用户名: 密码: 验证码:
基于FeSi_2薄膜的异质结的制备与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过渡金属硅化物中,环境友好型半导体FeSi_2薄膜具有0.80eV-0.89eV的窄带隙,在波长1.5m附近具有发光和光响应特性,且光吸收系数为105cm-1数量级,具有良好的光电特性。
     论文用磁控溅射法制备a-Si/-FeSi_2/c-Si、a-FeSi_2/c-Si、a-Si/a-FeSi_2和ZnO:Al/a-FeSi_2异质结。对FeSi_2薄膜的结构、表面形貌、光学和电学特性以及FeSi_2异质结的电学和光伏特性进行测试,研究结果表明:
     在织构Si(100)衬底上制备的a-Si/-FeSi_2/c-Si双异质结和-FeSi_2/c-Si异质结均具有二极管整流特性,暗I–V特性整流比分别为66.3和46.3。a-Si/-FeSi_2/c-Si双异质结的光伏特性为开路电压0.26V、短路电流密度2.90mA/cm2、填充因子0.356、光电转换效率0.268%,其光电转换效率比-FeSi_2/c-Si异质结提高59.7%。a-Si/-FeSi_2/c-Si双异质结光伏特性的提高得益于新增的a-Si薄膜结构对异质结内建电场分布区域的扩展和内建电势值的提高,从而提高异质结对光生载流子的收集效率。
     对a-Si/-FeSi_2/c-Si双异质结中的-FeSi_2薄膜进行Al、B、P掺杂,杂质掺杂不影响-FeSi_2结晶结构的生成。掺杂原子可填补-FeSi_2薄膜的本征Si空位,减少-FeSi_2薄膜的缺陷态密度和光生载流子的复合,提高-FeSi_2薄膜的红外光响应特性。通过优化掺杂工艺参数可使基于Al、B、P掺杂-FeSi_2的双异质结的转换效率分别达到未掺杂-FeSi_2双异质结的3.39倍、1.98倍和3.04倍。
     用共溅射法在单晶硅、普通玻璃和不锈钢片衬底上制备的FeSi_2薄膜,在未进行溅射过程衬底加热和后续退火处理的条件下具有非晶态结构。在此基础上制备的a-FeSi_2/c-Si、 a-Si/a-FeSi_2和ZnO:Al/a-FeSi_2异质结均具有二极管整流特性,其中a-FeSi_2/c-Si异质结具有整流比37.6、并联电阻458.6cm2和二极管理想因子2.07,其整流特性优于其它a-FeSi_2异质结。
     综上所述,a-Si/-FeSi_2/c-Si双异质结结构可提高异质结的内建电场分布和内建电势值,通过对-FeSi_2吸收层进行III-V族元素掺杂可减少-FeSi_2的缺陷态密度,提高-FeSi_2双异质结的光伏特性。a-FeSi_2异质结则可实现异质结的低温制备。
Among the transition metal silicides, the environment-friendly semiconducting FeSi_2thin film has a narrow energy band gap of0.80eV-0.89eV. It shows light emission andphotoresponse near1.5m. The absorption coefficient of FeSi_2is in the order of105cm-1.Therefore, FeSi_2thin film has prominent optoelectronic properties.
     In this dissertation, the a-Si/-FeSi_2/c-Si, a-FeSi_2/c-Si, a-Si/a-FeSi_2and ZnO:Al/a-FeSi_2heterojunctions were prepared by magnetron sputtering. The structural, surface morphology,optical, and electrical properties of FeSi_2thin films and the electrical and photovoltaicproperties of FeSi_2heterojunctions were measured. The results show that:
     Both the a-Si/-FeSi_2/c-Si double heterojunction and the-FeSi_2/c-Si heterojunctionshow the rectifying property of diode. The rectifying ratios of a-Si/-FeSi_2/c-Si doubleheterojunction and-FeSi_2/c-Si heterojunction are66.3and46.3, respectively. The a-Si/
     -FeSi_2/c-Si double heterojunction shows the open-circuit voltage of0.26V, short-circuitcurrent density of2.90mA/cm2, fill factor of0.356and energy conversion efficiency of0.268%. The measured conversion efficiency of a-Si/-FeSi_2/c-Si heterojunction increases by59.7%compared with that of the-FeSi_2/c-Si heterojunction. The effective enhancement inphotovoltaic performance of a-Si/-FeSi_2/c-Si double heterojunction is ascribed to theextended built-in electric field distribution and the increased built-in potential by the a-Si thinfilm. Therefore, the collection efficiency of photo-generated carriers is improved.
     The-FeSi_2thin films in the a-Si/-FeSi_2/c-Si double heterojunctions are doped by Al, B,and P impurities. The impurities do not affect the formations of-FeSi_2crystalline structure.The Si vacancies in the-FeSi_2thin films can be occupied by the doped atoms. Therefore, thedoping can lead to the reductions of Si vacancy density and recombination of photo-generatedcarriers. The infrared response properties of-FeSi_2thin film can be improved by impuritydoping. By the optimization of the experimental parameters of doping, the energy conversionefficiencies of double heterojunctions based on Al-doped, B-doped, and P-doped-FeSi_2thinfilms can reach3.39,1.98, and3.04times to that of the un-doped-FeSi_2doubleheterojunction, respectively.
     The FeSi_2thin films, which were prepared on crystalline silicon, glass, and stainless steel substrates by co-sputtering without the substrate heating during sputtering and postannealing, are amorphous structures. Based on the a-FeSi_2thin films, the prepareda-FeSi_2/c-Si, a-Si/a-FeSi_2, and ZnO:Al/a-FeSi_2heterojunctions exhibits rectifying propertiesof the diode. The a-FeSi_2/c-Si heterojunction shows the rectifying ratio of37.6, the shuntresistance of458.6cm2and the diode ideal factor of2.07, which has better rectifyingproperties than other a-FeSi_2heterojunctions.
     In conclusion, the a-Si/-FeSi_2/c-Si double heterojunction can enhance the built-inelectric field and built-in electric potential. By doping the-FeSi_2absorption layer with III-Velements, the density of defect state of-FeSi_2can be reduced. It leads to the improvement ofthe photovoltaic properties of-FeSi_2double heterojunctions. The a-FeSi_2heterojunctionscan achieve the low temperature fabrication of FeSi_2heterojunctions.
引文
[1] Makita Y., Ootsuka T., Fukuzawa Y., et al. β-FeSi2as a Kankyo (EnvironmentallyFriendly) semiconductor for solar cells in the space application [J]. Proc. of SPIE,2006,6197:61970O
    [2]李凡,吴炳尧,赵华庭. β-FeSi2一种很有发展前途的热电材料[J].功能材料,1997,28(3):312-315
    [3] Bost M.C., Mahan J.E. Optical properties of semiconducting iron disilicide thin films[J]. J. Appl. Phys.,1985,58(7):2696-2703
    [4] Dimitriadis C.A., Werner J.H., Logothetidis S., et al. Electronic properties ofsemiconducting FeSi2films [J]. J. Appl. Phys.,1990,68(4):1726-1734
    [5]周幼华,童恒明,乔燕. β-FeSi2半导体薄膜的研究进展[J].江汉大学学报:自然科学版,2007,35(2):26-29
    [6] Filonov A.B., Migas D.B., Shaposhnikov V. L., et al. Electronic and related propertiesof crystalline semiconducting iron disilicide [J]. J. Appl. Phys.,1996,79(10):7708-7712
    [7]潘志军,张澜庭,吴建生.掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究[J].物理学报,2005,54(11):5308-5313
    [8] Yamaguchi K., Udono H. Novel photosensitive materials for hydrogen generationthrough photovoltaic electricity [J]. Int. J. Hydrogen Energy,2007,32(14):2726-2729
    [9] Zhou Y.H., Lu P.X., Yang G., et al. Optical characterization of β-FeSi2thin filmsprepared on fused quartz by femtosecond laser ablation [J]. Physica B,2007,399(1):33-37
    [10] Yang Z., Homewood K.P., Finney M.S., et al. Optical absorption study of ion beamsynthesized polycrystalline semiconducting FeSi2[J]. J. Appl. Phys.,1995,78(3):1958-1963
    [11] Clark S.J., Al-Allak H.M., Brand S., et al. Structure and electronic properties of FeSi2[J]. Phys. Rev. B,1998,58(16):10389-10393
    [12] Christensen N.E. Electronic structure of β-FeSi2[J]. Phys. Rev. B,1990,42(11):7148-7153
    [13] Leong D., Harry M., Reeson K.J., et al. A silicon/iron-disilicide light-emitting diodeoperating at a wavelength of1.5m [J]. Nature,1997,387(6634):686-688
    [14] Maeda Y. Luminescence properties of β-FeSi2and its application to photonics [J]. Appl.Surf. Sci.,2008,254(19):6242-6247
    [15] Powalla M., Herz K. Co-evaporated thin films of semiconducting β-FeSi2[J]. Appl.Surf. Sci.,1993,66(1-4):482-488
    [16] Yamaguchi K., Mizushima K. Luminescent FeSi2crystal structures induced byheteroepitaxial stress on Si(111)[J]. Phys. Rev. Lett.,2001,86(26):6006-6009
    [17] Oostra D.J., Bulle-Lieuwma C.W.T., Vandenhoudt D.E.W., et al. β-FeSi2in (111) Siand in (001) Si formed by ion-beam synthesis [J]. J. Appl. Phys.,1993,74(7):4347-4353
    [18] Makita Y., Nakayama Y., Fukuzawa Y., et al. Important research targets to be exploredfor β-FeSi2device making [J]. Thin Solid Films,2004,461(1):202-208
    [19] Liu Z.X., Osamura M., Ootsuka T., et al. Doping of β-FeSi2films with boron andarsenic by sputtering and its application for optoelectronic devices [J]. Opt. Mater.,2005,27(5):942-947
    [20] Kuroda R., Liu Z.X., Fukuzawa Y., et al. Studies of Ga diffusion and the elimination ofpinholes in Ga-doped β-FeSi2films prepared by MBE [J]. Opt. Mater.,2005,27(5):929-934
    [21] Suemasu T., Iikura Y., Fujii T., et al. Improvement of1.5μm photoluminescence fromreactive deposition epitaxy (RDE) grown β-FeSi2balls in Si by high temperatureannealing [J]. Jpn. J. Appl. Phys.,1999,38(6AB): L620-L622
    [22] Chu S., Hirohada T., Kan H., et al. Electroluminescence and response characterizationof β-FeSi2-based light-emitting diodes [J]. Jpn. J. Appl. Phys.,2004,43(2A):L154-L156
    [23] Tan K.H., Pey K.L., Chi D.Z. Effects of boron and arsenic doping in β-FeSi2[J]. J.Appl. Phys.,2009,106(2):023712
    [24] Oyoshi K., Lenssena D., Cariusa R., et al. Formation of β-FeSi2precipitates at theSiO2/Si interface by Fe+ion implantation and their structural and optical properties [J].Thin Solid Films,2001,381(2):202-208
    [25] Suemasu T., Sunohara T., Kobayashi K. Epitaxial growth and characterization ofSi-based light-emitting Si/β-FeSi2film/Si double heterostructures on Si(001) substratesby molecular beam epitaxy [J]. Thin Solid Films,2006,508(1-2):371-375
    [26] Martinelli L., Grilli E., Guzzi M., et al. Room-temperature electroluminescence ofion-beam-synthesized β-FeSi2precipitates in silicon [J]. Appl. Phys. Lett.,2003,83(4):794-796
    [27] Suemasu T., Ugajin Y., Takauji M. Annealing temperature dependence of EL propertiesof Si/β-FeSi2/Si(111) double-heterostructures light-emitting diodes [J]. Thin SolidFilms,2006,508(1-2):376-379
    [28] Suemasu T., Iikura Y., Takakura K., et al. Optimum annealing condition for1.5mphotoluminescence from β-FeSi2balls grown by reactive deposition epitaxy andembedded in Si crystal [J]. J. Lumin.,2000,87-89:528-531
    [29] Suemasu T., Fujii T., Takakura K., et al. Dependence of photoluminescence fromβ-FeSi2and induced deep levels in Si on the size of β-FeSi2balls embedded in Sicrystals [J]. Thin Solid Films,2001,381(2):209-213
    [30] Ugajin Y., Sunohara T., Suemasu T. Investigation of current injection in β-FeSi2/Sidouble-heterostructures light-emitting diodes by molecular beam epitaxy [J]. ThinSolid Films,2007,515(22):8136-8139
    [31] Li C., Suemasu T., Hasegawa F. Room-temperature electroluminescence of a Si-basedp-i-n diode with β-FeSi2particles embedded in the intrinsic silicon [J]. J. Appl. Phys.,2005,97(4):043529
    [32] Akiyama K., Kaneko S., Hirabayashi Y., et al. Photoluminescence properties ofSi/β-FeSi2/Si double heterostructure [J]. Thin Solid Films,2006,508(1-2):380-384
    [33] Martinelli L., Grilli E., Migas D.B., et al. Luminescence from β-FeSi2precipitates in Si.II: Origin and nature of the photoluminescence [J]. Phys. Rev. B,2002,66(8):085320
    [34] Akiyama K., Kaneko S., Funakubo H., et al.1.54μm photoluminescence from β-FeSi2as-deposited film [J]. Appl. Phys. Lett.,2007,91(7):071903
    [35] Sun C.M., Tsang H.K., Wong S.P., et al. Correlation between impurities in Fe-Siamorphous layers synthesized by Fe implantation and photoluminescence property ofβ-FeSi2precipitates in Si [J]. J. Lumin.,2008,128(11):1841-1845
    [36] Lourenco M.A., Gwilliam R.M., Shao G., et al. Dislocation engineered β-FeSi2lightemitting diodes [J]. Nucl. Instrum. Methods Phys. Res., Sect. B,2003,206:436-439
    [37] Chow C.F., Wong S.P., Gao Y., et al. Electroluminescence properties of Si MOSstructures with incorporation of FeSi2precipitates formed by iron implantation [J].Mater. Sci. Eng., B,2005,124-125:440-443
    [38] Terai Y., Maeda Y. Enhancement of1.54μm photoluminescence in β-FeSi2by surfaceoxidation [J]. Jpn. J. Appl. Phys.,2005,44(4B):2492-2495
    [39] Suemasu T., Takakura K., Li C., et al. Epitaxial growth of semiconducting β-FeSi2andits application to light-emitting diodes [J]. Thin Solid Films,2004,461(1):209-218
    [40] Galkin N.G., Chusovitin E.A., Shamirsaev T.S., et al. Growth, structure andluminescence properties of multilayer Si/β-FeSi2NCs/Si/…/Si nanoheterostructures [J].Thin Solid Films,2011,519(24):8480-8484
    [41] Li C., Lai H.K., Chen S.Y., et al. Improvement of luminescence from β-FeSi2particlesembedded in silicon, with high temperature silicon buffer layer [J]. J. Cryst. Growth,2006,290(1):176-179
    [42] Suemasu T., Ugajin Y., Murase S., et al. Photoluminescence decay time andelectroluminescence of p-Si/β-FeSi2particles/n-Si and p-Si/β-FeSi2film/n-Sidouble-heterostructures light-emitting diodes grown by molecular-beam epitaxy [J]. J.Appl. Phys.,2007,101(12):124506
    [43] Terai Y., Tsuji T., Noda K., et al. Photoluminescence properties of Er-doped β-FeSi2grown by ion implantation [J]. Physica E,2010,42(10):2846-2848
    [44] Koizumi T., Murase S., Suzuno M., et al. Room-temperature1.6μmelectroluminescence from p+-Si/β-FeSi2/n+-Si diodes on Si(001) withouthigh-temperature annealing [J]. Appl. Phys. Express,2008,1(5):051405
    [45] Li C., Suemasu T., Hasegawa F. Temperature dependence of electroluminescence fromSi-based light emitting diodes with β-FeSi2particles active region [J]. J. Lumin.,2006,118(2):330-334
    [46] Maeda Y., Terai Y., Itakura M., et al. Photoluminescence properties of ion beamsynthesized β-FeSi2[J]. Thin Solid Films,2004,461(1):160-164
    [47] Kudoyarova V.K., Terukov E.I., Kon'kov O.I., et al. Iron disilicide formed in a-Sithin films by magnetron co-sputtering [J]. Physica B,2003,340:939-943
    [48] Maeda Y., Umezawa K., Miyake K., et al. Infrared-photovoltaic responses of ion-beamsynthesized β-FeSi2/n-Si heterojunctions [J]. Mat. Res. Soc. Symp. Proc.,2000,607:315-320
    [49] Wang S.N., Otogawa N., Fukuzawa Y., et al. Prototype Infrared optical sensor andsolar cell made of β-FeSi2thin film [J]. Proc. of SPIE,2003,5065:188-195
    [50] Liu Z.X., Wang S.N., Otogawa N., et al. A thin-film solar cell of high-qualityβ-FeSi2/Si heterojunction prepared by sputtering [J]. Sol. Energy Mater. Sol. Cells,2006,90(3):276-282
    [51] Shaban M., Nakashima K., Yokoyama W., et al. Photovoltaic properties of n-typeβ-FeSi2/p-type Si heterojunctions [J]. Jpn. J. Appl. Phys.,2007,46(25-28): L667-L669
    [52] Shaban M., Nakashima K., Yoshitake T. Substrate temperature dependence ofphotovoltaic properties of β-FeSi2/Si heterojunctions prepared by facing-target DCsputtering [J]. Jpn. J. Appl. Phys.,2007,46(12):7708-7710
    [53] Shaban M., Nomoto K., Nakashima K., et al. Low-temperature annealing of n-typeβ-FeSi2/p-type Si heterojunctions [J]. Jpn. J. Appl. Phys.,2008,47(5):3444-3446
    [54]郁操,侯国付,刘芳等.退火温度和β-FeSi2薄膜厚度对n-β-FeSi2/p-Si异质结太阳能电池的影响[J].人工晶体学报,2009,38(3):662-665,676
    [55] Shaban M., Izumi S., Nomoto K., et al. N-type β-FeSi2/intrinsic-Si/p-type Siheterojunction photodiodes for near-infrared light detection at room temperature [J].Appl. Phys. Lett.,2009,95(16):162102
    [56] Shaban M., Nomoto K., Izumi S., et al. Characterization of near-infrared n-typeβ-FeSi2/p-type Si heterojunction photodiodes at room temperature [J]. Appl. Phys. Lett.,2009,94(22):222113
    [57] Takarabe K., Doi H., Mori Y., et al. Optical properties of nanocrystalline FeSi2and theeffects of hydrogenation [J]. Appl. Phys. Lett.,2006,88(6):061911
    [58] Richards B.S. Enhancing the performance of silicon solar cells via the application ofpassive luminescence conversion layers [J]. Sol. Energy Mater. Sol. Cells,2006,90(15):2329-2337
    [59] Liu Z.X., Watanabe M., Hanabusa M. Electrical and photovoltaic properties ofiron-silicide/silicon heterostructures formed by pulsed laser deposition [J]. Thin SolidFilms,2001,381(2):262-266
    [60] Tatar B., Kutlu K., Urgen M. Synthesis of β-FeSi2/Si heterojunctions for photovoltaicapplications by unbalanced magnetron sputtering [J]. Thin Solid Films,2007,516(1):13-16
    [61] Dalapati G.K., Liew S.L., Wong A.S.W., et al. Photovoltaic characteristics ofp-β-FeSi2(Al)/n-Si(100) heterojunction solar cells and the effects of interfacialengineering [J]. Appl. Phys. Lett.,2011,98(1):013507
    [62] Ootsuka T., Liu Z.X., Osamura M., et al. Studies on aluminum-doped ZnO films fortransparent electrode and antireflection coating of β-FeSi2optoelectronic devices [J].Thin Solid Films,2005,476(1):30-34
    [63] Lin C.H. Si/Ge/Si double heterojunction solar cells [J]. Thin Solid Films,2010,518(1):S255-S258
    [64]余平,张勇,肖清泉等.磁控溅射制备FeSi膜的性质[J].长春师范学院学报(自然科学版),2007,26(1):30-33
    [65]罗胜耘,曾正,陆安江.一种新型环境半导体材料β-FeSi2[J].广西轻工业,2008,(5):20-21
    [66] Nakamura S., Aoki T., Kittaka T., et al. Facing target sputtered iron-silicide thin film[J]. Thin Solid Films,2007,515(22):8205-8209
    [67] Ehara T., Naito S., Nakagomi S., et al. Phosphorous doping in beta-irondisilicide byco-sputtering method [J]. Mater. Lett.,2002,56(4):471-474
    [68] Okuda Y., Momose N., Takahashi M., et al. β-FeSi2continuous films prepared onCorning7059glass by RF-magnetron sputtering [J]. Jpn. J. Appl. Phys.,2005,44(9A):6505-6507
    [69] Milosavljevic M., Shao G., Gwilliam R.M., et al. Semiconducting amorphous FeSi2layers synthesized by co-sputter deposition [J]. Thin Solid Films,2004,461(1):72-76
    [70] Ehara T., Nakagomi S., Kokubun Y. Preparation of phosphorous dopebeta-irondisilicide thin films and application for devices [J]. Solid-State Electron.,2003,47(2):353-356
    [71] Tatar B., Kutlu K., Urgen M. Effect of ion beam modifications on the surface andstructural properties of β-FeSi2thin films [J]. J. Phys. D: Appl. Phys.,2007,40(19):5995-5999
    [72] Akiyama K., Kaneko S., Kimura T., et al. Epitaxial growth of (100)-oriented β-FeSi2thin films on insulating substrates [J]. Jpn. J. Appl. Phys.,2005,44(4B):2496-2501
    [73] Chu S., Hirohada T., Kuwabara M., et al. Time-resolved1.5μm-bandphotoluminescence of highly oriented β-FeSi2films prepared by magnetron-sputteringdeposition [J]. Jpn. J. Appl. Phys.,2004,43(2A): L127-L129
    [74] Muret P., Ali I. Transport properties of unintentionally doped iron silicide thin films onsilicon(111)[J]. J. Vac. Sci. Technol., B,1998,16(3):1663-1666
    [75] Yoshitake T., Inokuchi Y., Yuri A., et al. Direct epitaxial growth of semiconductingβ-FeSi2thin films on Si(111) by facing targets direct-current sputtering [J]. Appl. Phys.Lett.,2006,88(18):182104
    [76] Lange H. Electronic properties of semiconducting silicides [J]. Phys. Status Solidi B,1997,201(1):3-65
    [77]王连卫,陈向东,林成鲁等.一种新型光电材料——β-FeSi2的结构,光电特性及其制备[J].物理,1995,24(2):83-89
    [78] Suemasu T., Fujii T., Tanaka M., et al. Fabrication of p-Si/β-FeSi2balls/n-si structuresby MBE and their electrical and optical properties [J]. J. Lumin.,1999,80(1-4):473-477
    [79] Itakura M., Kishikawa N., Kawashita R., et al. Epitaxial orientation and morphology ofβ-FeSi2produced on a flat and a patterned Si(001) substrates [J]. Thin Solid Films,2007,515(22):8169-8174
    [80] Murakami Y., Kenjo A., Sadoh T., et al. Solid-phase crystallization of β-FeSi2thin filmin Fe/Si structure [J]. Thin Solid Films,2004,461(1):68-71
    [81] Nakamura Y., Nagadomi Y., Cho S.P., et al. Formation of ultrahigh density andultrasmall coherent β-FeSi2nanodots on Si (111) substrates using Si and Fecodeposition method [J]. J. Appl. Phys.,2006,100(4):044313
    [82] Yamaguchi K., Heya A., Shimura K., et al. Effect of target compositions on thecrystallinity of β-FeSi2prepared by ion beam sputter deposition method [J]. Thin SolidFilms,2004,461(1):17-21
    [83] Momose N., Hashimoto Y., Ito K. Growth of1-m-thick continuous β-FeSi2films onabraded p+-Si(001) substrates by RF-magnetron Sputtering [J]. Jpn. J. Appl. Phys.,2003,42(9A):5490-5493
    [84] Isobe T., Nakashima H., Hashimoto K. Diffusion coefficient of interstitial iron inSilicon [J]. Jpn. J. Appl. Phys.,1989,28(7):1282-1283
    [85]杨德仁.太阳电池材料[M].北京:化学工业出版社,2007:57-58
    [86] Liu Z.X., Osamura M., Ootsuka T., et al. Arsenic doping of n-Type β-FeSi2films bysputtering method [J]. Jpn. J. Appl. Phys.,2005,44(8-11): L261-L264
    [87] Fukuzawa Y., Ootsuka T., Otogawa N., et al. Characterization of β-FeSi2films as anovel solar cell semiconductor [J]. Proc. of SPIE,2006,6197:61970N
    [88] He D., Wang J.Y., Mittemeijer E.J. The initial stage of the reaction between amorphoussilicon and crystalline aluminum [J]. J. Appl. Phys.,2005,97(9):093524
    [89]马丁·格林.太阳能电池工作原理、工艺和系统的应用[M].李秀文,谢鸿礼,赵海滨等.北京:电子工业出版社,1987:90-93
    [90]刘恩科,朱秉升,罗晋升.半导体物理学[M].第4版.北京:国防工业出版社,2004:154-157
    [91]熊绍珍,朱美芳.太阳能电池基础与应用[M].北京:科学出版社,2009:81-83
    [92] zdemir O., Tatar B., Yilmazer D., et al. Conduction mechanism analysis inβ-FeSi2/n-Si heterojunction through J-V-T measurement [J]. Semicond. Sci. Technol.,2008,23(9):095018
    [93]马丁·格林.太阳能电池工作原理、工艺和系统的应用[M].李秀文,谢鸿礼,赵海滨等.北京:电子工业出版社,1987:76
    [94]虞丽生.半导体异质结物理[M].第二版.北京:科学出版社,2006:30-42
    [95] Suzuno M., Ugajin Y., Murase S., et al. Effect of using a high-purity Fe source on thetransport properties of p-type β-FeSi2grown by molecular-beam epitaxy [J]. J. Appl.Phys.,2007,102(10):103706
    [96] Takakura K., Ohyama H., Takarabe K., et al. Hole mobility of p-type β-FeSi2thin filmsgrown from Si/Fe multilayers [J]. J. Appl. Phys.,2005,97(9):093716
    [97] Okajima K., Wen C.J., Ihara M., et al. Optical and electrical properties of β-FeSi2/Si,β-FeSi2/InP heterojunction prepared by RF-sputtering deposition [J]. Jpn. J. Appl.Phys.,1999,38(2A):781-786
    [98] Lourenco M.A., Butler T.M., Kewell A.K., et al. Electrical, electronic and opticalcharacterisation of ion beam synthesized β-FeSi2light emitting devices [J]. Nucl.Instrum. Methods Phys. Res., Sect. B,2001,175-177:159-163
    [99] Li C., Suemasu T., Hasegawa F. Measurements of carrier confinement at β-FeSi2-Siheterojunction by electroluminescence [J]. Chinese Journal of Semiconductors,2005,26(2):230-233
    [100] Tan K.H., Chi D.Z., Pey K.L. Optical and electrical characterization ofsputter-deposited FeSi2and its evolution with annealing temperature [J]. J. Appl. Phys.,2008,104(6):064117
    [101]虞丽生.半导体异质结物理[M].第二版.北京:科学出版社,2006:29
    [102] Seki N., Takakura K., Suemasu T., et al. Conduction type and defect levels of β-FeSi2films grown by MBE with different Si/Fe ratios [J]. Mater. Sci. Semicond. Process.,2003,6(5-6):307-309
    [103] Akiyama K., Hirabayashi Y., Kaneko S., et al. Effect of template layer on formation offlat-surface β-FeSi2epitaxial films on (111) Si by metal-organic chemical vapordeposition [J]. J. Cryst. Growth,2006,289(1):37-43
    [104] Vouroutzis N., Zorba T.T., Dimitriadis C.A., et al. Growth of β-FeSi2particles onsilicon by reactive deposition epitaxy [J]. J. Alloys Compd.,2008,448(1-2):202-205
    [105] Kanehira S., Sakakura M., Shimotsuma Y., et al. Phase control of iron silicides usingfemtosecond laser irradiation [J]. Appl. Phys. A,2010,101(1):81-85
    [106] Zakir Hossain M., Mimura T., Miura N., et al. Surface morphology and luminescencecharacterization of β-FeSi2thin films prepared by pulsed laser deposition [J]. Appl.Surf. Sci.,2009,256(4):1227-1231
    [107] Tani J., Kido H. First-principle study of native point defects in β-FeSi2[J]. J. AlloysCompd.,2003,352(1-2):153-157
    [108] Akiyama K., Kaneko S., Terai Y., et al. Photoluminescence properties from β-FeSi2film epitaxially grown on Si, YSZ and Si//YSZ [J]. Jpn. J. Appl. Phys.,2005,44(8-11):L303-L305
    [109] Terai Y., Maeda Y. Enhancement of1.54m photoluminescence observed in Al-dopedβ-FeSi2[J]. Appl. Phys. Lett.,2004,84(6):903-905
    [110] Terai Y., Maeda Y., Fujiwara Y. Photoluminescence enhancement of β-FeSi2byoptimizing Al-doping concentration [J]. Physica B,2006,376-377:799-802
    [111] Terai Y., Maeda Y. Photoluminescence enhancement in impurity doped β-FeSi2[J]. Opt.Mater.,2005,27(5):925-928
    [112] Maeda Y., Terai Y., Itakura M. Enhancement of photoresponse properties of β-FeSi2/Siheterojunctions by Al doping [J]. Opt. Mater.,2005,27(5):920-924
    [113] Maeda Y., Terai Y., Itakura M. Epitaxial growth of Al-doped β-FeSi2on Si by ion beamsynthesis [J]. Jpn. J. Appl. Phys.,2005,44(4B):2502-2505
    [114] Tani J., Kido H. Electrical properties of Co-doped and Ni-doped β-FeSi2[J]. J. Appl.Phys.,1998,84(3):1408-1411
    [115] Tani J., Kido H. First principle calculation of the geometrical and electronic structureof impurity-doped β-FeSi2semiconductors [J]. J. Solid State Chem.,2002,163(1):248-252
    [116]闫万珺,谢泉.掺杂β-FeSi2的电子结构及光学性质的第一性原理研究[J].半导体学报,2008,29(6):1141-1146
    [117] Liu Z.X., Kuroda R., Fukuzawa Y., et al. Doping of β-FeSi2thin film with aluminumprepared by molecular beam epitaxy [J]. Appl. Phys. Express,2008,1(10):101402
    [118] Liu Z.X., Osamura M., Ootsuka T., et al. Boron doping for p-type β-FeSi2films bysputtering method [J]. Jpn. J. Appl. Phys.,2004,43(4A): L504-L506
    [119] Erlesand U., Ostling M. Dopant redistribution during the formation of iron silicides [J].Appl. Surf. Sci.,1993,73:186-196
    [120] Fukuzawa Y., Kuroda R., Liu Z.X., et al. Ga-doping for β-FeSi2films prepared bymolecular beam epitaxy [J]. Opt. Mater.,2005,27(5):935-941
    [121]孙以材.半导体测试技术[M].北京:冶金工业出版社,1984:13
    [122]孙以材.半导体测试技术[M].北京:冶金工业出版社,1984:16-22
    [123] Hashimoto S., Terai Y., Fujiwara Y. Improved initial epitaxial growth of β-FeSi2onSi(111) substrate by Al-doping [J]. Phys. Status Solidi C,2008,5(9):3159-3161
    [124]刘恩科,朱秉升,罗晋升.半导体物理学[M].第4版.北京:国防工业出版社,2004:86
    [125] Hohenberg P., Kohn W. Inhomogeneous electron gas [J]. Phys. Rev,1964,136:B864-B871
    [126] Kohn W., Sham L.J. Self-consistent equations including exchange and correlationeffects [J]. Phys. Rev,1965,140: A1133-A1138
    [127] Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett.,1996,77(18):3865-3868
    [128] Segall M.D., Lindan P.J.D., Probert M.J., et al. First-principles simulation: ideas,illustrations and the CASTEP code [J]. J. Phys.: Condens. Matter,2002,14(11):2717-2744
    [129] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalueformalism [J]. Phys. Rev. B,1990,41(11):7892-7895
    [130] Monkhorst H.J, Pack J.D. Special points for Brillouin-zone integrations [J]. Phys. Rev.B,1976,13(12):5188-5192
    [131] Liu Z.X., Tanaka M., Kuroda R., et al. Influence of Si/Fe ratio in multilayer structureson crystalline growth of β-FeSi2thin film on Si substrate [J]. Appl. Phys. Lett.,2008,93(2):021907
    [132] Zhang S.B., Wei S.H, Zunger A., et al. Defect physics of the CuInSe2chalcopyritesemiconductor [J]. Phys. Rev. B,1998,57(16):9642-9656
    [133] Tani J., Kido H. Geometrical and Electronic Structures of β-FeSi1.875X0.125(X=B, N,Al or P)[J]. Jpn. J. Appl. Phys.,2002,41(11A):6426-6429
    [134]沈学础.半导体光谱和光学性质[M].第二版.北京:科学出版社,2002:2
    [135] Liu Z.X., Osamura M., Ootsuka T., et al. Formation of β-FeSi2thin films onnon-silicon substrates [J]. Thin Solid Films,2006,515(4):1532-1538
    [136] Liu Z.X., Osamura M., Ootsuka T., et al. Effect of a Fe3Si buffer layer for the growthof semiconducting β-FeSi2thin film on stainless steel substrate [J], J. Cryst. Growth,2007,307(1):82-86
    [137] Nakayama Y., Liu Z.X., Osamura M., et al. Growth of beta-iron disilicide (β-FeSi2) onflexible metal sheet substrates for solar-cell application [J]. Proc. of SPIE,2006,6197:619718
    [138] Herz K., Powalla M. Electrical and optical properties of thin β-FeSi2films on A12O3substrates [J]. Appl. Surf. Sci.,1995,91:87-92
    [139] Chen H.C., Liao K.F., Lee S.W., et al. Formation of epitaxial β-FeSi2nanodots arrayon strained Si/Si0.8Ge0.2(001) substrate [J]. Thin Solid Films,2004,461(1):44-47
    [140] Herz K., Powalla M., Eicke A. Polycrystalline β-FeSi2thin films on non-siliconsubstrates [J]. Phys. Status Solidi A,1994,145(2):415-424
    [141] Luo L., Zybill C.E., Ang H.G., et al. Substrate influence on the formation of FeSi andFeSi2films from cis-Fe(SiCl3)2(CO)4by LPCVD [J]. Thin Solid Films,1998,325(1-2):87-91
    [142] Shimura K., Yamaguchi K., Sasase M., et al. Characterization of photoluminescence ofβ-FeSi2thin film fabricated on Si and SIMOX substrate by IBSD method [J]. Vacuum,2006,80(7):719-722
    [143] Milosavljevic M., Shao G., Bibic N., et al. Synthesis of amorphous FeSi2by ion beammixing [J]. Nucl. Instrum. Methods Phys. Res., Sect. B,2002,188:166-169
    [144] Milosavljevic M., Shao G., Bibic N., et al. Amorphous-iron disilicide: A promisingsemiconductor [J]. Appl. Phys. Lett.,2001,79(10):1438-1440
    [145] Wong L., Milosavljevic M., Lourenco M.A., et al. Annealing and depositiontemperature dependence of the bandgap of amorphous FeSi2fabricated by co-sputterdeposition [J]. Semicond. Sci. Technol.2008,23(3):035007
    [146] Milosavljevic M., Shao G., Lourenco M.A., et al. Transition from amorphous tocrystalline beta phase in co-sputtered FeSi2films as a function of temperature [J]. J.Appl. Phys.,2005,98(12):123506
    [147] Liu Z.X., Suzuki Y., Osamura M., et al. Reduction of iron diffusion in silicon duringthe epitaxial growth of β-FeSi2films by use of thin template buffer layers [J]. J. Appl.Phys.,2004,95(8):4019-4024
    [148] Gong D.R., Li D.S., Yuan Z.Z., et al. Optical properties of single-phase β-FeSi2filmsfabricated by electron beam evaporation [J]. Appl. Surf. Sci.,2008,254(15):4875-4878
    [149] Schuller B., Carius R., Mantl S. Optical and structural properties of β-FeSi2precipitatelayers in silicon [J]. J. Appl. Phys.2003,94(1):207-211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700