用户名: 密码: 验证码:
镉对长江化溪蟹心脏组织器官的毒性作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文综合采用光镜、电镜、酶学检测、流式细胞术、基因克隆、实时荧光定量PCR等手段与方法,以长江华溪蟹(Sinopotamon yangtsekiense)作为研究对象,采用急性毒性实验方法,研究了不同浓度镉暴露对心脏组织器官的影响,旨在阐明镉对心脏的毒性效应和致毒机制。为了研究镉对心脏组织器官的细胞与生化毒理学效应,就心肌细胞显微与亚显微结构进行了观察,并且检测了镉的蓄积、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPx)三种抗氧化酶的活力和脂质过氧化产物丙二醛(MDA)的含量,探讨了心肌细胞结构改变和氧化应激之间的关系。在此基础上,为了求证镉对心脏造成氧化损伤后是否进一步诱导心肌细胞发生凋亡,分别采用Hoechst33258荧光染色法、琼脂糖凝胶电泳法、Annexin V-FITC/PI流式细胞技术和Caspase-3酶活力测定的方法,检测了镉对心肌细胞凋亡的影响。之后,为了探明心脏对镉的应答反应,采用RT-PCR技术克隆得到了长江华溪蟹一种热休克蛋白70(SyHSP70)基因的部分cDNA序列,并利用实时荧光定量PCR技术检测了镉诱导SyHSP70和MTmRNA表达的变化特征。主要研究内容和结果如下:
     1、镉对长江华溪蟹主要组织器官细胞的影响
     采用石蜡切片和H.E.染色方法,研究了7.25、14.50、29.00、58.00、116.00mg·L-1镉暴露4d后,对长江华溪蟹肝胰腺、鳃、心脏和精巢四种主要组织器官组织细胞的影响,旨在为后续研究工作奠定基础,为镉对溪蟹生化、分子水平的影响提供支持和依据。结果显示,四种组织器官均有不同程度的损伤,且随镉浓度的增大损伤不断加重。肝胰腺组织细胞的变化包括:R细胞数目持续增加、空泡化,坏死细胞脱落和腺管坏死等。鳃组织细胞:鳃叶间隙紊乱,pillar细胞系统被破坏,肾原细胞和血细胞数目增加,鳃叶变宽,多处鳃叶上皮断裂以及有毛细管扩张现象。心脏组织细胞:灶性区域变性和坏死,并伴随有炎细胞浸润现象。精巢组织细胞:生精细胞排列不规则,空泡样结构增多,初级精母细胞和次级精母细胞核固缩现象加剧,管腔内精细胞减少,生精细胞以及生精小管坏死。实验结果提示镉暴露后溪蟹主要组织器官结构的改变很可能影响了生物体的主要生理功能,例如肝胰腺的吸收、储存和分泌,鳃的呼吸、渗透和离子调节及精子发生。研究结果表明组织病理学的变化能够灵敏反映镉对甲克动物的胁迫程度及毒性大小,可作为水生态环境镉污染程度的生物评估指标。
     2、镉诱导长江华溪蟹心脏组织细胞结构的改变与氧化损伤作用
     采用急性体外镉暴露法,研究了7.25、14.50、29.00、58.00、116.00mg·L-1镉暴露1d、3d、5d、7d后长江华溪蟹心脏中镉蓄积情况和显微结构与亚显微结构、抗氧化酶活性和脂质过氧化的变化。结果显示,镉的积累具有浓度-效应关系,在镉浓度116.00mg·L-1暴露5d时积累量达到最大(14.0±1.67μg·g-1),是对照组的13.2倍。光镜观察发现,镉暴露时间较短时对心脏组织细胞的影响不明显。但是随浓度和时间的增加,出现心肌水肿、空泡变性、玻璃样变性、炎细胞浸润等病理现象。透射电镜观察显示,心肌细胞核变形、染色质浓缩边集、核固缩、核碎裂,线粒体空泡化、嵴断裂、嵴溶解,内质网膨胀,肌原纤维水肿以及有炎细胞浸润现象。心脏抗氧化酶活性也发生了不同程度的改变,SOD活性在整个处理期间显著增高,CAT和GPx活性分别在暴露5d的14.50mg·L-1和7.25mg·L-1浓度组升高,之后活性降低。MDA含量在5d和7d时显著增加,脂质过氧化加剧。结论:镉的高浓度及长时间积累对心脏有明显的毒性作用,其作用机制与氧化胁迫和脂质过氧化有关。
     3、镉诱导长江华溪蟹心肌细胞凋亡的研究
     采用Hoechst33258荧光染色法、琼脂糖凝胶电泳法、Annexin V-FITC/PI流式细胞术、Caspase-3酶活力测定的方法,分别从细胞形态学和生物化学水平观察和检测了急性镉暴露(7.25、14.50、29.00、58.00、116.00mg·L-1)1d、3d、5d和7d诱导长江华溪蟹心肌细胞凋亡的情况。结果显示,荧光显微镜未观察到典型的凋亡细胞核形态学变化;琼脂糖凝胶电泳图谱未出现凋亡细胞所特有的梯状条带;流式细胞技术检测发现虽然细胞凋亡率增加,但与对照组相比无统计学意义(P>0.05);Caspase-3活性也没有显著性变化(P>0.05)。因此,在本实验所选取的浓度和时间范围内,镉未诱导长江华溪蟹心肌细胞发生细胞凋亡,这与本课题组前期研究中观察到的肝胰腺、精巢组织在染毒2d、7d发生细胞凋亡的情况明显不同。原因可能与心脏组织的特殊功能有关。
     4、镉诱导长江华溪蟹心脏热休克蛋白70和金属硫蛋白基因表达的研究
     采用RT-PCR技术从长江华溪蟹心脏组织中克隆得到一种热休克蛋白70(SyHSP70)基因的部分cDNA序列,长度为1735bp。将获得的cDNA序列以及推导的氨基酸序列采用BLAST程序与GenBank数据库进行同源性搜索,结果发现,该cDNA序列和氨基酸序列与甲壳动物的HSP70有极高的同源性,分别高达89%和97%。利用实时荧光定量PCR技术研究了7.25、14.50、29.00、58.00、116.00mg·L-1镉暴露1d、3d、5d、7d对心脏SyHSP70和MTmRNA表达的影响。结果表明,在镉浓度58.00mg·L-1、116.00mg·L-1处理1d和镉浓度7.25mg·L-1、14.50mg·L-1处理3d时SyHSP70mRNA的表达量(以(3-actin mRNA水平为内参)显著下降,但是,5d和7d的所有浓度组SyHSP70mRNA的表达无明显变化(P>0.05)。镉暴露显著诱导了心脏MT mRNA的表达,且随镉浓度的增大和暴露时间的延长,MT mRNA的表达一直增加,浓度-效应和时间-效应关系明显。本研究结果显示长江华溪蟹心脏对镉的应激机制包括MT mRNA的增加。
The freshwater crab Sinopotamon yangtsekiense (Bott,1967) is a common endemic species in China. In the preset study, S. yangtsekiense were selected as experiment animals and exposed in the laboratory to a wide range of sublethal concentrations of cadmium (Cd)(7.25,14.50,29.00,58.00,116.00mg·L-1), the histopathological alternations of hepatopancreas, gills, heart and testis were investigated. To explore the toxic effects and stress responses of Cd exposure on heart of S. yangtsekiense, we next detected the accumulation of Cd in the heart and the effects of Cd on the histopathology, antioxidant enzymes and lipid peroxidation. Then, to verify if apoptosis is one of the cardiomyocyte death pathways upon Cd administration, the effects of Cd on cardiomyocyte apoptosis in S. yangtsekiense were assayed. The present study applied morphological, biochemical, cellular, molecular and toxicological methods and technology comprehensively. The aim of this work was to clarify the mechanism of toxic effects of Cd on the heart of S. yangtsekiense and provide useful references on the healthy aquaculture and the effective evaluation of Cd pollution. The present study will enrich the database of Cd's cardiotoxicity in crustaceans. The main results and conclusions in this thesis are summarized as follows:
     1. Effects of cadmium on hepatopancreas, gills, heart and testis in the freshwater crab Sinopotamon yangtsekiense
     The freshwater crab S. yangtsekiense was exposed in the laboratory to a wide range of sublethal concentrations of cadmium (Cd)(7.25,14.50,29.00,58.00,116.00mg·L-1) for4days to explore the acute toxic effects. The results showed Cd caused progressive histopathological damages to the principal tissues, including hepatopancreas, gills, heart and testis. Hepatopancreas alterations included increases in the number of R-cells, extensive vacuolation, detachment of necrotic cells from basal laminae and then tubular necrosis lesion. The gills showed disordered interlamellar spaces, breakdown of pillar cell system, an increased number of nephrocytes and haemocytes, increased lamellae width, ruption of lamella epithelium as well as telangiectasia. The main histopathological alternations in the heart were characterized by degeneration and/or necrosis of focal areas accompanied with infiltration of inflammatory cells. In the testis, vacuolar degeneration, nuclear condensation, a reduction in the number of sperms lined with degeneration and/or necrosis of spermatogenic cells, atrophied seminiferous epithelia as well as tubular necrosis were noticed. These findings provide baseline information on the deleterious effects of Cd on S. yangtsekiense and suggest structural alternations of vital tissues following elevated Cd exposure, which could affect vital physiological functions, such as absorption, storage and secretion of the hepatopancreas, respiration, osmotic and ionic regulations of the gills, as well as spermatogenesis of testis. Such alternations could eventually affect the survival and reproduction of S. yangtsekiense. Thus, all possible remedial measures should be adopted to prevent Cd contamination in aquatic environments.
     2. Morphologic changes and oxidative damage of the heart induced by cadmium exposure in the freshwater crab Sinopotamon yangtsekiense
     Cadmium (Cd) is a highly toxic element in water. Its toxicity has been attributed to oxidative stress mediated by free radicals. Here we investigated the effects of Cd on histopathology, antioxidant enzymes and lipid peroxidation of crustacean heart. The freshwater crabs S. yangtsekiense were exposed to different concentrations of Cd for1,3,5and7days. After exposure, histological abnormalities were discovered, including myocardial edema, vacuolar and vitreous degeneration, and infiltration of inflammatory cells. Additionally, alterations in nuclei, mitochondria, rough endoplasmic reticulum as well as myofibrils were observed. Meanwhile, superoxide dismutase (SOD) activity was significantly increased after Cd exposure. Catalase (CAT) activity was only increased in the group exposed to14.50mg·L-1Cd on day5and decreased with increasing Cd concentration and exposure time. Glutathione peroxidase (GPx) activity was increased in groups treated with29.00,58.00and116.00mg·L-1on days1and3, and decreased thereafter. Besides, malondialdehyde (MDA) levels were significantly increased after3days of Cd exposure at all the indicated concentrations. These results showed that acute Cd exposure led to harmful effects on the histology of crab heart, which are most likely linked to Cd-induced oxidative stress.
     3. Effects of cadmium on apoptosis of cardiomyocyte in the freshwater crab Sinopotamon yangtsekiense
     The effects of cadmium (Cd) on cardiomyocyte apoptosis in the freshwater crab S. yangtsekiense were investigated by acute systemic toxicity testing methods. To verify if apoptosis is one of the cardiomyocyte death pathways upon Cd administration, crabs were exposed to different concentrations of Cd (7.25,14.50,29.00,58.00and116.00mg·L-1) for1,3,5and7days. The results showed the characteristic apoptotic morphologic changes and “ladder” pattern were not observed by fluorescence microscopy with Hoechst33258staining and agarose gel electrophoresis. Flow cytometry assay indicated that the percentage of apoptotic cells was increased with the increasing of exposure time and concentrations of Cd compared with control, but there was no significant difference. Moreover, the activity of Caspase-3was not affected by Cd treatment after7days of exposure. However, these findings suggest that apoptosis was not induced by Cd in cardiomyocytes according to the result of the present study. While previous studies in our lab showed that Cd induced apoptosis in the hepatopancreas and testis cells of crabs after2days and7days of exposure. In the crab cardiomyocyte, the lack of Cd-induced apoptosis may be attributed to different Cd accumulation levels in the three tissues.
     4. Expression analysis of heat shock protein70and metallothionein genes in heart of the freshwater crab Sinopotamon yangtsekiense in response to cadmium
     In order to elucidate the molecular mechanisms of the freshwater crab S. yangtsekiense response to cadmium (Cd) stress, we cloned and sequenced a partial cDNA encoding a70kDa heat shock protein (SyHSP70) from the heart of S. yangtsekiense. Next we investigated its time-and dose-related effects by quantitative real-time PCR on mRNA levels of SyHSP70and metallothionein (MT) in the heart of crabs. The results showed the expression of SyHSP70mRNA decreased significantly after exposure to58.00mg·L-1,116.00mg·L-1Cd for1day or7.25mg·L-1,14.50mg·L-1for3days. While the expression of MT mRNA increased significantly with increasing Cd concentration and exposure time. These results indicate that MT plays an important role in the physiological changes related to metabolism and cell protection that occur in S. yangtsekiense exposed to Cd. This is the first report on the expression of HSP70induced by Cd in S. yangtsekiense.
引文
[1]杨自军.镉的污染及对动物的危害与防治[J].中国动物保健,2008,111:55-60.
    [2]王艳,黄玉明.我国水环境中重金属污染行为和相关效应的研究进展[J].癌变畸变突变,2007,19(3):198-218.
    [3]王秋衡,王淑云,刘美英.湖南湘江流域污染的安全评价[J].中国给水排水,2004,20(8):104-106.
    [4]张晓军,胡明安,赵颖虹,等.大冶铁山地区重金属污染分析[J].环境科学与技术,2005,28(1):40-43.
    [5]赵传冬,陈富荣,陈兴仁,等.长江流域沿江镉异常源追踪与定量评估的方法技术研究:以长江流域安徽段为例[J].地学前缘,2008,15(5):179-193.
    [6]Chen J C, Lin C H. Toxicity of copper sulfate for survival, growth, molting and feeding of juveniles of the tiger shrimp, Penaeus monodon[J].Aquaculture,2001, 192:55-65.
    [7]Correia A D, Livingstone D R, Costa M H. Effects of water-borne copper on metallothionein and lipid peroxidation in the marine amphipod Gammarus locusta[J]. Mar Environ Res,2002,54:357-360.
    [8]周怀东,彭文启.水环境与水环境修复[M].北京:化学工业出版社,2005.
    [9]张永志,王钢军.浙江省主要城市市场中的水产品重金属含量调查研究[J].广东微量元素科学,2004,(6):56-59.
    [10]陆秋艳,吕华东,邱秀玉,等.福建省水产品中铅镉铬蓄积量检测[J].中国公共卫生,2009,25(1):67-68.
    [11]黄长江,赵珍.湛江港海域海产品中重金属残留及评价[J].汕头大学学报(自然科学版),2007,22(1):30-36.
    [12]毕士川,于慧娟,蔡友琼,等.重金属Cd在不同水产品中的含量及污染状况评价[J].环境科学与技术,2009,32(4):181-185.
    [13]曾小峰.北海市海产品重金属污染调查[J].预防医学情报杂志,2011,27(8):571-573.
    [14]陈海仟,吴光红,张美琴,等.我国水产品重金属污染现状及其生物修复技术分析[J].科学养鱼,2010,3:3-5.
    [15]Silvestra F, Dieriek J F, Dumont V, et al. Diferential protein expression profiles inanterior gills of Erioeheir sinensis during acclimation to cadmium[J]. Aquat Toxicol,2006,79:46-58.
    [16]Rainbow P S, White S L. Comparative strategies of heavy metal accumulation by crustaceans:zine, copper and cadmium in a decapods, an amphipod and a barnacle[J]. Hydrobiologia,1989,174(3):245-262.
    [17]Hook S E, Fisher N S. Reproductive toxicity of mrtals in calanoid copepods[J]. Marine Biology,2001,138:1131-1140.
    [18]Pagenkopf G K. Gill surface interaction model for trace-metal toxicity to fishes:role of complexation, pH, and water hardness[J]. Environ Sci Technol,1983,17(6): 342-346.
    [19]Simkiss K. Lipid solubility of heavy metals in saline solutions[J]. J Mar Biol Assoc UK,1983,63:1-7.
    [20]Bettger W J, O'Dell B L. A critical physiological:role of zinc in the structure and function of biomembranes[J]. Life Seience,1981,28:1425-1438.
    [21]Chvapil M. New aspects in the biological role of zine:a stabilizer of macromolecules and biological membranes[J]. Life Seienee,1973,13:1041-1049.
    [22]赵红霞,詹勇,许梓荣.重金属对水生动物毒性的研究进展[J].江西饲料,2003,2,13-18.
    [23]Jennings J R, Rainbow P S. Studies on the uptake of cadmium by the crab Carcinus maenas in the laboratory:Accumulation from seawater and a food source[J]. Mar Biol,1979,50(2):131-139.
    [24]Silvestre F, Trausch G, Pqueux A, et al. Uptake of cadmium through isolated perfused gills of the Chinese mitten crab, Eriocheir sinensis[J]. Comp Biochem Physiol C, 2004,137(1):189-196.
    [25]Silvestre F, Trausch G, Devos P. Hyper-osmoregulatory capacity of the Chinese mitten crab (Eriocheir sinensis) exposed to cadmium. Acclimation during chronic exposure[J]. Comp Biochem Physiol C,2005,140(1):29-37.
    [26]刘发义,吴玉霖,赵鸿儒,等.铜在中国对虾体内的积累和致毒效应[J].海洋与湖沼,1988,19(2):133-138.
    [27]Correa J D, Silva M R, Silva A C, et al. Tissue distribution, subeellular localization and endocrine disruption patterns indueed by Cr and Mn in the crab Ucides cordatus[J]. Aquat Toxicol,2005,73(2):139-154.
    [28]杨志彪,赵云龙,周忠良,等.水体铜对中华绒螯蟹(Eriocheir sinensis)体内铜分布和消化酶活性的影响[J].水产学报,2005,29(4):496-50.
    [29]Bagatto G, Alikhan M A. Copper, cadmium and nickel accumulation in crayfish populations near copper-nickel smelters at Sudbury, Ontario, Canada[J]. B Environ Contam Tox,1987,38(3):540-545.
    [30]Andersen J T, Baatrup E. Ultrastructural localization of mercury accumulations in the gills, hepatopancreas, midgut, and antennal glands of the brown shrim, Crangon crangon[J].Aquat Toxicol,1988,13:309-324.
    [31]Brouwer M, Syring R, Brouwer T H. Role of a copper-specific metallothionein of the blue crab Callinectes sapidus in copper metabolism associated with degradation and synthesis of hemocyanin[J]. J Inorganic Biochem,2002,88:228-239.
    [32]Olafson R W, Kearns A, Sim R G. Heavy metal indication of metallothionein synthesis in the hepatopancreas of the crab Scylla serrata[J]. Comp Biochem Physiol B,1979,62:417-424.
    [33]Moksnes P, Lindahl U, Haux C. Metallothionein as a bioindicator of heavy metal exposure in the tropical shrimp, Penaeus vannamei:a study of dose-dependent induction[J]. Mar Pollut Bull,1995,39:143-146.
    [34]Jennings J R, Rainbow P S. Accumulation of cadmium by Artemia salina[J]. Mar Biol,1979,51(1):47-53.
    [35]Davies I M, Topping G, Graham W C, et al. Field and experimental studies on cadmium in the edible crab Cancer pagurus[J]. Mar Biol,1981,64(3):291-297.
    [36]Falconer C R, Davies I M, Topping G. Cadmium in edible crabs (Cancer pagurus L.) from Scottish coastal waters[J]. Sci Total Environ,1986,54(2):173-183.
    [37]Bjerregaard P, Depledge M H. Trace metal concentrations and contents in the tissues of the shore crab Carcinus maenas:effects of size and tissue hydration[J]. Mar Biol, 2002,141(3):741-752.
    [38]Chou C L, Uthe J F, Castell J D, et al. Effect of dietary cadmium on growth, survival, and tissue concentrations of cadmium, zinc, copper, and silver in juvenile American lobster (Homarus americanus)[J]. Aquat Sci,1987,44(8):1443-1450.
    [39]王茜,王兰,席玉英,等.镉对长江华溪蟹的急性毒性与积累[J].山西大学学报(自 然科学版),2003,26(2):176-178.
    [40]Silvestre F, Duchene C, Trausch G, et al. Tissue-specific cadmium accumulation and metallothionein-like protein levels during acclimation process in the Chinese crab Eriocheir sinensis[J]. Comp Biochem Physiol C,2005,140(1):39-45.
    [41]王兰,杨秀清,王茜,等.镉在河蟹五种组织器官的积累及对酯酶同工酶的影响[J].动物学报,2001,47:96-100.
    [42]Wright D A. The effect of calcium on cadmium uptake by the shore crab Carcinus maenas[J]. Exp Biol,1977,67(2):163-173.
    [43]NΦrum U, Bondgaard M, Pedersen T V, et al. In vivo and In vitro cadmium accumulation during the moult cycle of the male shore crab Carcinus maenas interaction with calcium metabolism[J]. Aquat Toxicol,2005,72(1-2):29-44.
    [44]孔繁翔.环境生物学[M].北京:高教出版社,2000,68-73.
    [45]万斌.生态毒理学中生物标志物研究进展[J].国外医学卫生分册,2000,27(2):110-114.
    [46]Vigano L, Arillo A, Melodia F, et al. Biomarker responses in cyprinids of the middle stretch of the river PO, Italy [J]. Environ Toxicol Chem,1998,17(3):404-411.
    [47]闫博,王兰,李涌泉,等.镉对长江华溪蟹肝胰腺抗氧化酶活力的影响[J].动物学报,2007,53(6):1121-1128.
    [48]金芬芬,徐团,秦圣娟,等.镉对长江华溪蟹肝胰腺线粒体抗氧化酶活力和脂质过氧化水平的影响[J].水生生物学报,2011,35(6):1019-1024.
    [49]Lei W W, Wang L, Liu D M, et al. Histopathological and biochemical alternations of the heart induced by acute cadmium exposure in the freshwater crab Sinopotamon yangtsekiense[J]. Chemosphere,2011,84(5),689-694.
    [50]徐团,李颖君,金芬芬,等.镉对河南华溪蟹精巢抗氧化酶活性及脂质过氧化的影响[J].四川动物,2011,30(5):762-764.
    [51]刘晓玲,周忠良,陈立侨.镉对中华绒螯蟹(Eriocheir sinensis)抗氧化酶活性的影响[J].海洋科学,2003,27(8):59-62.
    [52]Venugopal N B R K, Ramesh T V D D, Reddy D S, et al. Effect of cadmium on antioxidant enzyme activities and lipid peroxidation in a freshwater field crab Barytelphusa guerini[J]. Bull Environ Contam Toxicol,1997,59:132-138.
    [53]李艳东.水体镉对中华绒螯蟹(Eriocheir sinensis)亲体毒性作用研究[D].上海:华 东师范大学生命科学学院,2007.
    [54]李少著,王桂忠,翁卫华,等.重金属对日本对虾仔虾存活及代谢酶活力的影响[J].台湾海峡,1998,17(2):115-120.
    [55]吕中明,杨永年.镉的遗传毒性作用及作用机理研究进展[J].职业医学,1995,22(5):43-45.
    [56]王宏伟,刘瑞兰,商利新,等.Zn2+对日本沼虾肝胰腺细胞培养及其RNA/DNA比率的影响[J].上海水产大学学报,2001,10(3):282-284.
    [57]Gibeum K, Richard F L. Effects of genotoxic compounds on DNA and development of early and late grass shrimp embryo stages[J]. Mar Environ Res,2004,57: 329-338.
    [58]Sharon E H, Richard F L. Genotoxicant induced DNA damage and repair in early and late developmental stages of the grass shrimp Paleomonetes Pugio embryo as measured by the comet assay[J]. Aquat Toxicol,2004,66:1-14.
    [59]张毓琪,陈徐龙.环境生物毒理学[M].天津:天津大学出版社,1993,28-136.
    [60]孔繁翔.环境生物学[M].北京:高等教育出版社,2000,68-93.
    [61]Camargo M M P, Martinez C B R. Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream[J]. Neotrop Ichthyol,2007,5:327-336.
    [62]Thophon S, Kruatrachue M, Upatham E S, et al. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure[J]. Environ Pollut,2003,121:307-320.
    [63]卢敬让,赖伟.镉对中华绒螯蟹鳃组织及其亚显微结构的影响[J].海洋与湖沼,1991,22(6):566-571.
    [64]Victor B. Responses of hemocytes and gill tissues to sublethal cadmium chloride poisoning in the crab Paratelphusa hydrodromous (Herbst)[J]. Arch Environ Contam Toxicol,1993,24:432-439.
    [65]Rodriguez E M, Bigi R, Medesani D A, et al. Acute and chronic effects of cadmium on blood homeostasis of an estuarine crab, Chasmagnathus granulata, and the modifying effect of salinity [J]. Braz J Med Biol Res,2001,34:509-518.
    [66]Johnston D J, Alexander C G, Yellowlees D. Epithelial cytology and function in the digestive gland of Thenus orientalis (Decapoda:Scyllaridae)[J]. J Crust Biol,1998, 18:271-278.
    [67]Baticados M C L, Coloso R M, Duremdez R C. Histopathology of the chronic soft shell syndrome in tiger prawn, Penaeus monodon[J]. Dis Aquat Organ,1987,3: 13-28.
    [68]Baticados M C L, Tendencia E A. Effects of gusathion A on the survival and shell quality of juvenile Penaeus monodon[J].Aquaculture,1991,93:9-19.
    [69]Vogt G. Monitoring of environmental pollutants such as pesticides in prawn aquaculture by histological diagnosis[J]. Aquaculture,1987,67:157-164.
    [70]Icely J D, Nott J A. Accumulation of copper within the "hepatopancreatic" caeca of Corophium volutator (Crustacea:Amphipoda)[J]. Mar Biol,1980,57,193-199.
    [71]Diaz A C, Sousa L G, Petriella A M. Hepatopancreas structure of Palaemonetes argentinus (Decapoda, Caridea) fed different levels of dietary cholesterol,2002, in: Escobar-Briones, E., Alvarez, F. (Eds.), Modern approaches to the study of Crustacea, Kluwer/Plenum. New York,67-73.
    [72]Storch V. The influence of nutritional stress on the ultrastructure of the hepatopancreas of terrestrial isopods[J]. Symp Zool Soc Lond,1984,53:167-184.
    [73]Wu J P, Chen H C, Huang D J. Histopathological and biochemical evidence of hepatopancreatic toxicity caused by cadmium and zinc in the white shrimp, Litopenaeus vannamei[J]. Chemosphere,2008,73:1019-1026.
    [74]Keating J, Delaney M, Meehan-Meola D, et al. Histological findings, cadmium bioaccumulation, and isolation of expressed sequence tags (ESTs) in cadmium-exposed, specific pathogen-free shrimp, Litopenaeus vannamei postlarvae[J]. J Shellfish Res,2007,26:1225-1237.
    [75]王兰,王定星,王茜,等.镉对长江华溪蟹肝胰腺细胞超微结构的影响[J].解剖学报,2003,34(5):522-526.
    [76]Tort L, Madsen L H. The effects of the heavy metals cadmium and zinc on the contraction of ventricular fibres in fish[J]. Comp Biochem Physiol C,1991,99: 353-356.
    [77]王来,姚素梅,王强.镉的心脏毒性[J].环境与职业医学,2006,23(5):436-439.
    [78]王兰,孙海峰.镉对长江华溪蟹心肌细胞超微结构的影响[J].水生生物学报,2002,26(1):8-13.
    [79]Wang L, Xu T, Lei W W, et al. Cadmium-induced oxidative stress and apoptotic changes in the testis of freshwater crab, Sinopotamon henanense[J]. PLoS ONE,2011, 6(11):e27853. doi:10.1371/journal.pone.0027853.
    [80]王兰,孙海峰,李春源.镉对长江华溪蟹精子发生的影响[J].动物学报,2002,48(5):677-684.
    [81]张文昌,吴志仁,李煌元,等.染镉雌性大鼠垂体、卵巢对性腺激素的反应机能状况[J].卫生毒理学杂志,2002,16(1):24-26.
    [82]Shiva K. The effect of cadmium on female rat[J]. Contraception,1982,26(2):181.
    [83]孟帆,王兰,陈学英,等.镉对河南华溪蟹卵巢形态的影响[J].动物学报,2005,51:110-114.
    [84]Kogan M, Lopez Greco L S, Romano L A, et al. Effects of cadmium on somatic and gonadal growth of juvenile females of the estuarine crab Chasmagnathus Granulata (Brachyura:Grapsidae)[J]. Zool Stud,2000,39(4):344-350.
    [85]Revathi P, Vasanthi L A, Munuswamy N. Effect of cadmium on the ovarian development in the freshwater prawn Macrobrachium rosenbergii (De Man)[J]. Ecotoxicol Environ Saf,2011,74:623-629.
    [86]赵红霞,詹勇,许梓荣.重金属对水生动物毒性的研究进展(二)[J].内陆水产,2003,2:36-38.
    [87]许章程,洪丽卿,郑邦定.重金属对几种海洋双壳类和甲壳类生物的毒性[J].台湾海峡,1994,13(4):381-387.
    [88]于丰军.铅和镉两种重金属对中华绒螯蟹的毒性效应研究[D].上海:华东师范大学生命科学学院,2005.
    [89]简慧敏,姚庆祯,臧维玲,等.铜、镉、敌敌畏和甲胺磷对南美白对虾的亚急性毒性作用[J].生态毒理学报,2007,2(2):237-242.
    [90]Juliann G K, George C T. Heat shock protein 70 kDa:Molecular biology, biochemistry and physiology[J]. Pharmacol Ther,1998,80(2):183-201.
    [91]Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones and the stress response[J]. Annu Rev Physiol,1999,61:243-282.
    [92]Krebs R A, Feder M E. Deleterious consequences of HSP70 over-expression in Drosophila melanogaster larvae[J]. Cell Stress Chaperon,1997,2(1):60-71.
    [93]Krebs R A, Feder M E. Natural variation in the expression of the heat-shock protein HSP70 in a population of Drosophila melanogaster and its correlation with tolerance of ecologically relevant thermal stress [J]. Evolution,1997,51:173-179.
    [94]Krebs R A, Feder M E. Tissue-special variation in HSP70 expression and thermal damage in Drosophila melanogaster larvae[J]. J Exp Biol,1997,200:2007-2015.
    [95]Agarraberes F A, Terlecky S R, Dice J F. An intra-lysosomal HSP70 is required for a selective pathway of lysosomal protein degradation[J]. J Cell Biol,1997,137: 825-834.
    [96]Yem A W, Tomasselli A G, Heinrikson R L, et al. The HSP56 component of steroid receptor complexes binds to immobilized FK506 and shows homology to FKBP-12 and FKBP-13[J]. J Biol Chem,1992,267(5):2868-2871.
    [97]Beckmann R P, Mizzen L A, Welch W J. Interaction of HSP70 newly synthesized proteins:Implications for protein folding and assembly events[J]. Science,1990,248: 850-854.
    [98]Wang X Y, Manjili M H, Chen X, et al. Development of cancer vaccines using autologous and recombinant high molecular weight stress proteins[J]. Methods,2004, 32(1):13-20.
    [99]Udono H, Saito T, Ogawa M, et al. HSP-antigen fusion and their use for immunization[J]. Methods,2004,32:21-24.
    [100]Cheng E N, Qutob S, Pavliv M, et al. HSP 27 is better associated with the expression of inducible thermotolerance in human pancreatic tumor cell lines than HSP 70, p53 or p21/waf1/cip1[J]. J Therm Biol,2002,27(1):47-54.
    [101]Mayer M P, Bukau B. Hsp70 chaperones:cellular functions and molecular mechanism [J]. Cell Mol Life Sci,2005,62:670-684.
    [102]Mehlen P, Schulze-Osthoff K, Arrigo A P. Small stress proteins as novel regulators of apoptosis, heat shock protein 27 blocks Fas/APO-1 and staurosporine-induced cell death[J]. J Biol Chem,1996,271(28):16510-16514.
    [103]Yura T, Nagai H, Mori H. Regulation of the heat-shock response in bacteria[J]. Annu Rev Microbiol,1993,47:321-350.
    [104]Peter M E, Heufelder A E, Hengartner M O. Advances in apoptosis research[J]. Proc Natl Acad Sci USA,1997,94:12736-12747.
    [105]Johnson J L, Craig E A. Protein folding in vivo:unraveling complex pathways[J]. Cell,1997,90:201-204.
    [106]Beere H M, Wolf B B, Cain K, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome[J]. Nat Cell Biol, 2000,2:469-475.
    [107]Saleh A, Srinivasula S M, Balkir L. Negative regulation of the Apaf-1 apoptosome by Hsp70[J]. Nat Cell Biol,2000,2:476-483.
    [108]Ravagnan L, Gurbuxani S, Susin S A, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor[J]. Nat Cell Biol,2001,3:839-843.
    [109]Niedzwiecki A, Reveillaud I, Fleming J E. Changes in superoxide dismutasc and catalase in aging heat-shocked Drosophila[J]. Free Radic Res Commun,1992,17(6): 355-361.
    [110]Basu S, Srivastava P K. Heat shock proteins:the fountainhead of innate and adaptive immune responses[J]. Cell Stress Chaperon,2000,5(5):443-451.
    [111]Rhee J-S, Raisuddin S, Lee K-W, et al. Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicas to environmental toxicants [J]. Comp Biochem Physiol C,2009,149:104-112.
    [112]Vijayan M M, Pereira C, Kruzynski G, et al. Sublethal concentrations of contaminant induce the expression of hepatic heat shock protein 70 in two salmonids[J]. Aquatic Toxicol,1998,40:101-108.
    [113]Hassanein H M, Banhawy M A, Soliman F M, et al. Induction of HSP70 by the herbicide oxyfluorfen (Goal) in the Egyptian Nile fish, Oreochromis niloticus[J]. Arch Environ Contam Toxicol,1999,37:78-84.
    [114]Rajeshkumar S, Munuswamy N. Impact of metals on histopathology and expression of HSP 70 in different tissues of Milk fish(Chanos chanos) of Kaattuppalli Island, South East Coast, India[J]. Chemosphere,2011,83:415-421.
    [115]Micovic V, Bulog A, Kucic N, et al. Metallothioneins and heat shock proteins 70 in marine mussels as sensors of environmental pollution in Northern Adriatic Sea[J]. Environ Toxicol Phar,2009,28:439-447.
    [116]Chen T, Lai W, Du N S. Growth, reproduction and population structure of the freshwater crab Sinopotamon yangtsekiense Bott,1967, from Zhejiang, China[J]. Chin J Oceanol Limnol,1994,12:84-90.
    [117]戴爱云.中国动物志.节肢动物门、甲壳动物门.软甲纲.十足目.束腹蟹科、溪 蟹科[M].北京,科学出版社,1999.
    [118]Esser L, Cumberlidge N. Sinopotamon yangtsekiense,2008. In:IUCN Red List of Threatened Species, version 2011.2. Available on www.iucnredlist.org [visited 15 November 2011].
    [119]Cumberlidge N, Ng P K, Yeo D C, et al. Diversity, endemism and conservation of the freshwater crabs of China (Brachyura:Potamidae and Gecarcinucidae)[J]. Integr Zool,2011,6:45-55.
    [120]Ma W L, Yan T, He Y J, et al. Purification and cDNA cloning of a cadmium-binding metallothionein from the freshwater Crab Sinopotamon henanen[J]. Arch Environ Contam Toxicol,2009,56:747-753.
    [121]Bailey G S, Williams D E, Hendricks J D. Fish models for environmental carcinogenesis:the rainbow trout[J]. Environ Health Perspect,1996,104:5-21.
    [122]Johnson R D, Bergmann H L. Use of histopathology in Aquat Toxicol:a critique, in: Cairns V W, Hodson P V, Nriagu J O. (Eds.), Contaminant effects on fisheries[J]. John Wiley and Sons Ltd., New York,1984:19-36.
    [123]Yang Z B, Zhao Y L, Li N, et al. Effect of waterborne copper on the microstructures of gill and hepatopancreas in Eriocheir sinensis and its induction of metallothionein synthesis[J]. Arch Environ Contam Toxicol,2007,52:222-228
    [124]Vinodhini R, Narayanan M. Heavy metal induced histopathological alterations in selected organs of the Cyprinus carpio L. (Common Carp)[J]. Int J Environ Res,2009, 3:95-100.
    [125]Wang L, Yan B, Liu N, et al. Effects of cadmium on glutathione synthesis in hepatopancreas of freshwater crab, Sinopotamon yangtsekiense[J]. Chemosphere, 2008,74:51-56.
    [126]Ma W L, Wang L, He Y J, et al. Tissue-specific cadmium and metallothionein levels in freshwater crab Sinopotamon henanense during acute exposure to waterborne cadmium[J]. Environ Toxicol,2008,23(3):393-400.
    [127]Gao A B, Wang L, Yuan H. Expression of metallothionein cDNA in a freshwater crab, Sinopotamon yangtsekiense, exposed to cadmium[J]. Exp Toxicol Pathol,2012,64: 253-258.
    [128]Jacobs W. Untersuchungen iiber die Cytologie der Sekretbildung in der Mitteldarmdruse von Astacus leptodactylus[J]. Z Zellforsch,1928,8:1-62.
    [129]Hirsch G C, Jacobs W. Der Arbeitsrhythmus der Mitteldarmdriise von Astacus leptodactylus. Ⅰ[J]. Methodik und Technik. Der Beweis der Periodizitat. Z vergl Physiol,1928,8:102-144.
    [130]Hirsch G C, Jacobs W. Der Arbeitsrhythmus der Mitteldarmdriise von Astacus leptodactylus. Ⅱ[J]. Wachstum als primarer Factor des Rhythmus eines polyphasischen, organischen Sekretionssystems Z vergl Physiol,1930,12:524-558.
    [131]Bhavan P S, Geraldine P. Histopathology of the hepatopancreas and gills of the prawn Macrobrachium malcolmsonii exposed to endosulfan[J]. Aquat Toxicol,2000,50: 331-339.
    [132]Wu J P, Chen H C, Huang D J. Histopathological and biochemical evidence of hepatopancreatic toxicity caused by cadmium and zinc in the white shrimp, Litopenaeus vannamei[J].Chemosphere,2008,73:1019-1026.
    [133]Roldan B M, Shivers R R. The uptake and storage of iron and lead in cells of the crayfish(Orconectes propinquus) hepatopancreas and antennal gland[J]. Comp Biochem Physiol C,1987,86:201-214.
    [134]Coombs T L, George S G. Mechanisms of immobilization and detoxification of metals in marine organisms, in:McLusky, D.S., Berry, A.J. (Eds.), Physiology and behaviour of marine organisms[J]. Pergamon Press, London,1978,179-187.
    [135]Anderson M B, Reddy P, Preslan J E, et al. Metal accumulation in crayfish, Procambarus clarkii, exposed to a petroleum-contaminated bayou in Louisiana[J]. Ecotoxicol Environ Saf,1997,37:267-272.
    [136]Bautista M N, Lavilla-Pitogo C R, Subosa P F, et al. Aflatoxin B1 contamination of shrimp feeds and its effect on growth and hepatopancreas of pre-adult Penaeus monodon[J]. J Sci Food Agric,1994,65:5-11.
    [137]Vogt G. Pathology of midgut gland-cells of Penaeus monodon postlarvae after Leucaena leucocephala feeding[J]. Dis Aquat Organ,1990,9:45-61.
    [138]Daporte J M, Ribeyre F, Truchot J P, et al. Experimental study of the combined effects of pH and salinity on the bioaccumulation of inorganic mercury in the crayfish Astacus leptodactylus[J]. Chem Spec Bioavail,1996,8:1-15.
    [139]Meyer W, Kretschmer M, Hoffmann A, et al. Biochemical and histochemical observations on effects of low-level heavy metal load (lead, cadmium) in different organ systems of the freshwater crayfish, Astacus astacus L. (Crustacea: Decapoda)[J]. Ecotoxicol Environ Saf,1991,21:137-156.
    [140]Pedersen S N, Lunbdebye A K, Depledge M H. Field application of metallothionein and stress protein biomarkers in the shore crab(Carcinus maenas) exposed to trace metals[J]. Aquat Toxicol,1997,37:183-200.
    [141]Ghate H V, Mulherkar L. Histological changes in the gills of two freshwater prawn species exposed to copper sulphate[J]. Indian J Exp Biol,1979,17:838-840.
    [142]Smith V J, Ratcliffe N A. Cellular defence reactions of the shore crab, Carcinus maenas:in vivo hemocytic and histopathological responses to injected bacteria[J]. J Invertebr Pathol,1980,35:65-74.
    [143]Soegianto A, Charmantier-Daures M, Trilles J-P, et al. Impact of cadmium on the structure of gills and epipodites of the shrimp Penaeus japonicus (Crustacea: Decapoda)[J]. Aquat Living Resour,1999,12:57-70.
    [144]Mallatt J. Fish gill structural changes induced by toxicants and other irritants:a statistical review[J]. Can J Fish Aquat Sci,1985,42:630-648.
    [145]Tsing A, Arcier J M, Brehelin M. Hemocytes of penaeid and palaemonid shrimps: morphology, cytochemistry, and hemograms[J]. Invertebr Pathol,1989,53:64-77.
    [146]Rabin H. Hemocytes, hemolymph, and defense reactions in crustaceans [J]. Reticuloendothel Soc,1970,7:195-207.
    [147]Bubel A. Histological and electron microscopical observations on the effects of different salinities and heavy metal ions on the gills of Jeara nordmanni (Rathke) (Crustacea, Isopoda)[J]. Cell Tissue Res,1976,167:65-95.
    [148]Lawson S L, Jones M B, Moate R M. Structural variability and distribution of cells in a posterior gill of Carcinus maenas (Decapoda:Brachyura)[J]. J Mar Biol Assoc U K, 1994,74:771-785.
    [149]Sousa L G, Petriella A M. Functional morphology of the hepatopancreas of Palaemonetes argentinus (Crustacea:Decapoda):influence of environmental pollution[J]. Rev Biol Trop,2007,55:79-86.
    [150]Yamaguchi S, Celino F T, Ito A, et al. Effects of arsenic on gonadal development in freshwater crab, Somanniathelphusa pax, in Vietnam and Geothelphusa dehaani in Japan[J]. Ecotoxicology,2008,17:772-780.
    [151]Ruby S M, Dixon D G, Leduc G. Inhibition of spermatogenesis in rainbow trout during chronic cyanide poisoning[J]. Arch Environ Contam Toxicol,1979,8: 533-544.
    [152]De Souza Predes F, Diamante M A, Dolder H. Testis response to low doses of cadmium in Wistar rats[J]. Int J Exp Pathol,2010,91:125-131.
    [153]Messaoudi I, Banni M, Said L, et al. Evaluation of involvement of testicular metallothionein gene expression in the protective effect of zinc against cadmium-induced testicular pathophysiology in rat[J]. Reprod Toxicol,2010,29: 339-345.
    [154]Janssen P A H, Lambert J G D, Vethaak A D, et al. Environmental pollution caused elevated concentrations of oestradiol and vitellogenin in the female flounder, Platichthys flesus (L.)[J].Aquat Toxicol,1997,39:195-214.
    [155]Vijayaraman K. Physiological responses on the freshwater prawn, Macrobrachium malcolmsonii (Milne Edwards) to the heavy metals, cadmium, copper, chromium and zinc. Ph.D. thesis [D]. Bharathidasan University, Tiruchirappalli, India.1993.
    [156]Van Dyk J C, Pietersea G M, Van Vurena J H J. Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc[J]. Ecotoxicol Environ Saf,2007,66:432-440.
    [157]Rodrmguez E M, Lopez Greco L S, Fingerman M. Inhibition of ovarian growth by cadmium in the fiddler crab, Uca pugilator (Decapoda, Ocypodidae)[J]. Ecotoxicol Environ Saf,2000,46:202-206.
    [158]Jarup L, Berglund M, Elinder C G, et al. Health effects of cadmium exposure:a review of the literature and arisk estimate [J]. Scand J Work Environ Health,1998,24: 1-51.
    [159]Stohs S J, Bagchi D, Hassoun E, et al. Oxidative mechanisms in the toxicity of chromium and cadmium ions[J]. J Environ Pathol Toxicol Oncol,2000,19:201-213.
    [160]Sarkar S, Yadav P, Trivedi R, et al. Lipid peroxidative damage on cadmium exposure and alternations in antioxidant system in rat erythrocytes:a study with relation to time[J]. Biometals,1998,11:153-157.
    [161]Jacob R A, Burri R A. Oxidative damage and defense[J]. Am J Nutr,1996,63: 985-990.
    [162]Gutteridge J M. Lipid peroxidation and antioxidants as biomarkers of tissue damage[J]. Clin Chem,1995,41:1819-1828.
    [163]Kumar O, Sugendran K, Vijayaraghavan R. Oxidative stress associated hepatic and renal toxicity induced by ricin in mice[J]. Toxicon,2003,41:333-338.
    [164]颜涛,马文丽,何永吉.镉在河南华溪蟹主要组织器官中的积累效应.山西大学学报(自然科学版)[J].2008,31(4):622-625.
    [165]Schuwerack P M, Lewis J W, Jones P. The potential use of the South African river crab, Potamonautes warreni, as a bioindicator species for heavy metal contamination[J]. Ecotoxicology,2001,10:159-166.
    [166]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye-binding[J]. Anal Biochem, 1976,72:248-254.
    [167]Taylor S, Landman M J. Flow cytometric characterization of freshwater crayfish hemocytes for the examination of physiological status in wild and captive animals[J]. J Aquat Anim Health,2009,21:195-203.
    [168]Hose J E, Martin G G, Gerard A S. A decapod hemocyte classification scheme integrating morphology, cytochemistry, and function [J]. Biol Bull,1990,178:33-45.
    [169]Petering H G, Murthy L, Sorenson J R, et al. Effect of sex on oral cadmium dose responses in rats:blood pressure and pharmaco dynamics[J]. Environ Res,1979,20: 289-299.
    [170]Tao S, Liang T, Cao J, et al. Synergistic effect of copper and lead uptake by fish[J]. Ecotoxicol Environ Saf,1999,44(2):190-195.
    [171]Shuk L A G S, Hussain T, Srivastava R S,et al. Glutathione peroxidase and catalase in lives, kidney, testis and brain regions of rats following cadmium exposure and subsequent with drowal[J]. Industr Health,1989,27(2):59.
    [172]Kline T S. Myocardial changes in lead poisoning[J]. AMA J Dis Child,1960,99: 48-54.
    [173]Stoev S, Lazarova S. Morphological investigations in experimental cases of mercuric poisoning in sheep[J]. Veterinarski Arhiv,1998,68:163-171.
    [174]Casalino E, Sblano C, Landriscina C. Enzyme activity alteration by cadmium administration to rats:the possibility of iron involvement in lipid peroxidation[J]. Arch Biochem Biophys,1997,346:171-179.
    [175]Waisberg M, Joseph P, Hale B, et al. Molecular and cellular mechanisms of cadmium carcinogenesis[J]. Toxicology,2003,192:95-117.
    [176]Wang Y, Fang J, Leonard S S, et al. Cadmium inhibits the electron transfer chain and induces reactive oxygen species[J]. Free Radic Biol Med,2004,36(11):1434-1443.
    [177]Thevenod F. Nephrotoxicity and the proximal tubule. Insights from cadmium[J]. Nephron Physiol,2003,93:87-93.
    [178]Cheville N F. Ultrastructural pathology:an introduction to interpretation[M].1st Edn, Ames, Iowa:Iowa State University Press,1994,67-68.
    [179]Szuster-Ciesielska A, Stachura A, Slotwinska M, et al. The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures[J]. Toxicology,2000,145:159-171.
    [180]Gilgun-Sherki Y, Rosenbaum Z, Melamed E, et al. Antioxidant therapy in acute central nervous system injury:current state [J]. Pharmacol Rev,2002,54:271-284.
    [181]Shaikh Z A, Vu T T, Zaman K. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants[J]. Toxicol Appl Pharmacol,1999,154:256-263.
    [182]Tandon S K, Singh S, Prasad S, et al. Reversal of cadmium induced oxidative stress by chelating agent, antioxidant or their combination in rat[J]. Toxicol Lett,2003,145: 211-217.
    [183]Ognjanovic B, Markovic S D, Pavlovic S Z, et al. Combined effects of coenzyme Q10 and vitamin E in cadmium induced alterations of antioxidant defense system in the rat heart[J]. Environ Toxicol Pharmacol,2006,22:219-224.
    [184]Sies H. Strategies of antioxidant defense[J]. Eur J Biochem,1993,215:213-219.
    [185]Klaverkamp J F, Palace V P. Variation of hepatic enzymes in three species of fish from precambian shield lakes and the effect of cadmium exposure[J]. Comp Biochem Physiol C,1993,104:147-154.
    [186]Manca D, Richard A C, Trottier B, et al. Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride [J]. Toxicology,1991,67:303-323.
    [187]Yalin S, Comelekoglu U, Bagis S, et al. Acute effect of single-dose cadmium treatment on lipid peroxidation and antioxidant enzymes in ovriectomized rats[J]. Ecotoxicol Environ Saf,2006,65:140-144.
    [188]Kono Y, Fridovich I. Superoxide radical inhibits catalase[J]. J Biol Chem,1982,257: 5751-5754.
    [189]Escobar J A, Rubio M A, Lissi E A. SOD and catalase inactivation by singlet oxygen and peroxyl radicals[J]. Free Radic Biol Med,1996,20:285-290.
    [190]Gehringer M M, Shephard E G, Downing T G, et al. An investigation into the detoxification of microcystin-LR by the glutathione pathway in Balb/c mice[J]. Int J Biochem Cell Biol,2004,36:931-941.
    [191]Zumkley H. Clinical aspects of selenium metabolism[J]. Biol Trace Elem Res,1988, 15:139-146.
    [192]Rao P V, Gupta N, Jayaraj R, et al. Age-dependent effects on biochemical variables and toxicity induced by cyclic peptide toxin microcystin-LR in mice[J]. Comp Biochem Physiol C,2005,140:11-19.
    [193]Novelli E L B, Marques S F G, Almeida J A, et al. Toxic mechanism of cadmium exposure on cardiac tissue[J]. Toxic Substance Mechanisms,2000,19(4):207-217.
    [194]Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions[J]. Free Radic Biol Medk,1995,18:321-336.
    [195]Anane R, Creppy E E. Lipid peroxidation as pathway of aluminium cytotoxicity in human skin fibroblast cultures:prevention by superoxide dismutase and catalase and vitamins E and C[J]. Hum Exp Toxicol,2001,20:477-481.
    [196]许文军,谢建军,施慧等.池塘养殖脊尾白虾(Exopalaemon carinicauda)感染血卵涡鞭虫的研究[J].海洋与湖沼,2010,41(3):396-402.
    [197]陆剑锋,常国亮,吴旭干,等.两组不同饲料对中华绒螯蟹(Eriocheir sinensis)卵巢发育及卵黄发生的激素调控[J].海洋与湖沼,2010,41(3):505-512.
    [198]杨季芳,郭卢云,陈福生,等.2株南极海洋寡营养细菌(Alteromonas stellipolaris)脂多糖对三疣梭子蟹(Portunus trituberculatus)非特异性免疫活性的影响[J].海洋与湖沼,2011,42(2):294-299.
    [199]Corcoran G B, Fix L, Jones D P, et al. Contemporary issues in toxicology apoptosis: molecular control point in toxicity [J]. Toxicol Appl Pharm,1994,128(2):169-181.
    [200]Coucelo J M, Joaquim N, Correia V, et al. Cellular responses to cadmium toxicity in the heart, kidney and liver of Halobatrachus didactylus[J]. Ecotox Environ Rest, 2000,3(1):29-35.
    [201]Thompson J, Bannigan J. Cadmium:toxic effects on the reproductive system and the embryo[J]. Reprod Toxicol,2008,25(3):304-315.
    [202]Ozturk I M, Buyukakilli B, Balli E, et al. Determination of acute and chronic effects of cadmium on the cardiovascular system of rats[J]. Toxicol Mech Methods,2009, 19(4):308-317.
    [203]Lasfer M, Vadrot N, Aoudjehane L, et al. Cadmium induces mitochondria-dependent apoptosis of normal human hepatocytes[J]. Cell Biol Toxicol,2008,24(1):55-62.
    [204]Xie J, Shaikh Z A. Cadmium-induced apoptosis in rat kidney epithelial cells involves decrease in nuclear factor-kappa B activity[J]. Toxicol Sci,2006,91(1):299-308.
    [205]Migliarini B, Campisi A M, Maradonna F, et al. Effects of cadmium exposure on testis apoptosis in the marine teleost Gobius niger[J]. Gen Comp Endocrinol,2005, 142(1-2):241-247.
    [206]李静,闫博,刘娜,等.镉诱导长江华溪蟹肝胰腺细胞凋亡研究[J].环境科学学报,2010,30(11):2277-2284.
    [207]胡野,凌志强,单小云.细胞凋亡的分子医学[M].北京:军事医学科学出版社,2002,475.
    [208]Herrmann M, Lorenz H-M, Voll R, et al. A rapid and simple method for the isolation of apoptotic DNA fragments[J]. Nuleic Acids Res,1994,22(24):5506-5507.
    [209]Gong J P, Traganos F, Darzynkiewicz Z. A selective procedure for DNA extract ion from apoptotic cell applicable for gel electrophoresis and flow cytometry[J]. Anal Biochem,1994,218:314-316.
    [210]Osborne B A, Schwartz L M. Essential genes that regulate apoptosis[J]. Trends Cell Biol,1994,4(11):394-399.
    [211]Thompson C B. Apoptosis in the pathogenesis and treatment of disease[J]. Science, 1995,267(5203):1456-1462.
    [212]Limaye D A, Shaikh Z A. Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes[J]. Toxicolo APP1 Pharmacol,1999,154:59-66.
    [213]Choi M K, Kim B H, Chung Y Y, et al. Cadmium-induced apoptosis in H9c2, A7r5, and C6-Glial cell[J]. Bull Environ Contam Toxicol,2002,69:335-341.
    [214]王华,黄渭,孙磊,等.氯化镉诱导大鼠心肌细胞H9c2凋亡的作用机制[J].吉林大学学报(医学版),2007,33(2):269-271.
    [215]赵伟,王强.镉对小鼠心肌细胞和肝细胞DNA的损伤[J].环境与职业医学,2005,22(6):523-524.
    [216]王强,姚素梅,郭秀玲.急性镉中毒大鼠致死时重要器官镉的分布[J].广东微量元素科学,1998,5(9):23-26.
    [217]Zhou T, Zhou G Q, Song W M, et al. Cadmium-induced apoptosis and changes in expression of p53, c-jun and MT-I genes in testes and ventral prostate of rats[J]. Toxicology,1999,142(1):1-13.
    [218]Krichah R, Rhouma K B, Hallegue D, et al. Acute cadmium administration induces apoptosis in rat thymus and testicle, but not liver[J]. Pol J Environ Stud,2003,12(5): 589-594.
    [219]Shaikh Z A, Lucis O J. Biological differences in cadmium and zinc turnover[J]. Arch Environ Health,1972,24:410-418.
    [220]Spencer S L, Gaudet S, Albeck J G, et al. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis[J]. Nature,2009,459(7245):428-432.
    [221]Kiang J G, Tsokos G C. Heat shock protein 70 kDa:molecular biology, biochemistry and physiology [J]. Pharmacol Therapeut,1998,80(2):183-201.
    [222]Muds D. The heat shock protein 70 family:Highly homologous proteins with overlapping and distinct functions [J]. FEBS Letters,2007,581:3702-3710.
    [223]Deane E E, Woo N Y S. Impact of heavy metals and organochlorines on hsp70 and hsc70 gene expression in black sea bream fibroblasts[J]. Aquat Toxicol,2006,79: 9-15.
    [224]Jaattela M. Heat shock proteins as cellular lifeguards [J]. Ann Med,1999,31: 261-271.
    [225]Hartl F U. Molecular chaperones in cellular protein folding[J]. Nature,1996,381: 571-579.
    [226]王兰,王茜,杨秀清.生物大分子在水生态毒理学研究中的应用[J].山西大学学报(自然科学版),2004,27(3):316-319
    [227]Liu J, Yang W J, Zhu X J, et al. Molecular cloning and expression of two HSP70 genes in the prawn, Macrobrachium rosenbergii[J]. Cell Stress Chaperon,2004,9(3): 313-323.
    [228]牛长缨.无脊椎动物金属硫蛋白的研究[J].动物学杂志,2002,37(1):72-75.
    [229]Li R J, Zhou Y Y, Wang L, et al. Low-molecular-weight-chitosan ameliorates cadmium-induced toxicity in the freshwater crab, Sinopotamon yangtsekiense[J]. Ecotoxicol Environ Saf,2011,74(5):1164-1170.
    [230]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method[J]. Methods,2001,25:402-408.
    [231]Anderson I, Brass A. Searching DNA database for similarities to DNA sequences: when is a match significant?[J]. Bioinformatics,1998,14(4):349-356.
    [232]Soares S S, Martins H, Gutierrez-Merino C, et al. Vanadium and cadmium in vivo effects in teleost cardiac muscle:Metal accumulation and oxidative stress markers[J]. Comp Biochem Physiol C,2008,147:168-178.
    [233]马峰峻,张忠志.镉对豚鼠心脏的毒性影响[J].佳木斯医学院学报,1989,12(3):218-221.
    [234]Wu B J, Kingston R E, Morimoto R I. Human HSP70 promoter contains at least two distinct regulatory domains[J]. Proc Natl Acad Sci USA,1986,83:629-633.
    [235]Lee M J, Nishio H, Ayaki H, et al. Upregulation of stress response mRNAs in COS-7 cells exposed to cadmium[J]. Toxicology,2002,174:109-117.
    [236]Franzellitti S, Fabbri E. Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors[J]. Bioche Biophys Res Commun,2005,336(4): 1157-1163.
    [237]Molinaa A, Biemara F, Muller F, et al. Cloning and expressionanalysis of an inducible HSP70 gene from tilapia fish[J]. FEBS Letters,2000,474:5-10.
    [238]唐婷,柳峰松,任国栋.谢氏宽漠王HSP70基因cDNA片段的克隆及热激条件下的表达[J].昆虫学报,2008,51(4):365-371.
    [239]Sun P M, Liu Y T, Zhao Y G, et al. Relationship between heart damages and HSPs mRNA in persistent heat stressed broilers[J]. Agr Sci China,2007,6(2):227-233.
    [240]Choi Y K, Jo P G, Choi C Y. Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster, Crassostrea gigas[J]. Comp Biochem Physiol C,2008,147:286-292.
    [241]Morimoto R I. Cell in stress:transcriptional activation of heat shock genes[J]. Science,1993,259:1409-1410.
    [242]Nordberg M. Metallothioneins:historical review and state of knowledge[J]. Talanta, 1998,46:243-254.
    [243]Dallinger T. Invertebrate organisms biological indicators of heavy metal pollution[J]. Appl Biochem Biotechnol,1994,48:27-31.
    [244]赵京山,尹桂山.金属硫蛋白的生理功能及其研究进展[J].生命的化学,1998,18(3):9-11.
    [245]Fang Y, Yang H, Wang T, et al. Metallothionein and superoxide dismutase responses to sublethal cadmium exposure in the clam Mactra veneriformis[J]. Comp Biochem Physiol C,2010,151(3):325-333.
    [246]Wu S M, Jong K J, Lee Y J. Relationships among metallothionein, cadmium accumulation, and cadmium tolerance in three species of fish[J]. Bull Environ Contam Toxicol,2006,76:595-600.
    [247]Olsson P E, Larsson A, Mage A, et al. Induction of metallothionein synthesis in rainbow trout, Salmo gairdneri, during long-term exposure to water-borne cadmium[J]. Fish Physiol Biochem,1989,6:221-229.
    [248]Cheung A P L, Lam T H-J, Chan K M. Regulation of Tilapia metallothionein gene expression by heavy metal ions[J]. Mar Environ Res,2004,58:389-394.
    [249]Goto D, Wallace W G. Interaction of Cd and Zn during uptake and loss in the polychaete Capitella capitata:whole body and subcellular perspectives [J]. J Exp Mar Biol Ecol,2007,352(1):65-77.
    [250]王兰,李涌泉,闫博,等.镉对河南华溪蟹主要组织器官SOD和POD同工酶的影响[J].应用与环境生物学报,2007,13(6):823-829.
    [251]王兰,孙海峰.镉对长江华溪蟹心肌细胞超微结构的影响[J].水生生物学报,2002,26(1):8-13.
    [252]李涌泉,王兰,刘娜,等.镉对长江华溪蟹酶活性及脂质过氧化的影响[J].水生生物学报,2008,32(3):373-379.
    [253]何永吉,马文丽,王兰,等.镉诱导金属硫蛋白在华溪蟹组织中的表达[J].动物学杂志,2007,42(3):48-53.
    [254]马文丽,王兰,何永吉,等.镉诱导华溪蟹不同组织金属硫蛋白表达及镉蓄积的研 究[J].环境科学学报,2008,28(6):1192-1197.
    [255]Liu D M, Yan B, Yang J, et al. Mitochondrial pathway of apoptosis in the hepatopancreas of the freshwater crab Sinopotamon yangtsekiense exposed to cadmium[J]. Aquat Toxicol,2011,105:394-402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700