus-Hinkler J, Hansen B U, Tamstorf M P, Pedersen S B. Snow-vegetation relations in a higharctic ecosystem: inter-annual variability inferred from new monitoring and modelingconcepts[J]. Remote Sensing of Environment,2006,105,237-247.
    Caine N. Streamflow patterns in the alpine environment of North Boulder Creek, Colorado FrontRange[J]. Zeitschrift fur Geomorphologie,1996,104:27-42.
    Chang A, Foster J and Hall D. Nimbus-7derived global snow cover parameters[J]. Annals ofGlaciology,1987,9:39-44.
    Che Tao, Li Xin, Armstrong R L. Estimation of snow water equivalent from passive microwaveremote sensing data (SSM/I) in Tibetan Plateau [J]. Microwave Remote Sensing of theAtmosphere and Environment III,2003,4894:405-412
    Chen B, Chao W C, and Liu X. Enhanced climatic warming in the Tibetan Plateau due to doublingCO2: A model study [J]. Climate Dynamics,2003,20(4):401–413.
    Chou Y. L. Statistical Analysis [M]. New York: Holt International,1975.
    Clifford D. Global estimates of snow water equivalent from passive microwave instruments: history,challenges and future developments [J]. International Journal of Remote Sensing,2010,31(14):3707-3726.
    Cline D W. Snow surface energy exchanges and snowmelt at a continental, midlatitude Alpine site[J]. Water Resources Research,1997,33(4):689-701.
    Cyranoski D. Climate change: the long-range forecast [J]. Nature,2005,438:275-276.
    D’ Eon R. Snow depth as a function of canopy cover and other site attributes in a forested ungulatewinter range in southeast British Columbia [J]. BC J. Ecosyst. Manage.,2004,3:1-9.
    Daugharty D, Dickinson B. Snow distribution in forested and deforested landscapes in NewBrunswick, Canada. In: Proceedings of the39th Eastern Snow Conference, Reno, NV, April19-23,1982:10-19.
    de Quervain M R. Snow structure, heat and mass flux through snow[C]. Proceedings on theSymposia on the Role of Snow and Ice in Hydrology, Banff,1972.
    Diaz H, and Bradley R. Temperature variations during the last century at high elevation sites [J].Climatic Change,1997,36(3–4):253-279.
    Diaz H, and Bradley R. Temperature variations during the last century at high elevation sites [J].Climatic Change,1997,36(3–4):253-279.
    Erickson T A, Williams M W, Winstral A. Persistence of topographic controls on the spatialdistribution of snow in rugged mountain terrain, Colorado, United States[J]. Water ResourcesResearch,2005,41, W04014, doi:10.1029/2003WR002973.
    Essery R L, Pomeroy J W, Parvianen J, et al. Sublimation of snow from coniferous forests in aclimate model [J]. Journal of Climate,2003,16:1855-1864.
    Fallot J M, Barry R G, Hoogstrate D. Variations in mean cold season temperature, precipitation andsnow depths during the last100years in the former Soviet Union(FSU)[J]. HydrologicalSciences-Journal-des Sciences Hydrologiques,1997,42(3):301-327.
    Faria D A, Pomeroy J W, and Essery R L H. Effect of covariance between ablation and snow waterequivalent on depletion of snow-covered area in a forest [J]. Hydrological Processes,2002,14(15):2683-2695.
    Fassnacht S R, Williams M W, Corrao M V. Changes in the surface roughness of snow frommillimeter to meter scales[J]. Ecological Complexity,2009,6:221-229.
    Flerchinger G N, Baker J M, Spaans E J A. A test of the radiative energy balance of the SHAWmodel for snowcover [J]. Hydrological Processes,1996,10:1359-1367.
    Fontaine T A, Cruickshank T S, Arnold J G, et al. Development of a snowfall-snowmelt routine formountainous terrain for the soil water assessment tool (SWAT)[J]. Journal of Hydrology,2002,262:209-223.
    Foster J L, Sun C J, Walker J P, et al. Quantifying the uncertainty in passive microwave snow waterequivalent observations [J]. Remote Sensing of Environment,2005,94:187-203.
    Frew J E. The Image Prcessing Workbench [D]. University of California: Santa Barbara,Department of Geography,1990.
    Giorgi F, Hurrell J M, Marinucci M R, et al. Elevation dependency of the surface climate changesignal: A model study [J]. Journal of Climate,1997,10:288–296.
    Groisman P Y, Karl T R, Knight R W. Observed impact of snow cover on the heat balance and therise of continental spring temperature [J]. Science,1994,263:198-200.
    Hall D K, Kelly R E J, Riggs G A, et al. Assessment of the relative accuracy of hemispheric-scalesnow-cover maps [J]. Annals of Glaciology,2002,34:24-30.
    Hedstrom N R, Pomeroy J W. Measurements and modeling of snow interception in the boreal forest[J]. Hydrological Processes,1998,12,1611-1625.
    Hendrick R L, Filgate B D, Adams W M. Application of environment analysis to watershedsnowmelt [J]. Journal of Applied Meteorology,1971,10:418-429.
    Hood E, Williams M, Cline D. Sublimation from seasonal snowpack at a continental mid-latitudealpine site [J]. Hydrological Processes,1999,13:1781-1797.
    Hope A S, Boynton W L, Stow D A, et al. Interannual growth dynamics of vegetation in theKuparuk River watershed, Alaska based on the Normalized Difference Vegetation Index[J].International Journal of Remote Sensing,2003,24:3413-3425.
    Hope A S, Pence K R, Stow D A. NDVI from low attitude aircraft and composited NOAA AVHRRdata for scaling Arctic ecosystem flux [J]. International Journal of Remote Sensing,2004,25:4237-4250.
    Immerzeel W W, Droogers P, de Jong S M, et al. Large-scale monitoring of snow cover and runoffsimulation in Himalayan river basins using remote sensing[J]. Remote Sensing ofEnvironment,2009,113:40-49.
    Immerzeel W W, van Beek L P H, and Bierkens M F P. Climate change will affect the Asian watertowers [J]. Science,2010,328:1382-1385.
    Jia G J, Epstein H E, Walker D A. Controls over intra-seasonal dynamics of AVHRR NDVI for theArctic tundra in northern Alaska[J]. International Journal of Remote Sensing,2004,25:1547-1564.
    Jordan R. A One-Dimensional temperature model for a snow cover–Technical documentation forSNTHERM.89[R], U.S. Army Corps of Engineers Cold Regions Research&EngineeringLaboratory Special Report91-16,1991.10.
    Jost G, Weiler M, Gluns D R, et al. The influence of forest and topography on snow accumulationand melt at the watershed-scale [J]. Journal of Hydrology,2007,347:101-115
    Khandekar M L. Eurasian snow cover, Indian monsoon and ElNino/Southern Oscilation——Asynthesis [J]. Atmosphere Ocean,1991,29(4):636-647.
    Kondo J, Yamazaki T. A prediction model for snowmelt, snow surface temperature and freezingdepth using a heat balance method [J]. Journal of Applied Meteorology,1990,29:375-384.
    Kongoli C E and Bland W L. Long-term snow depth simulations using a modified atmosphere-landexchange model [J]. Agricultural and Forest Meteorology,2000,104:273-287.
    Kripalani R H, Kulkarni A, and Sabade S S. Western Himalayan snow cover and Indian monsoonrainfall: A re-examination with INSAT and NCEP/NCAR data [J]. Theoretical and AppliedClimatology,2004,74:1-18.
    Lane L J and Nearing M A.“USDA-Water Erosion Prediction Project: Hillslope profile modeldocumentation,” NSERL Report No.2[R]. USDA-ARS National Soil Erosion ResearchLaboratory, West Lafayette, Indiana,1989.
    Lazar B, Williams M. Climate change in western ski areas: Potential changes in the timing of wetavalanches and snow quality for Aspen ski area in the years2030and2100[J]. Cold RegionsScience and Technology,2008,51:219-228.
    Lehning M, Bartelt P, Brown B, et al. A physical SNOWPACK model for the Swiss avalanchewarning Part II. Snow microstructure [J]. Cold regions science and technology,2002,35:147-167.
    Li Xingong, Williams M W. Snowmelt runoff modeling in an arid mountain watershed, TarimBasin, China [J]. Hydrological Processes,2008,22(19):3931-3940.
    Liston G E, Sturm M. A blowing and drifting snow model applied to arctic environments[C].Northern Research Basins Proceedings, Eleventh International Symposium and Workshop, Vol.1: Prudhoe Bay/Fairbanks, Alaska, August. The water and Environment Research Center,University of Alaska, Fairbanks.1997,165-177.
    Liston G E, Sturm M. A snow-transport model for complex terrain[J]. Journal of Glaciology,1998,44:498-516.
    Liston G E. Representing subgrid snow cover heterogeneities in regional and global models [J].Journal of Climate,2004,17(6):1381-1397.
    Liu X D and Chen B D. Climatic warming in the Tibetan Plateau during recent decades [J].International Journal of Climatology,2000,20:1729-1742.
    Longley K, Jacobsen D, Marks D. Supplement to the Image Processing Workbench (IPW):Modification, Procedures, and Software Additions, November1989to June1992(Revision2.0)[R]. US EPA, Environmental Research Laboratory: Corvallis, OR,1992.
    Longley K, Marks D. Supplement to the Image Processing Workbench (IPW), Volume1.0:Modification, Procedures, and Software Additions November1989to October1991[R]. USEPA, Environmental Research Laboratory: Corvallis, OR,1991.
    Ma Hong, Cheng Guodong. A test of Snowmelt Runoff Model (SRM) for the Gongnaisi Riverbasin in the western Tianshan Mountains, China [J]. Chinese Science Bulletin.2003,48(20):2253-2259.
    Marchand M D, Killingtveit A. Statistical probability distribution of snow depth at the modelsub-grid cell spatial scale[J]. Hydrological Processes,2005,19:355-369.
    Marks D, Domingo J, Susong D, et al. A spatially distributed energy balance snowmelt model forapplication in mountain basins [J]. Hydrological Processes,1999,13:1935-1959.
    Marks D, Kimball J, Tingey D, et al. The sensitivity of snowmelt processes to climate conditionsand forest cover during rain-on-snow: A study of the1996Pacific Northwest flood [J].Hydrological Processes,1998,12:1569-1587.
    Marsh P. Snow cover formation and melt: recent advances and future prospects[J]. HydrologicalProcesses,1999,13:2117-2134.
    Martinec J, Rango A, Roberts R. The Snowmelt Runoff Model (SRM) User’s Manual[R]. In:Baumgartner, M.F.(Ed.), Geographica Bernensia. Department of Geography, University ofBerne, Switzerland,1994.
    Martinec J. Snowmelt-runoff model for stream flow forecasts [J]. Nordic Hydrology,1975,6(3):145-154.
    McKay G A, Gray D M. The distribution of snowcover. In: Handbook of Snow: Principles,Processes, Management and Use [M], Gray D M, Male D H (eds). Toronto: Pergamon Press,1981.
    Morgan V I, Goodwin I D, Etheridge D M, et al. Evidence from Antarctic ice cores for recentincreases in snow accumulation [J]. Nature,1991,354:58-60.
    Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudesfrom1981to1991[J]. Nature,1997,386:698-702.
    Parman J N, Barnes R T, Williams M W, et al. Stream Water chemistry along an elevationalgradient from plains to the continental divide[J]. Vadoze Zone Hydrology, in review.
    Pomeroy J W, Gray D M. Snowcover: accumulation, Relocation, and Management[M]. NationalHydrology Research Institute, Saskatoon, Canada. NHRI Science Report1995,7:144.
    Pomeroy J W, Marsh P, Gray D M. Application of a distributed blowing snow model to the arctic[J].Hydrological Processes,1997,11:1451-1464.
    Pomeroy J, Gray D, Hedstrom N, et al. Precipitation of seasonal snow accumulation in cold climateforests [J]. Hydrological Processes,2002,16:3543-3558.
    Qin D H, Liu S Y, and Li P J. Snow cover distribution, variability, and response to climate changein western China [J]. Journal of Climate,2006,19(9):1820-1833.
    Racoviteanu A E, Arnaud Y, Williams M W, et al. Decadal changes in glacial parameters for theCordillera Blanca, Peru derived from remote sensing [J]. Journal of Glaciology,2008,54(186):499-510.
    Rangwala I, Miller J R, and Xu M. Warming in the Tibetan Plateau: Possible influences of thechanges in surface water vapor [J]. Geophysical Research Letters,2009a,36, L06703,doi:10.1029/2009GL037245.
    Rangwala I, Miller J R, Russell G L, et al. Using a global climate model to evaluate the influencesof water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau duringthe twenty-first century [J]. Climate Dynamics,2009b,34(6),859-872.
    Rasmus S, Gronholm T, Lehning M, et al. Validation of the SNOWPACK model in five differentsnow zones in Finland [J]. Boreal Environment Research,2007,12:467-488.
    Rasmus S, Raisanen J, Lehning M. Estimating snow conditions in Finland in the late21st centuryusing the SNOWPACK model with regional climate scenario data as input [J]. Annals ofGlaciology.2004,38:238-244.
    Rees H G and Collins D N. Regional differences in response of flow in glacier-fed Himalayanrivers to climatic warming [J]. Hydrological Processes,2006,20:2157-2169.
    Robinson D A, and Frei A. Seasonal variability of northern hemisphere snow extent using visiblesatellite data [J]. Professional Geographer,2000,52(2):307-315.
    Robinson D A, Dewey K F, Heim R R. Global snow cover monitoring: An update [J]. Bulletin ofthe American Meteorological Society,1993,74(9):1689-1696.
    Robinson D A, Dewey K F. Recent secular variations in the extent of northern hemisphere snowcover [J]. Geophysical Research Letter,1990,17(10):1557-1560.
    Robock A, Mu M, Vinnikov K, et al. Land surface conditions over Eurasia and Indian summermonsoon rainfall [J]. Journal of Geophysical Research,2003,108(D4),4131.doi:10.1029/2002JD002286
    Schmidt S, Weber B, Winiger M. Analyses of seasonal snow disappearance in an alpine valley frommicro-to meso-scale (Loetschental, Switzerland)[J]. Hydrological Processes,2009,23:1041-1051.
    Shaman J, Cane M, and Kaplan A. The relationship between Tibetan snow depth, ENSO, riverdischarge and the monsoon of Bangladesh [J]. International Journal of Remote Sensing,2005,26:3735-3748.
    Shamir E, Georgakakos K P. Distributed snow accumulation and ablation modeling in the AmericanRiver basin [J]. Advances in Water Resources.2006,29:558-570.
    Singh P, and Bengtsson L. Impact of warmer climate on melt and evaporation for the rainfed,snowfed and glacierfed basins in the Himalayan region [J]. Journal of Hydrology,2005,300:140-154.
    Singh P, Singh V P. Snow and glacier hydrology [M]. The Netherlands: Kluwer AcademicPublishers,2001.
    Singh V P. Computer Model of Watershed Hydrology [M]. USA: Water Resource Publications,1995.
    Slough.K and G.W.Kite. Remote sensing estimates of snow water equivalent for hydrologicalmodeling applications [J]. Can. J. Wat. Res.,1992,17(4):1-8.
    Spreitzhofer G, Fierz C, Lehning M. SN_GUI: a graphical user interface for snowpack modeling [J].Computers&Geosciences,2004,30:809-816.
    Sun S, Jin J, Xue Y. A simple snow-atmosphere-soil transfer model[J]. Journal of GeophysicalResearch,1999,104(D16):19587-19597.
    Tarboton D G and Luce C H. Utah energy balance snow accumulation and melt model(UEB)——Computer model technical description and users guide [R]. Utah Water Researchlaboratory Utah State University and USDA Forest Service Intermountain Research Station,1996.
    Varhola A, Coops N C, Weiler M, et al. Forest canopy effects on snow accumulation and ablation:An integrative review of empirical results [J]. Journal of Hydrology,2010,392:219-233.
    Von Storch H. Misuses of statistical analysis in climate research[M]. In: Analysis of ClimateVariability: Application of Statistical Techniques (Edit by Von Storch H, Navarra A).Springer-Verlag, Berlin,1995.
    Walter M T, Brooks E S, McCool D K, et al. Process-based snowmelt modeling: does it requiremore input data than temperature-index modeling?[J]. Journal of Hydrology,2005,300:65-75.
    Williams M W, Cline D, Hartmann M, Bardsley T. Data for snowmelt model development,calibration, and verification at an alpine site, Colorado Front Range[J]. Water ResourceResearch,1999,35(10):3205
    Williams M W, Losleben M, Caine N, Greenland D. Changes in climate and hydrochemicalresponses in a high-eleveation catchment in the Rocky Mountains, USA [J]. Limnology andOceanography,1996,41(5):939-946.
    Williams M W, Sommerfeld R, Massman S. Correlation lengths of meltwater flow through ripesnowpack Colorado Front Range, USA[J]. Hydrological Processes,1999,13(12):1807-1826.
    Winkler R D, Spittlehouse D L, Golding D L. Measured differences in snow accumulation and meltamong clearcut, juvenile, and mature forest in southern British Columbia[J]. HydrologicalProcesses,2005,19:51-62.
    Xu Z X, Takeuchi K and Ishidaira H, Monotonic trend and step changes in Japanese precipitation[J]. Journal of Hydrology,2003,279:144-150.
    Yan Fenglin, Ramage J, McKenney R. Modeling of high-latitude spring freshet from AMSR-Epassive microwave observations [J]. Water Resources Research,2009,45, W11408,doi:10.1029/2008WR007370
    Ye Hengchun, Cho Hanru, Gustafson P E. The changes in Russian winter snow accumulationduring1936-83and its spatial patterns [J]. Journal of Climate,1998,11:856-863.
    Yue S, Pilon P, Phinney B, Cavadias G. The influence of autocorrelation on the ability to detecttrend in hydrological series[J]. Hydrological Processes,2002,16:1807-1829.
    Zhang Qiang, Xu Chongyu, Becker Stefan, et al. Sediment and runoff changes in the Yangtze Riverbasin during past50years [J]. Journal of Hydrology,1991,129:127-147.
    Zwally H Y, Brennen A C, Major I A, et al. Growth of Greenland ice sheet: Measurement andinterpretation [J]. Science,1989,246:1587-1591.
    曹云刚,刘闯.从AVHRR到MODIS的雪盖制图研究进展.地理与地理信息科学.2005,21(5):15-19.
    车涛,李新.1993-2002年中国积雪水资源时空分布与变化特征[J].冰川冻土,2005,27(1):64-67.
    车涛.中国雪深长时间序列数据集介绍(1978-2005)[R],中国西部环境与生态科学数据中心http://westdc.westgis.ac.cn,.2006.8
    陈静,李仁东,叶明,等.利用MODIS产品数据研究分析南极海岸带雪盖面积变化[J].极地研究.2008,20(4):338-345.
    陈伟.秩相关分析在地下水位变化趋势评价中的应用[J].水文地质工程地质.2011,38(1):35-39.
    戴露.雅鲁藏布江中游段径流预测研究[D].四川大学:2006.
    傅抱璞,翁笃鸣,虞静明等.小气候学[M].北京:气象出版社,1994:236.
    高平,张贵平,吴琼,连俊强,张峰.山西崦山自然保护区侧柏群落优势种群种间关系分析[J].植物研究.2010,30(6):731-736.
    韩庆红,王普才,王玉昆,等.利用MODIS产品分析东北地区积雪覆盖状况及冬季气候特征[J].南京气象学院学报,2007,30(3):396-401.
    何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2007:41.
    黄晓东,张学通,李霞,等.北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价[J].冰川冻土.2007,29(5):722-729.
    蒋复初,吴锡浩,王书兵,等.中国气候雪线空间分布特征[J].地质力学学报,2002,8(4):289-296.
    蒋忠信.关于自然地带性数学模式之商讨[J].地理学报,1982,37(1):98-103.
    蒋忠信.雪线地带性的定量分析[J].冰川冻土,1984,6(2):27-35.
    柯长青,李培基,王采平.青藏高原积雪变化趋势及其与气温和降水的关系[J].冰川冻土.1997,19(4):289-294.
    柯长青,李培基.青藏高原积雪分布与变化特征[J].地理学报.1998,53(3):209-214.
    柯长青,李培基.用EOF方法研究青藏高原积雪深度分布与变化[J].冰川冻土,1998,20(1):64-67.
    李宝林,张一驰,周成虎.天山开都河流域雪盖消融曲线研究[J].资源科学.2004,26(6):23-29.
    李弘毅,王建. SRM融雪径流模型在黑河流域上游的模拟研究[J].冰川冻土.2008,30(5):769-775.
    李培基.青藏高原积雪对全球变暖的响应[J].地理学报,1996,51(3):260-265.
    梁宏,刘晶淼,章建成,等.青藏高原大气总水汽量的反演研究[J].高原气象,2006,25(6):1055-1063.
    刘灿然,陈灵芝.北京地区植被景观中斑块形状的指数分析.生态学报.2000,20(4):559-567.
    刘俊峰,杨建平,陈仁升,等. SRM融雪径流模型在长江源区冬克玛底河流域的应用[J].地理学报.2006,61(11):1149-1159.
    刘文元.自然地带性的理论分析[J].地理学报.1980,35(4):289-298.
    吕继强,张晓伟,沈冰,黄领梅.和田河年径流序列变化特征及驱动因素分析[J].水力发电学报.2010,29(5):165-169.
    马虹,程国栋. SRM融雪径流模型在西天山巩乃斯河流域的应用实验[J].科学通报.2003,48(19):2088-2093.
    牟丽琴.冰川积雪区流域热力学水文模型研究[D].清华大学:2008.
    潘维玉,余志豪.青藏高原东部积雪日数特征的分析[J].气象科学.1998,18(1):48-55.
    秦大河,效存德,丁永建,等.国际冰冻圈研究动态和我国冰冻圈研究的现状与展望[J].应用气象学报,2006,17(6):649-656.
    舒守娟,喻自凤,王元,等.西藏地区复杂地形下的降水空间分布估算模型[J].地球物理学报,2005,48(3):535-542.
    孙菽芬,金继明,吴国雄.用于GCM耦合的积雪模型的设计[J].气象学报,1999,57(3):293-300.
    孙菽芬.陆面过程的物理、生化机理和参数化模型[M].北京:气象出版社,2005.
    王皓,高洁,傅旭东,王光谦,巩同梁.高山深谷地区的水文模拟——以拉萨河流域为例[J].北京师范大学学报(自然科学版).2010,46(3):300-306
    王建,马明国, Paolo Federicis.基于遥感与地理信息系统的SRM融雪径流模型在Alps山区流域的应用[J].冰川冻土,2001,23(4):436-441.
    王宁练,姚檀栋.20世纪全球变暖的冰冻圈证据[J].地球科学进展,2001,16(1):98-105.
    王叶堂,何勇,侯书贵.2000-2005年青藏高原积雪时空变化分析[J].冰川冻土,2007,29(6):855-861.
    王中根,刘昌明,黄友波. SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86.
    文军, Dai Mo, Deroin Jean-Paul,等.利用MODIS和ASAR资料估算青藏高原念青唐古拉山脉地区冰雪范围及厚度[J].冰川冻土.2006,28(1):54-61.
    吴统文,钱正安,蔡英. CCM3模式中LSM积雪方案的改进研究(II):全球模拟试验分析[J].高原气象.2004b,23(5):569-579.
    吴统文,钱正安,宋敏红. CCM3模式中的LSM积雪方案的改进研究(I):修改方案介绍及其单点试验[J].高原气象.2004a,23(4):444-452.
    吴锡浩,祝一志.中国气候雪线的高程计算及变化规律[J].科学通报,1990,35(6):451-453.
    谢健,刘景时,杜明远,康世昌,汪奎奎.拉萨河流域高山水热分布观测结果分析[J].地理科学进展.2009,28(2):223-230.
    辛羽飞,卞林银.全球冰冻圈变化预测研究现状[J].极地研究,2008,20(3):276-286.
    徐宗学,和宛琳.黄河流域近40年蒸发皿蒸发量变化趋势分析[J].水文.2005,25(6):6-11.
    许继军.分布式水文模型在长江流域的应用研究[D].北京,清华大学:2007.
    杨针娘,刘新仁,曾群柱,等.中国寒区水文[M].北京:科学出版社,2000.
    叶笃正.长期预报的一些物理因子[J].气象,1975,(3):10-13.
    俞鑫颖,刘新仁.分布式冰雪融水雨水混合水文模型[J].河海大学学报(自然科学版),2002,30(5):23-27.
    张杰,韩涛,王建.祈连山区1997-2004年积雪面积和雪线高度变化分析[J].冰川冻土.2005,27(5):649-654.
    张一驰,李宝林,包安明,等.开都河流域融雪径流模拟[J].中国科学D辑地球科学2006,36(增刊II):24-32.
    郑度,张荣祖,杨勤业.试论青藏高原的自然地带[J].地理学报,1979,34(1):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700