用户名: 密码: 验证码:
环形谐振腔中高效率二次谐波产生与金红石光波导的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光波导是集成光学和光电子学的基本单元,在光通信领域有着非常重要的用途。光波导的机理是通过光在不同介质界面上发生全反射,将光限制在光波长量级的区域内传播。与体材料相比,光波导可以使光密度大大增加,从而在实际应用中减小光的入射功率,而且增强材料的非线性效应和激光特性。
     光波导的制备方法有很多,例如离子注入、离子交换、扩散、离子刻蚀、飞秒激光烧蚀等。作为一种成熟的材料改性技术,离子注入被广泛地应用在光波导的制备中。与其它的技术相比较,离子注入最大的优势就是材料的广泛性,从1968年报道的第一次通过H离子注入熔融石英形成光波导以来,人们已经在100多种光学材料上通过多种离子注入产生了光波导,注入能量范围从keV到几十个MeV。并且通过热退火,传输损耗已经降到非常小。
     轻离子H和He离子经常被用来注入光学材料中以实现光波导结构。当离子注入到晶体材料后,会通过与材料的相互作用,造成核能量损失和电子能量损失,从而改变材料注入区的折射率。核能量损失会导致折射率降低,从而形成一个光学位垒,电子能量损失对于双折射晶体有时会导致晶体的折射率升高,形成增强势阱。通过光位垒和增强势阱对光的限制,形成光波导结构。因此研究光波导的折射率分布有非常重要的意义。
     自20世纪80年代飞秒激光在美国问世,飞秒激光技术得到了迅猛发展。与以往的连续激光和长脉冲激光相比,飞秒激光具有很高的峰值功率、脉冲极短等特性,已被广泛应用于物理、化学、生物学、光电子学等领域,并取得了飞速的发展。90年代以后,随着飞秒钛宝石激光器的研制成功,飞秒激光与物质相互作用发现了许多有趣的现象。飞秒激光由于脉冲非常短,经透镜聚焦后,焦点处光强可以高达1014W/cm2,由于焦点区域具有较高的电场强度,具有很高的峰值功率和功率密度,从而可以产生激光诱导多光子吸收、多光子电离等非线性效应。而这类非线性效应常导致材料的损伤甚至结构的变化。它的超高、超强特性以及较高的时间分辨特性为进一步研究物质世界提供了新的方法。这些领域具有巨大的应用前景,受到了学术界的高度重视。近年来,利用飞秒激光烧蚀技术制备光波导越来越受到人们的关注。
     二氧化钛具有优异的光学性能和高稳定性,被广泛应用在光学催化剂、光学活性包层、太阳能利用等方而。其中金红石结构为高温稳定结构,由于具有高折射率和双折射效应,以及化学稳定性比较好,可以应用在光通讯方面。我们利用离子注入技术在金红石结构Ti02上形成平面光波导,并且利用飞秒激光对金红石进行烧蚀,形成了脊型波导。而且,金红石作为一种优良的非线性材料,可以用来制作多种非线性纳米光子器件,例如超连续光源和超快光学开关。
     从20世纪60年代激光器问世以来,非线性光学作为光学中一门崭新的分支学科,得到了飞速的发展和应用。二次谐波产生作为可以实现激光波长变换的一种重要手段,已在激光技术中广泛地应用。现在能在室温下连续震荡的半导体机光器有AlGaAs和InGaAsP等系列,他们的波长范围从深红色(700nm)到近红外(1600nm)。短波长可见光的半导体激光器从它的使用价值来看,具有很大的吸引力。然而从材料的角度来看,困难较大。因此为了能够利用半导体激光器产生短波长可见光,人们把上述红外半导体激光器产生的二次谐波作为解决问题的重要手段。利用二次谐波产生能够覆盖整个可见光波段。
     环形谐振腔也是光波导的一种,它也是构成集成光学器件的重要组成部分。近年来,它在集成光学器件中实现高效的二次谐波方面引起了人们极大的兴趣。环形谐振腔,跟波导一样,很容易满足频率匹配ω2=2ω1的条件。迄今为止,大多数的工作仅限于毫米尺寸的环形谐振腔,并且品质因子远大于103,或者微米尺寸,品质因子在104量级,但是转化效率只有1%。我们的工作是在微米尺寸,品质因子在103量级的环形谐振腔中实现转换效率将近100%的二次谐波产生。
     近年来,随着现代超薄层材料生长技术(以分子束外延MBE和金属有机化合物气相沉积MOCVD等技术为典型代表)和各种超精细加工技术的发展,小尺寸半导体微腔的研究引起人们的浓厚兴趣。尤其是1992年Weisbuch等人首先在半导体微腔中观察到光与激子强耦合相互作用引起的Rabi分裂后,半导体微腔越来越受到人们的关注,它使用于很多光通讯领域的器件,如激光器、光学滤波器、光波分复用器、光开关、光调制器以及非线性频率转换器等。
     本论文主要包括两个方面的工作:(1)分别用MeV能量和三重keV能量的He离子注入金红石晶体实现平面光波导,通过热退火优化波导特性。用卢瑟福背散射/沟道技术研究了注入形成的损伤分布。然后分别使用激光烧蚀和Ar离子刻蚀技术在MeV和三重keV能量形成的平面波导基础上形成脊型光波导,并通过端面耦合技术观察其特性。(2)分别用耦合模理论分析和时域有限差分法(FDTD)直接模拟麦克斯韦方程组,我们论证了在双谐振环形谐振腔中,在不考虑微腔损耗的条件下,能够实现二次谐波的100%的转化。
     本论文的主要结果如下:
     1. MeVHe离子注入金红石晶体光波导的制备
     我们用能量为2.8MeV,剂量为3×1016ions/cm2的He离子注入金红石晶体,在金红石晶体上首次形成了光波导。利用棱镜耦合法在1539nm波长下测试了光波导的暗模特性,并基于得到的暗模,使用Reflectivity Calculation Method (RCM)拟合了光波导的折射率分布。通过The Stopping and Range of Ions in Matter (SRIM)模拟了离子注入的损伤分布,与RCM得到的结果十分吻合,位垒深度大约为6.3μm。我们在离子注入形成的平面光波导的基础上,用飞秒激光烧蚀制备了脊型光波导,并用端面耦合系统测试了其端面近场光强分布,并测量了其损耗,损耗超过10dB/cm。通过卢瑟福背散射/沟道技术测量,我们得到,即使在1016ions/cm2的高剂量下,金红石仍然保持良好的晶体结构,说明金红石二氧化钛是相当抗辐射的材料。
     2.三重keV能量He离子注入金红石晶体光波导的研究
     我们用能量分别为(450,500,550)keV,剂量均为2×1016ions/cm2的He离子注入金红石晶体,形成了光波导。通过SRIM模拟了离子注入的损伤分布,位垒深度大约为1.25μm。我们在离子注入形成的平面光波导的基础上,用Ar离子刻蚀技术制备了脊型光波导,并用端面耦合系统测试了其端面近场光强分布。
     3.双共振微环形谐振腔中的高效率二次谐波产生
     通过含时耦合模理论(CMT)的分析和时域有限差分法(FDTD)对非线性麦克斯韦方程组的模拟两种方法,我们得到了在双重共振的微环形谐振腔中二次谐波的高效产生。为了使模拟计算尽量简单,我们在二维模型中采用LiNbO3晶体。我们采用两个波导分别作为输入、输出波导。为了使转化效率高,我们将入射波导设计成只支撑基频光的单模波导,在出射波导一侧放置一个完美导体(PEC),从而产生一个大于基频波频率的截止频率,使得倍频光只能从出射波导耦合出来。在不考虑微腔的辐射损伤的情况下,转化效率为100%。在我们的模型中,辐射损伤不可忽略不计,在满足临界耦合条件的情况下,我们通过耦合模理论得到的转化效率为90%,通过FDTD模拟得到的转化效率为85%,在误差的范围内。而且,除了能实现二次谐波的高效产生,我们的模型还在入射功率大于某一特定阈值,发现了极限周期的现象。
     4.微环形谐振腔的三维设计
     我们将二维的设计过渡到三维。对于LiNbO3晶体,我们发现因为LiNbO3与衬底Si02的折射率差比较低,我们需要尺寸比较大的微环,这样会大大增加计算机模拟的时间。因此我们考虑采用折射率大的半导体非线性材料。在采用GaAs/SiO2材料时,我们采用的选择法则与二维情况下的选择法则不同。而且只需简单的单环结构就能满足我们的要求。在设计输出波导时,我们可以用衬底来取代附加PEC产生截止频率。因为GaAs在可见光下不透光,我们采用的工作波长为中红外波长3μm。假定品质因子Q在103量级,我们得到入射功率在毫瓦量级,转化效率为88%。在采用AlGaAs/SiO2材料时,与采用GaAs/SiO2材料的结果相似,唯一的不同是,工作波长为红外通信波长1.55μm。同样,我们也假定品质因子Q在103量级,我们得到入射功率在毫瓦量级,转化效率为94%。
Optical waveguide is one of the basic components in integrated optics and optoelectronics. Such structures allow the confinement of light to regions of the order of light wavelength by means of total reflection occuring at the junctions between the boundaries of guides and claddings. The small size of waveguide structures offers high light intensities produced by even very low powers; consequently, the nonlinearities or laser actions in waveguides may be more efficient than those in bulk materials.
     At present, several techniques have been developed to fabricate waveguides in optical materials, such as ion implantation, ion exchange, diffusion, ion beam etching, femtosecond laser ablation. As one of the most efficient techniques for material-prpperty modification, ion implantation has shown its unique ability for alteration of surface refractive index of large number of optical materials, forming waveguide structures. Compared with other techniques, ion implantation possesses one of the most advantageous characteristics, that is, the wide applicability of materials. Since the first proton-implanted waveguide in fused silica was reported in1968, waveguides have been so far fabricated in more than100optical materials by implantation of various ions at the energies of kilo-electron-volt (keV) up to tens of mega-electron-volt (MeV). Moreover, after annealing, the propogation losses of waveguides are reduced to be very low.
     High dose light ions, typically referring to H or He, are usually used to be implanted into optical materials, forming optical waveguides. After implantation, the ions will induce nuclear damage and electronic damage by the interaction with the materials, leading the change of the refractive index of ion implanted region. A buried low-index barrier inside the substrate is generated by nuclear energy deposition. A large increase of refractive index occurs in the near-surface region by the electronic damage. The refractive index of optical waveguide is very important.
     Since the invention of femtosecond laser from1980s, femtosecond laser technique has achieved great development. Compared with previous continuous laser and long pulse laser, femtosecond laser has several advantages, such as.very high peak power, short pulse, has been commonly used in various fields, for example, physics, chemical, biology, optoelectronics. The interaction of femtosecond laser and matrials is more and more intriguing after the invention of femtosecond Ti:sapphire laser since1990s. As the pulse of femtosecond laser is very short and the light intensity of the focus can be as high as1014W/cm2at the len focus, with a regional focus of ultra-high electric field, laser-induced multi-photon absorption, multi-ionization, and other non-linear effect are produced. Nevertheless, these nonlinear effects usually induce the loss of material even the change of structure. These ultra-high, ultra-condesed and ultra-high time recognization characteristics provide a new method for the research of matter world. Recently, the formation of waveguides by femtosecond laser ablation has been attacting many people's interest.
     Titanium dioxide (TiO2) has attracted much attention over last three decades and been widely used in applications such as photocatalysts, optical active cladding, dye-sensitized solar cells, due to their exellent optical properties and high chemical stability. In addition to those applications, TiO2's high refractive index and transparency at visible and near-infrared wavelengths make it a promising medium for integrated optical devices in recent years. Titanium dioxide (TiO2) rutile single crystal irradiated by infrared femtosecond (fs) laser pulses was abserved. Furthermore, the exceptionally high nonlinearity of TiO2, could lead to diverse nonlinear nanophotonic devices, such as supercontinuum sources or ultrafast all-optical switches.
     Recently, ring resonator geometries have become an attractive venue for realizing efficient and device-integrated SHG. Ring resonators, like waveguides, offer an advantage over other geometries in that they readily yield modes satisfying the frequency-matching requirement ω2=ω1. To date, however, most works have focused on large (millimeter) ring resonators with long modal lifetime Q>>103,(and hence narrow bandwidths1/Q) in which the long lifetimes (and hence narrow bandwidths1/Q) compensate for the relatively large modal volumes, or on smaller-scale (micron) resonators with moderate bandwidths (Q=104) that operate at low (1%) efficiencies where down-conversion effects can be neglected.
     Recent years, with the development of modern grown technology in superthin layer material (e.g. MBE and MOVCD) and various super-elaborate artifactitious technology, the study in small scale semiconductor microcavity arouses people's interests. Especially, after finding the Rabi splitting phenomena for strong coupling in quantum microcavity (QMC) structures originated from the pioneering work of Weisbuch and his coworkers. Semiconductor microcavity has attracted great attention due to their unique properties, and they are suitable for the fabrication of optical communication devices, such as lasers, optical filters, optical demultiplexers, optical switches, optical modulaters and nonlinear optical frequency converters, etc.
     This dissertation includes two parts:(1) first, to explore the possibility of planar waveguide formed in rutile by He+ion implantation; second, to use Rutherford backscattering (RBS)/channeling measurement for studying the damage in ion implanted waveguides; third, to demonstrate the properties of the ridge waveguides fabricated by the femtosecond laser ablation and the Ar ion beam etching on the basis of the planar waveguides formed above.(2) By directly simulating Maxwell's equations via the finite-difference time-domain (FDTD) method, we numerically demonstrate the possibility of achieving highly-efficient second harmonic generation in a geometry consisting of doubly-resonant ring-resonator microcavities side-coupled to two adjacent waveguides. We find that>80%conversion efficiency can be attained at telecom wavelengths, for incident powers in the milliwatts, and for reasonably large bandwidths (Q~1000). In addition to exhibiting highly efficient frequency conversion, our geometry also leads to a host of limit-cycle behaviors for light incident above a threshold power. Our numerical results are also shown to agree to within a few percent with the predictions of a simple but rigorous coupled-mode theory framework.
     The main results of this dissertation are shown as following:
     (1) The fabrication of optical waveguides in rutile formed by MeV He ion implantation
     We report on the formation and the optical properties of the planar and ridge optical waveguides in rutile TiO2crystal by He+ion implantation combined with femtosecond laser ablation technologies. Planar optical waveguides in TiO2are fabricated by high-energy (2.8MeV) He+-ion implantation with a dose of3×1016ions/cm2at room temperature. The guided modes were measured by a modal2010prism coupler at wavelength of1539nm. There are damage profiles in ion-implanted waveguides by Rutherford backscattering (RBS)/channeling measurements. The refractive-index profile of the waveguide was analyzed based on Reflected Calculation Method (RCM). The damage depth distribution is simulated by SRIM2010, and the barrier depth is6.3μmwhich is in agreement with RCM. Also ridge waveguides were fabricated by femtosecond laser ablation on2.8MeV ion implanted planar waveguide. The loss of the ridge waveguide was estimated. The measured near-field intensity distributions of the planar and ridge modes are all shown.
     (2) The characteristics of optical waveguides in rutile formed by triple keV He ion implantation
     We report on the formation and the optical properties of the planar and ridge optical waveguides in rutile TiO2crystal by triple keV ion implantation combined with Ar ion beam etching technologies. Planar optical waveguides in TiO2are fabricated by triple low energies (450,500,550) keV He+-ion implantation with all fluences of2×1016ions/cm2at room temperature. There are damage profiles in ion-implanted waveguides by Rutherford backscattering (RBS)/channeling measurements. The damage depth distribution is simulated by SRIM2010, and the barrier depth is1.25μm. Also ridge waveguides were fabricated by Ar ion beam etching on the basis of triple keV ion implanted planar waveguide. The measured near-field intensity distributions of the planar and ridge modes are all shown.
     (3) High-efficiency second-harmonic generation in2D doubly-resonant χ(2) microring resonantors
     By temporal coupled mode theory and directly simulating Maxwell's equations via the finite-difference time-domain (FDTD) method, we numerically demonstrate the possibility of achieving high-efficiency second harmonic generation (SHG) in a structure consisting of a microscale doubly-resonant ring resonator side-coupled to two adjacent waveguides. For simplicity of computation, we utilized LiNbO3in2D model. In our design. there are two waveguides coupled to the ring:one waveguide for the ω1input and another for the ω2output. We place the output waveguide next to a PEC to induce a cutoff>ω1, so that ω1can not couple out via that channel. Neglecting the radiation loss,100%efficiency is achieved. In our model, we find that90%conversion efficiency can be attained by coupled mode theory, and85%conversion efficiency can be attained by FDTD. The error is acceptable. We demonstrate that in this high efficiency regime, the system also exhibits limit-cycle or bistable behavior for light incident above a threshold power.
     (4) High-efficiency second-harmonic generation in3D doubly-resonant χ(2) microring resonantors
     We apply the same basic principles that we validated in the2d example to a more realistic3d design. We found that we need bigger size ring resonator to meet the requirement due to the small contrast of LiNbO3and substrate. So we consider SHG from λ1=3μm in a GaAs film bonded to a SiO? substate and SHG from λ1=1.55μm in AlGaAs/SiO2material. The main criteria those used in2D model work in3D, but rather the selective rule. The substrat causes a cutoff in both waveguides. We find that88%and94%conversion efficiency can be achived in GaAs/SiO2and AlGaAs/SiO2, separately.
引文
1.[美]汉斯伯格:集成光学导论,国防工业出版社,1983
    2.唐天同,王兆宏:集成光学,科学出版社,2005
    3.唐天同,王兆宏,陈时:集成光电子学,西安交通大学出版社,2005
    4.陈益新:集成光学,上海交通大学出版社,1985
    5.[美]卡萨谱:光电子学与光子学的原理及应用,电子工业出版社,2003
    6.吴重庆:光波导理论,清华大学出版社,2005
    7.方俊鑫,曹庄琪,杨傅子:光波导技术物理基础,上海交通大学出版社,1987
    8. R. Regener and W. Sohler, Appl. Phys. B:Lasers Opt.,36 (1985) 143
    9. H.-S. Jung,O. Eknoyan and H. F. Taylor, J. Lightwave Technol.,7 (1989) 390
    10. G. L. Tangonan, D. L. Persechini, J. F. Lotspeich and M. K. Barnoski, Appl. Opt., 17(1978)3259
    11. D. Jaque, E. Cantelar and G. Lifante, Appl. Phys B:lasers Opt.,88 (2007) 201
    12. J. L. Jackel, C. E. Rice and J. J. Veselka, Appl. Phys. Lett.,41 (1982) 607
    13. H. Ahlfeldt, J. Webjorn, P. A. Thomas and S. J. Teat, J. Appl. Phys.,77 (1995) 4467
    14. D. Kan and G. L. Yip, Appl. Opt.,35 (1996) 5348
    15. K. Daneshvar, E. A. Giess, D. Kang, J. R. Williams and D. Dawes, Opt. Mater., 12(1999)453
    16. A. Baudrant, H. Vial and J. Daval, J. Cryst. Growth,43 (1978) 197
    17. R. R. Neurgaonkar and E. T. Wu, Master. Res. Bull.,22 (1987) 1095
    18. R. A. Mckee, F. J. Walker, J. R. Conner, E. D. Specht and D. E. Zelmon, Appl. Phys. Lett.,59(1991)782
    19. M. J. Nystrom, B. W. Wessels, W. P. Lin, G. K. Wong, D. A. Neumayer and T. J. Marks, Appl. Phys. Lett.,66 (1995) 1726
    20. W. S. Hu, Z. G. Liu, Y.-Q. Lu, S. N. Zhu and D. Feng, Opt. Lett.,21 (1996) 946
    21. C. Zaldo, D. S. Gill, R. W. Eason, J. Mendiola and P. J. Chandler, Appl. Phys. Lett.,65(1994)502
    22. T. Hayashi. N. Ohji. K. Hirohara. T. Fukunaga and H. Maiwa. Jpn. J. Appl. Phys.. 32(1993)4092
    23. F. Chen. J. Appl. Phys..106 (2009) 081101
    24. P. J. Chandler, L. Zhang. J. M. Cabrera and P. D. Townsend. Appl. Phys. Lett.,54 (1989)1287
    25. J. Rams, J. Olivares, P. J. Chandler and P. D. Townsend, J. Appl. Phys.,87 (2000) 3199
    26. F. Chen, X. L. Wang, K. M. Wang, L. Wang, Y. Jiao, L. L. Wang, Q. M. Lu, H. J. Ma and R. Nie. Chin. Phys. Lett.,23 (2006) 1501
    27. T. Opfermann, T. Bachmann, W. Wesch and M. Rottschalk, Nucl. Instrum. Meth. Phys. Res. B,148(1999)710
    28. F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu and D. Y. Shen, Opt. Lett.,27 (2002) 1111
    29. F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang. G. Fu, Q. M. Lu. C. E. Ruter and D. Kip, Appl. Phys. Lett.,88 (2006) 071123
    30.戴达煌,周克菘,袁镇海:现代材料表面技术科学,冶金工业出版社,2004
    31. M. Qurik and J. Serda:Semiconductor Manufacturing Technology, Publishing House of Electronic Industry,2004
    32. G. Destefanis, J. Gailliard, E. Ligeon, S. Valette. B. Farmery, P. D. Townsend and A. Perez, J. Appl. Phys.,50 (1979) 7879
    33. D. Kip, Appl. Phys. Lett.,67 (1998) 131
    34. G. Destefanis, P. D. Townsend and J. Gailliard, Appl. Phys. Lett.,32 (1978) 293
    35. J. A. Armstrong, N. Bloembergen et al., Phys. Rev.127,1918(1962)
    36. Marcatili, Bends in optical dielectric guides, Bell Syst, Technol. J,1969
    1.范崇澄,彭吉虎:导波光学,北京理工大学出版社,1988
    2.陈临新:集成光学,上海交通大学出版社,1985
    3. S. O. Kasap:Optoelectronics and Photonics:Principles and Practices, House of Electronic Industry,2003
    4.陈益新:集成光学,上海交通大学出版社,1985
    5.李家泽,阎吉祥:光电子学基础,北京理工大学出版社,1998
    6.赵策洲,高勇:半导体硅基材料及其光波导,电子工业出版社,1997
    7.季家镕,冯莹:高等光学教程——非线性光学与导波光学,科学出版社,2008
    8.戴达煌,周克菘,袁振海:现代材料表面技术科学,冶金技术出版社,2004
    9.罗普生:离子注入物理,上海科学技术出版社,1984
    10.张光华:离子注入技术,北京-机械工业出版社,1982
    11.刘金声:离子束技术及应用,国防工业出版社,1995
    12.崔铮:微纳米加工技术及其应用,高等教育出版社,2005
    13.赵玉清:电子束离子束技术,西安交通大学出版社,2002
    14.[美]S.弗兰西拉:微加工导论,科学出版社,2006
    15. R. R. Gattass and E. Mazur, Nat. Photon.,2 (2008) 219
    16. K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu and K. Hirao, Appl. Phys. Lett.,71 (1997)3329
    17.E. Gamaly, S. Juodkazis, K. Nishimura et al. Phys. Rev. B.,73(21),214101 (2006)
    18. Y. Shimotsuma, K. Hirao, P. Kazansky et al., Jpn. J. Appl. Phys. Part 1,44(7A), 4735-4748 (2005)
    19.E. Glezer, E. Mazur, Appl. Phys. Lett.71(7),882-884 (1997)
    20.朱唯干等:背散射分析技术,原子能出版社,1978
    21.杨福家,赵国庆:离子束分析,上海-复旦大学出版社,1985
    22. P. K. Tien, R. Ulrich and P. J. Martin, Appl. Phys. Lett.,14 (1969) 291
    23. P. D. Townsend, P. J. Chandler, L. Zhang:Optical Effects of Ion Implantation, Publishing House of Cambridge University Press,1994
    24.[美]K.A.杰克逊:半导体工艺,科学出版社,1999
    25.[日]西原浩:集成光路,科学出版社,2005
    26. P. J. Chandler. F. L. Lama, Opt. Acta.,33 (1986) 127
    27. P. J. Chandler, F. L. Lama, P. D. Townsend and L. Zhang, Journal of Lightwave Technology.,8(1990)917
    28. T. Pliska, D. Fluck, P. Gunter, L. Beckers and C. Buchal, J. Opt. Soc. Am. B.,15 (1998)628
    29. R. Ramponi, R. Osellame and M. Marangoni, Rev. Sci. Instrum.,73 (2002) 1117
    30. R. Regener, W. Sohler, Appl. Phys. B,36 (1985) 143
    1. "APSS Apollo Application Note on Micro Ring Resonator," Apollo Photonics. Jun.,2003
    2. X. Y. Han, F. F. Pang, H. W. Cai. Z. J. Fang, Laser & Photoelectron., vol.41, no. 8, Aug.,2004
    3. T. Kominato, Y. Ohmori, N. Takato, et al, IEEE J. of Lightwave Tech., vol.10, no. 12,1992
    4. J. Niehusmann, A. Vorckel. P. H. Bolivar, et al,Opt. Lett., vol.29. no.24,2004
    5.刘思敏,郭儒,许京军,编著。光折变非线性光学极其应用。北京:科学出版,2004.6,136-182
    6.沈元壤,非线性光学原理。北京:科学出版社,1987,91-92
    7. Song Lan and Charalambos Anastassiou Mordechai Segev, Appl. Phys. Lett., 2000,77(14)2101-2103
    8. A. B. Zimin and N. S. Petrov, Opt. and Spec.2001,90(6) 896-910
    9. N. S. Petrov and A. B. Zimin, Opt. and Spec.,2002,93(1) 90-93
    10. Haus, Hermann A.1984. Waves and Fields on Optoelectronics. Englewood Cliffs, NJ:Prentice-Hall
    11. Suh, Wonjoo, Zheng Wang, and Shanhui Fan.2004, IEEE J. Quantum Electron. 40(10)1511-1518
    1. F. Sauvage. F. Di Fonzo. A. Li Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, and M. Graetzel, Nano Lett.10(7),2562-2567 (2010)
    2. B. Peng, G. Jungmann. C. Jager, D. Haarer, H. W. Schmidt, and M. Thelakkat. Coord. Chem. Rev.248(13),1479-1489 (2004).
    3. A. Fujishima, X. Zhang, and D. A. Tryk, Surf. Sci. Rep.63(12),515-582 (2008).
    4. Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, Adv. Mater.20(5),1044-1049 (2008).
    5. Z. X. Chen, W. X. Wang, Y. Takao, T. Matsubara, and L. M. Ren, Appl. Surf. Sci. 257(16),7254-7262(2011).
    6. T. C. Jennifer, D. B. B. Jonathan, B. D. Parag, B. B. Ian, C. E. Christopher, M. Eric, and L. Marko, Opt. Lett.37(4),539-541(2011).
    7. J. D. B. Bradley, C. C. Evans, F. Parsy, K. C. Phillips, R. Senaratne, E. Marti, and E. Mazur, in Proceeding of IEEE Photonics Society Annual Meeting (IEEE, 2010), pp.313-314.
    8. M. Foster, K. Moll, and A. Gaeta. Opt. Express 12(13),2880-2887 (2004).
    9. R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, Opt. Express 14(20), 9408-9414(2006)
    10. H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, Thin Solid Films 517(19), 5601-5604(2009).
    11. H. Hu, F. Lu, F. Chen, F. X. Wang. J. H. Zhang, X. D. Liu, K. M. Wang, and B. R. Shi, Opt. Commun.177(1),189-193 (2000)
    12. F. Chen, X. L. Wang, and K. M. Wang, "Development of ion-implanted optical waveguides in optical materials:A review," Opt. Mater.29(11),1523-1542 (2007).
    13. J. Ziegler, "computer code SRIM version," http://www.srim.org.
    14. R. D. Innocenti. S. Reidt. A. Guarino, D. Rezzonico, G. Poberaj, and P. Gunter. J. Appl. Phys.100(11),113121 (2006).
    1. F. Lu, T. Zhang, G. Fu, X. Wang, K. Wang, D. Shen and H. Ma. Opt. Express,13 (2005)2256
    2. F. Chen, L. Wang, C.-L. Jia, Q.-M. Lu, X.-L. Wang and K.-M. Wang, Appl. Surf. Sci., 253(2007)3589
    3. J. Rams. J. Olivares, P. J. Chandler and P. D. Townsend, J. Appl. Phys.,87 (2000) 3199
    4. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M Wang and D.-Y. Shen, Appl. Opt.,40 (2001)3759
    5. H. Hu, F. Lu, F. Chen. F. X. Wang, J. H. Zhang, X. D. Liu. K. M. Wang, and B. R. Shi, Opt. Commun.177(1),189-193 (2000)
    6. F. Chen, X. L. Wang, and K. M. Wang. "Development of ion-implanted optical waveguides in optical materials:A review," Opt. Mater.29(11),1523-1542 (2007).
    7. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press. Cambridge,1994)
    1. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comp. Phys. Commun.181,687-702 (2010)
    2. V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys.107(17),6756-6769 (1997)
    3. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8(3).173-190 (2001)
    4. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals:Molding the Flow of Light,2nd ed. (Princeton University Press,2008)
    5. A. Rodriguez, M. Soljacic, J. D. Joannopoulos. and S. G. Johnson, Opt. Express 15(12),7303-7318(2007)
    6. M. Fejer, G. Magel, D. Jundt, and R. Byer, IEEE J. Quant. Electron.28(11), 2631-2654(1992)
    7. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391,463-466 (1997)
    8. P. S. Kuo and G..S.Solomon, Opt. Express 19(18),16898-16918(2011)
    9. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Buchter, S. Reza. W. Grundkotter, S. O. H. Suche, R. Nouroozi, and Y. Min, Opt. Photonics News 19(1),24-31 (2008)
    10. Q. Xu and M. Lipson, Opt. Lett.31(3),341-343 (2005)
    11. R. G. Hunsperger, Integrated Optics:Theory and Technology (Springer-Verlag, 2002)
    12. C. L. Chen, Foundations for Guided-Wave Optics (Wiley,2006)
    13. K. K. Lee, Y. Avniel, and S. G. Johnson, Opt. Express 16,9261-9275 (2008)
    14. P. D. Drummond, K. J. Mcneil, and D. F. Walls, Opt. Acta 27(3),321-335 (1980)
    1. H. Hu, L. Gui, R. Ricken. W. Sohler, SPIE.7604 (2010) 76040
    2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals:Molding the Flow of Light,2nd ed. (Princeton University Press.2008)
    3. R. G. Hunsperger, Integrated Optics:Theory and Technology (Springer-Verlag, 2002)
    4. C. L. Chen, Foundations for Guided-Wave Optics (Wiley,2006)
    5. K. K. Lee, Y. Avniel, and S. G. Johnson, Opt. Express 16,9261-9275 (2008)
    6. L. Caspani, D. Duchesne, K. Dolgaleva, S. J. Wagner, M. Ferrera, L. Razzari, A. Pasquazi, M. Peccianti, D. J. Moss, J. S. Aitchison, and R. Morandotti, J. Opt. Soc. Am. B 28 (12), A67-A82 (2011)
    7. E. D. Palik, ed., Handbook of optical constants of solids Ⅱ (Academic Press, 1991)
    8. P. S.Kuo and G. S. Solomon, Opt. Express 19(18),16898-16918(2011)
    9. Y. Dumeige and P. Feron, Phys. Rev. A 74,063804 (2006)
    10. R. W. Boyd, Nonlinear Optics (Academic Press,1992)
    11. M. Ohashi, T. Kondo, and R. Ito, J. Appl. Phys.74(1),596-601 (1993)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700