用户名: 密码: 验证码:
高寒沙地乌柳林生理生态特性及植被恢复过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
退化生态系统恢复的实质是群落演替,植物生理生态学作为生态系统结构与功能关系的研究内容之一,在退化生态系统植被恢复的研究中起着非常重要的作用。为了研究高寒沙地人工乌柳林植被建设对退化生态系统恢复过程的影响以及乌柳本身在当地特殊高寒环境条件下的生理生态特征,本研究从植物生理生态学角度出发,通过对处于不同恢复阶段乌柳的光合生理、水分生理、叶片结构型性状特征以及乌柳林群落结构和林下物种多样性、土壤理化性质等方面进行了系统的比较研究。主要研究结果如下:
     (1)25和37年生乌柳P_n日变化为双峰曲线,出现了光合“午休”现象;4和11年生乌柳P_n日变化为单峰曲线。11和25年生乌柳P_n和T_r日均值显著高于4和37年生乌柳,4年生乌柳WUEt日均值显著高于其它3个林龄乌柳。采用Michaelis-Menten模型对各林龄乌柳的光响应和CO_2响应参数拟合良好。11年生乌柳α值显著高于其它3个林龄乌柳;4和37年生乌柳R_d值显著高于11和25年生乌柳;11和25年生乌柳Amax值显著高于4和37年生乌柳。叶绿素荧光参数中,11和25年生乌柳Φ_PSⅡ、q_P日均值显著高于4年生乌柳,4年生乌柳NPQ日均值显著高于其它3个林龄乌柳,37年生乌柳NPQ日均值显著高于11年生乌柳。林龄对乌柳的光合能力产生了显著影响:11和25年生乌柳的光合能力较强;4年生乌柳的水分利用效率较高;37年生乌柳的光合能力和水分利用效率均显著降低,植株应已处于生长发育衰退期。
     (2)各林龄乌柳相对水分亏损无显著差异。37年生乌柳水势日均值显著低于其它3个林龄乌柳,4和11年生乌柳水势日均值显著低于25年生乌柳,37年生乌柳在日尺度上受到了严重的水分胁迫。4年生乌柳失水率显著低于其它3个林龄乌柳,25年生乌柳失水率显著低于11年生乌柳,4和25年生乌柳的抗旱能力较强。4年生乌柳SLA显著低于其它3个林龄乌柳,表明其水分利用效率较高。11年生乌柳N_mass显著高于其它3个林龄乌柳,25年生乌柳N_mass显著高于37年生乌柳,表明11和25年生乌柳的光合能力较强。11年生乌柳P_mass显著高于25和37年生乌柳,4年生乌柳P_mass显著高于25年生乌柳。25年生乌柳N_mass/P_mass显著高于4和11年生乌柳,各林龄乌柳N_mass/P_mass在5.16~6.28之间,表明乌柳的生长严重受到氮素缺乏的制约。4个林龄乌柳N_mass与P_mass呈显著正相关,P_mass与N_mass/P_mass呈极显著负相关,P_mass与林龄呈显著负相关,N_mass/P_mass与林龄呈显著正相关。林龄对乌柳的水分生理状况和叶片结构型性状产生了显著影响:25年生乌柳的水分条件较好,抗旱能力较强,由叶性状参数反映出的光合能力也较强;11年生乌柳的水分条件较差,抗旱能力较弱,但由叶性状参数所反映出的光合能力却最强;4年生乌柳的水分条件较差,但其抗旱能力较强,由叶性状反映出的水分利用效率也较高;37年生乌柳的水分条件恶劣,抗旱能力较弱,由叶性状反映出的光合能力也最弱,植株应已处于生长发育衰退期。
     (3)4个林龄乌柳林下重要值较大的物种不尽相同,赖草在各林龄乌柳林下植被群落中均以优势种的地位出现,表明其适应性较强。随着林龄的增加,在流动、半流动沙地中出现的一年生植物逐渐从群落中消失,半灌木、灌木开始出现在林下植被中,群落结构趋于稳定。演替各阶段多年生植物的单种重要值明显大于一年生植物,多年生植物在林下植物群落功能维持中起着重要作用。随演替进展林下植物群落物种丰富度、物种多样性、均匀度、生态优势度指数均表现出逐渐增加的趋势。林龄对乌柳林下的群落结构组成和物种多样性产生了显著影响:随着乌柳林龄的增加,林下植物群落的组成向着均匀化方向发展,物种丰富度和多样性指数不断增加,林下植被群落得到了较好的恢复。
     (4)在乌柳林生长发育过程中,林下0~10cm土层土壤含水量逐渐增加,10~20cm土层土壤含水量先减少后增加,0~10cm土层土壤含水量的变化幅度明显大于10~20cm土层土壤。0~10cm和10~20cm土层土壤粉粒、有机质、TOC和TN含量随乌柳林恢复年限的增加而增加,在垂直方向上其增幅和含量呈降低趋势。0~10cm和10~20cm土层土壤沙砾含量和pH值随乌柳林恢复年限的增加而降低,在垂直方向上其降幅呈降低趋势,含量呈升高趋势。土壤pH与TOC、TN呈极显著负相关,TOC与TN呈极显著正相关,土壤中沙砾(1~0.05mm)含量与有机质、TOC和TN含量呈极显著负相关,粉粒(0.05~0.002mm)含量与有机质、TOC和TN含量呈极显著正相关。在研究区域,有机质、TOC和TN因土壤颗粒组成变化而积累的定量关系可用线性方程较好的预测,为乌柳林植被恢复过程中不同阶段的土壤碳汇量的估算提供了依据。林龄对乌柳林下土壤环境特征参数产生了显著影响:随着乌柳林龄的增加,林下表层土壤的理化性状逐渐得到改善;乌柳林的建设有利于风沙土的固定和发育,其作用随林龄的增加而增强,随土层深度的增加而降低;沙砾含量的减少和粉粒含量的增加共同导致土壤质地的细粒化,并伴随着土壤碱性的减弱和碳、氮的固存效应。
The essentiality of restoration of degraded ecosystem is community succession. Plantphysiological ecology is one of the research content of relation between ecosystem structureand function, playing important roles in the research of vegetation recovery of degradedecosystem. In order to understand the effect of Salix cheilophila plantation on the recoveryprocess of degraded ecosystem and adaptive characters of S. cheilophila plantation to localspecific high-cold climate condition in alpine sandy land, In this study, the physiological andecological characteristics of S. cheilophila vegetation were researched, includingphotosynthetic physiology, water physiology, leaf structure traits, community structure of S.cheilophila plantation, understory species diversity and soil physicochemical properties, themain results are as follows:
     (1) Four stand ages S. cheilophila showed different diurnal courses of gas exchange. Thediurnal fluctuations of net photosynthetic rate of37-and25-years-old S. cheilophila wererepresented by a bimodal curve, appearing the photosynthetic midday depression.11-and4-years-old S. cheilophila were represented by a unimodal curve. P_nand T_rof11-and25-years-old S. cheilophila was significantly higher that of4-and37-years-old S. cheilophila,while WUEtof4-years-old S. cheilophila was significantly higher that of other three stand ageS. cheilophila. Light response parameters fitting and CO_2response parameters fitting revealedthe initial quantum yield(α) of11-years-old S. cheilophila was significantly higher than that ofother three stand age S. cheilophila, and photosynthetic capacity (Amax) of11-and25-years-oldS. cheilophila were significantly higher than those of4-and37-years-old S. cheilophila,simultaneously, the dark respiratory rate(R_d) were significantly lower than that of4-and37-years-old S. cheilophila, indicating both of them have stronger photosynthetic and organicmatter accumulation ability. Meanwhile, the actual photochemical quantum efficiency (Φ_PSⅡ)and photochemical quenching coefficient (q_P) of11-and25-years-old S. cheilophila weresignificantly higher than that of4-years-old S. cheilophila, indicating both of them havestronger photosynthetic ability. Simultaneously, non-photochemical quenching coefficient(NPQ) of4-years-old S. cheilophila was significantly higher than that of other three stand age S.cheilophila, and NPQ of37-years-old S. cheilophila was significantly higher than that of11-years-old S. cheilophila, suggesting that there were a lot of light energy absorbed of4-and37-years-old S. cheilophila can not be used for photosynthesis, dissipating in the form of heat.
     The conclusion is that photosynthetic capacity of S. cheilophila shows significant changewith the increase of stand age. The photosynthetic capacity of11-and25-years-oldS.cheilophila is comparatively even higher, and the photosynthetic capacity and waterutilization efficiency of37-years-old S.cheilophila is decreasing obviously, which indicates thatthe plant of37-years-old S.cheilophila is in decline stage of growth and development.
     (2) The relative water deficit of four ages S. cheilophila had no significant difference. Thedaily mean value of water potential of37-years-old S. cheilophila was significantly lower thatof other three stand ages S. cheilophila, and the daily mean value of water potential of4-and11-years-old S. cheilophila was significantly lower that of25-years-old S. cheilophila, whichindicated that37-years-old S cheilophila suffers serious drought stress. The water losing rate of4-years-old S. cheilophila was significantly lower than that of other three stand ages S.cheilophila, and the water losing rate of25-years-old S. cheilophila was significantly lowerthat of11-year-old S. cheilophila, which indicated that4-and11-years-old S cheilophila havehigher drought resistance capability. Simultaneously, the SLA of4-years-old S. cheilophila wassignificantly lower that of other three stand ages S. cheilophila, implying the water useefficiency of4-years-old S. cheilophila is even higher. The N_massof11-years-old S. cheilophilawas significantly higher that of other three stand ages S. cheilophila, and the N_massof25-years-old S. cheilophila was significantly higher that of37-years-old S. cheilophila,implying photosynthetic capacity of11-and25-years-old S. cheilophila is even higher. TheP_massof11-years-old S. cheilophila was significantly higher that of25-and37-years-old S.cheilophila, and the P_massof4-years-old S. cheilophila was significantly higher that of25-years-old S. cheilophila. The N_mass/P_massof25-years-old S. cheilophila was significantlyhigher that of11-and25-years-old S. cheilophila, meanwhile, the average N_mass/P_masswerebetween5.16and6.28, far below14, which revealed the productivity of S. cheilophila inGonghe basin is nitrogen limited. Correlation analysis indicated that the N_massof four ages S.cheilophila was significantly positively correlated with P_mass, the P_massof four ages S.cheilophila was highly significantly negatively correlated with N_mass/P_mass, the P_massof fourages S. cheilophila was significantly negatively correlated with stand age, and the N_mass/P_massoffour ages S. cheilophila was significantly positively correlated with stand age.
     The conclusion is that water physiological status and leaf structure type traits of S.cheilophila shows significant change with the increase of stand age. The water physiologicalstatus of11-years-old S.chelophila is better, and drought resistance capability is stronger, andthe photosynthetic capacity reflected by leaf traits is higher. The drought-resistant ability of11-years-old S.chelophila is weaker, but the photosynthetic capacity reflected by leaf traits is the highest.4-years-old S.chelophila reveals stonger drought-resistant ability and waterutilization efficiency through its own adjustment of physiology and leaf traits under worsewater condition. The drought-resistant ability of37-years-old S.chelophila decreasesignificantly as well as photosynthetic capacity reflected by leaf traits, which indicates that theplant of37-years-old S.cheilophila is in decline stage of growth and development.
     (3) The species of the important value were different in four understory vegetation of S.cheilophila. Leymus decalinus was the dominant species in understory vegetation of differentstand ages of S. cheilophila, which indicated that L. decalinus has strong adaptability. With theincrease of age, some annual species in drifting or semi-drifting sandy land graduallydisappeared from the community, and shrub and subshrub began to appear in the undergrowthvegetation community, implying the structure of undergrowth vegetation community tended tobe stable. During the process of succession, the important value of one perennials species wassignificantly higher than that of annuals, which indicated that perennial plants played animportant role in maintenance of community function. Both aboveground biomass andcoverage of understory communities presented increasing-decreasing-increasing trend in theprocess of vegetation restoration. Simultaneously, the species richness, species diversity,evenness and ecological dominance index of undergrowth vegetation community increasedwith progress of succession, which indicated that structure tended to be stable and ecosystemfunction also strengthened constantly. In early-middle period of vegetation restoration, due tothe poor stability of the soil substrate, low soil nutrients and the competition and shading ofupper Salix cheilophila, the restorative course for understory species diversity were relativelyslow, and primary productivity and coverage of vegetation aslo be in low level. Therefore, inorder to promote development of forest stands and understory species diversity, a selectivecutting for upper layer of S. cheilophila plantation should be carried out in the middle stage ofsuccession. Meanwhile, upper layer of S. cheilophila plantation was in a state of decline in thelater stage of succession, stumping and rejuvenating treatments should be done to improvestability and ecological function of forest stands.
     The conclusion is that community structure and understoryapecies diversity of S.cheilophila shows significant change. With the increase of stand age of S. cheilophila, thestructure of undergrowth vegetation community tend to be stable, and diversity of species areincreasing, and ecosystem function improve steadly.
     (4) With the growth of S. cheilophila plantation, soil water content of0~10cm increasedgradually, while soil water content of10~20cm primarily decreased and then increased, therangeability of0~10cm soil water content was obviously higher than10~20cm soil water content. The soil silt, organic matter, TOC and TN content of0~10cm and10~20cm soil layerincreased with the restoration period of S. cheilophila plantation, and the increase amplitudeand the content presented decreasing trend in vertical direction. Simultaneously, soil sandcontent and pH of0~10cm and10~20cm soil layer decreased with ages increasing of S.cheilophila plantation, and the falling range presented decreasing trend, and the content wastending to rise in vertical direction. The Soil pH was highly significantly negatively correlatedwith TOC and TN. TOC was highly significantly positively correlated with TN. Soil sand(1~0.05mm) content was highly significantly negatively correlated with organic matter, TOC,and TN content. Soil silt (0.05~0.002mm) content was highly significantly positivelycorrelated with organic matter, TOC, and TN content. In research area, it could be predicted foraccumulated quantitative relation of organic matter, TOC, TN because of soil particlescomposition by linear equation, which provided scientific basis to estimate soil carbon sink inthe process of S. cheilophila plantation vegetation restoration.
     The conclusion is that characteristic parameters of forest soil of S. cheilophila showssignificant change. With the increase of stand age of S. cheilophila, the physicochemicalproerty of surface soil layer improved gradually. The increase of the content of silt and thedecrease of the content of sand grains led jointly the fining of soil texture in surface soil layer,the fining of soil texture was accompanied with the soil environment improved and the fixedexisting effect of organic carbon and nitrogen.
引文
[1]杨维西.全球变化中的中国干旱区—响应与趋势.林业科学,2008,44(8):124-130
    [2]国家林业局.中国荒漠化和沙化状况公报.北京:国家林业局,2011
    [3]张宏,慈龙骏,孙保平.对荒漠化几个理论问题的初步探讨.地理科学,1999,19(5):446-450
    [4]殷贺,李正国,王仰麟.荒漠化评价研究进展.植物生态学报,2011,35(3):345-352
    [5]张健,刘国彬.黄土丘陵区不同植被恢复模式对沟谷地植物群落生物量和物种多样性的影响.自然资源学报,2010,25(2):207-217
    [6] Osterkamp W R, Hupp C R, Stoffel M. The interactions between vegetation and erosion: new directionsfor research at the interface of ecology and geomorphology. Earth Surface Processes and Landforms,2012,37:23-26
    [7] Wang Tao. Progress in sandy desertification research of China. Journal of Geographical Sciences,2004,14:387-400
    [8]谭振忠,李婷.青海省共和县沙珠玉沙漠化动态及防治成效.安徽农业科学,2011,39(16):9778-9779
    [9]张登山.青海高原土地沙漠化及其防治.北京:科学出版社,2009
    [10]赵平.退化生态系统植被恢复的生理生态学研究进展.应用生态学报,2003,14(11):2031-2036
    [11]潘瑞炽,董愚得.植物生理学(第5版).北京:高等教育出版社,2004:56-57;84-86
    [12]许大全.光合作用的光抑制.植物生理学通讯,1997,33(6):467
    [13]许大全.植物光胁迫研究中的几个问题.植物生理学通讯,2003,39(5):493-495
    [14] Hans L, Chapin F S, Pons T L.张国平,周伟军译.植物生理生态学.浙江:浙江大学出版社,2003
    [15]龚垒.树木光合作用与物质生产.北京:科学技术出版社,1989
    [16]许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯,1997,3(4):241-244
    [17] Escalona J M, Flexas J, Medrano H. Stomatal and non-stomatal limitations of photosynthesis underwater stress in field-grown grapevines. Australian Journal of Plant Physiology,1999,26(5):421-433
    [18] Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3plants: Stomatal and non-stomatallimitations revisited. Annals of Botany,2002,89(2):183-189
    [19]李机密,黄儒珠,王健,等.陆生植物水分利用效率.生态学杂志,2009,28(8):1655-1663
    [20]蒋高明,韩兴国,林光辉.大气CO2浓度升高对植物的直接影响——国外十余年来模拟实验研究之主要手段及基本结论.植物生态学报,1997,21(6):489-502
    [21] Ward J K, Strain B R. Elevated CO2studies past, present and future. Tree physiology,1999,19(2):211-220
    [22]郑凤英,彭少麟.植物生理生态指标对大气CO2浓度倍增响应的整合分析.植物学报,2001,4(311):1101-1109
    [23] Walter. Physiological Plant Ecology. Berlin: Springer,1997
    [24]许振柱,周广胜.陆生植物对全球变化的适应性研究进展.自然科学进展,2003,13(2):113-119
    [25]陈根云,俞冠路,陈悦.光合作用对光和二氧化碳的观测方法.植物生理与分子生物学报,2006,32(6):691-696
    [26]曾小美,袁琳,沈允刚.拟南芥连体和离体叶片光合作用的光响应.植物生理学通讯,2002,38(1):25-26
    [27] Thornley J H M. Mathematical models in plant physiology. London: Academic Press,1976,86-110
    [28] Farquhar G D, Caemmerers S, Berry J A. A biochemical model of photosynthetic CO2assimilation inleaves of C3species. Planta,1980,149:78-90
    [29]郭志达,张宏达,李志安,等.鹅掌楸苗期光合特性研究.生态学报,1999,19(2):164-169
    [30]叶子飘,于强.光合作用光响应模型的比较.植物生态学报,2008,32(6):1356-1361
    [31]段爱国,张建国.光合作用光响应曲线模型选择及低光强属性界定.林业科学研究,2009,22(6):765-771
    [32]叶子飘.光响应模型在超级杂交稻组合—Ⅱ优明86中的应用.生态学杂志,2007,26(8):1323-1326
    [33] Ye Z P. A new model for relationship between light intensity and the rate of photosynthesis in Oryzasativa. Photosynthetica,2007,45(4):637-640
    [34]谭晓红,王爽,马履一,等.豫西刺槐能源林培育的光合生理生态理论基础.生态学报,2010,30(11):2940-2948
    [35]叶子飘,康华靖,陶月良,等.不同模型对黄山栾树快速光曲线拟合效果的比较.生态学杂志,2011,30(8):1662-1667
    [36] Harley P C, Thommas R B, Reynolds J F, et al. Modeling photosynthesis of cotton grown in elevatedCO2. Plant, Cell&Environment,1992,15,271-282
    [37]叶子飘.光合作用对光合CO2响应模型的研究进展.植物生态学报,2010,34(6):727-740
    [38] Yu Q, Zhang Y Q, Liu Y F, et al. Simulation of the stomatal conductance of winter wheat in response tolight, temperature and CO2changes. Annals of Botany,2004,93:435-441
    [39]王建林,于贵瑞,王伯伦,等.北方粳稻光合速率、气孔导读对光合有效辐射和CO2浓度的响应.植物生态学报,2005,29(1):16-25
    [40]叶子飘,于强.光合作用对胞间和大气CO2响应曲线的比较.生态学杂志,2009,28(11):2233-2238
    [41] Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosyntheticelectron transport and quenching of ChlorophyⅡ fluorescence. Biochimica Biophysica Acta,1989,990:87-92
    [42] Schreiber U, Bilger W, Neubauer C. ChlorophyⅡ fluorescence as a non-destructive indicator for rapidassessment of in vivo photosynthesis. Ecological Studies,1994,100:49-70
    [43]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,18(1):51-55
    [44]韩刚,赵忠.不同土壤水分下4种沙生灌木的光合光响应特征.生态学报,2010,30(15):4019-4026
    [45]赵长明,魏小平,尉秋实,等.民勤绿洲荒漠过渡带植物白刺和梭梭光合特性.生态学报,2005,25(8):1908-1913
    [46] McIntyre S, Lavorel S, Landsberg J, et al. Disturbance response in vegetation—towards a globalperspective on functional traits. Journal of Vegetation Science,1999,10:621-630
    [47] Wright I J, Westoby M. Nutrient concentration, resorption and lifespan: leaf traits of Australiansclerophyll species. Functional Ecology,2003,17:10-19
    [48] Reich P B, Wright I J, Cavender B J, et al. The evolution of plant functional variation: Traits, spectraand strategies. International Journal of Plant Sciences,2003,164(3): S143-S164
    [49] Luo T X, Luo J, Pan Y D. Leaf traits and associated ecosystem characteristics across subtropical andtimberline forests in the Gongga Mountains, Eastern Tibetan Plateau. Oecologia,2005,142:261-273
    [50] Vendramini F, Diaz S, Gurvich D E, et al. Leaf traits as indicators of resource-use strategy in floras withsucculent species. New Phytologist,2002,154(1):147-157
    [51] Wright I J, Rrich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature,2004,428:821-827
    [52] Liu F-D, Yang W J, Wang Z S, et al. Plant size effects on the relationships among specific leaf area, leafnutrient content, and photosynthetic capacity in tropical woody species. Acta oecologica,2010,36:149-159
    [53] Anacker B, Rajakaruna N, Ackerly D, et al. Ecological strategies in California chaparral: interactingeffects of soils, climate, and fire on specific leaf area. Plant Ecology&Diversity,2011,4:179-188
    [54]张林,罗天祥.植物叶寿命及其相关叶性状的生态学研究进展.植物生态学报,2004,28(6):844-852
    [55]张国盛.干旱、半干旱地区乔灌木树种耐旱性及林地水分动态研究进展.中国沙漠,2000,20(4):363-368
    [56]季孔庶,孙志勇,方彦.林木抗旱性研究进展.南京林业大学学报:自然科学版,2006,30(6):123-128
    [57]何明珠,王辉,陈智平.荒漠植物持水力研究.中国沙漠,2006,26(3):403-408
    [58]解婷婷,张希明,梁少明,等.不同灌溉量对塔克拉玛干沙漠腹地梭梭水分生理特性的影响.应用生态学报,2008,19(4):711-716
    [59]占东霞,庄丽,李卫红,等.准噶尔盆地南缘“丰收林”胡杨水势.生态学杂志,2011,30(4):643-649
    [60]何海燕,许国辉,马国强,等.青海东部主要造林树种的水分生理研究.西北林学院学报,2003,18(2):9-12
    [61] Zhao D-L, Glaz B, Comstock J C, et al. Sugarcane response to water-deficit stress during early growthon organic and sand soils. American journal of agricultural and biological science,2010,5:403-414
    [62]高俊凤.植物生理学实验指导.北京:高等教育出版社,2006,16
    [63]王丁,姚健,杨雪,等.干旱胁迫条件下6种喀斯特主要造林树种苗木叶片水势及吸水潜能变化.生态学报,2011,31(8):2216-2226
    [64]谭永芹,柏新富,朱建军,等.干旱区五种木本植物枝叶水分状况与其抗旱性能.生态学报,2011,31(22):6815-6923
    [65]贺金生,马克平.物种多样性.见:蒋志刚.保护生物学.杭州:杭州科学技术出版社,1997:20-23
    [66] Tilman D, Wendin D, Konops J. Productivity and sustainability influenced by biodiversity in grasslandecosystems. Nature,1996,379:718-720
    [67]汪殿蓓,暨淑仪,陈鹏飞.植物群落多样性研究.生态学杂志,2001,20(1):55-60
    [68] Heshmatti G, Squires V R. Geobotany and range ecology: a convergence of thought?. Journal of AridEnvironments,1997,35:395-405
    [69]张继义,赵哈林,张铜会,等.科尔沁沙地植被恢复系列上群落演替与物种多样性恢复动态.植物生态学报,2004,28(1):86-92
    [70]刘美珍,蒋高明,于顺利,等.浑善达克退化沙地恢复演替18年中植物群落动态变化.生态学报,2004,24(8):1734-1739
    [71]马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性研究Ⅱ丰富度、均匀度和物种多样性指数.生态学报,1995,15(3):268-277
    [72]黄忠良,孔国辉,魏平.鼎湖山植物物种多样性动态.生物多样性,1998,6(2):116-121
    [73]丁圣彦,宋永昌.浙江天童国家森林公园常绿阔叶林演替前期的群落生态学特征.植物生态学报,1999,23(2):97-107
    [74]马建军,姚虹,冯朝阳,等.内蒙古典型草原区3种不同草地利用模式下植物功能群及其多样性的变化.植物生态学报,2012,36(1):1-9
    [75]孙荣,袁兴中,刘红,等.三峡水库消落带植物群落组成及物种多样性.生态学杂志,2011,30(2):208-214
    [76]马克平.生物群落多样性测度方法.钱迎倩,马克平主编.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994,141-165
    [77] Magurran A E.生物多样性测度.张峰,主译.北京:科学出版社,2011
    [78]张林静,岳明,赵桂仿,等.新建阜康地区植物群落物种多样性及其测度指标的比较.西北植物学报,2002,22(2):350-358
    [79]晋瑜,潘存德,王梅,等.荒漠植物群落物种多样性及其测度指标比较.干旱区地理,2005,28(1):113-119
    [80]叶万辉.物种多样性与植物群落的维持机制.生物多样性,2000,8(1):17-24
    [81] Ricklefs R E. Community diversity: relative roles of local and regional processes. Science,1987,235:167-171
    [82]贺金生,陈伟烈.陆生植物群落物种多样性的梯度变化特征.生态学报,1997,17(1):91-99
    [83] Tilman D, Dowing J A. Biodiversity and stability in grasslands. Nature,1994,367:363-365
    [84] Walker B H. Biological diversity and ecological redundancy. Conservation Biology,1992,6:18-23
    [85] Husron M A. Hidden treatment in ecological: reevaluating the ecosystem function of biodiversity.Oecologia,1997,10:449-460
    [86]任海,彭少麟,陆宏芳.退化生态系统恢复与恢复生态学.生态学报,2004,24(8):1756-1764
    [87]李俊清,崔国发.西北地区天然林保护与退化生态系统恢复理论思考.北京林业大学学报,2000,22(4):1-7
    [88] Whittaker R H. Evolution and measurement of species diversity. Taxon,1972,21:213-251
    [89] Aronson J, Floret C, Le Floc’h E, et al. Restoration and rehabilitation of degraded ecosystems in aridand semi-arid lands Ⅰ.—A view from the south. Restotation Ecology,1993,1(1):8-17
    [90] Webster R. Is soil variation random. Geoderma,2000,97:149-163
    [91] Goderya F S. Field scale variations in soil properties for spatially variable control: a review. Journal ofSoil Contamination,1998,7:243-264
    [92]贾晓红,李新荣,李元寿.干旱沙区植被恢复中土壤碳氮变化规律.植物生态学报,2007,31(1):66-74
    [93]彭少麟.恢复生态学与植被重建.生态科学,1996,15(2):26-31
    [94] Fu X L, Shao M G, Wei X R, et al. Soil organic carbon and total nitrogen as affected by vegetation typesin Northern Loess Plateau of China. Geoderma,2010,155:31-35
    [95] Zhou Z Y, Li F R, Chen S K, et al. Dynamics of vegetation and soil carbon and nitrogen accumulationover26years under controlled grazing in a desert shrubland. Plant and Soil,2011,341:257-268
    [96]吴彦,刘庆,乔永康,等.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响.植物生态学报,2001,25(6):648-655
    [97]林大仪.土壤学实验指导.北京:中国林业出版社,2004:23
    [98] Karlen D L, Rosek M J, Gardner J C, et al. Conservation reserve program effects on soil qualityindicators. Journal of Soil and Water Conservation,1999,54:439-444
    [99] Karlen D L, Ditzler C A, Andrews S S. Soil quality: why and how?. Geoderma,2003,114:145-156
    [100]肖洪浪,李新荣,宋耀选,等.土壤—植被系统演变对生物防沙工程的影响.林业科学,2004,40(1):24-30
    [101]王月玲,蔡进军,张源润,等.半干旱退化区不同生态恢复与重建措施下土壤理化性质的特征分析.水土保持研究,2007,14(1):11-14
    [102]贾晓红,李新荣,陈应武,等.植被恢复对旱区表土颗粒中有机碳和氮分布的影响.中国环境科学,2006,(26):560-564
    [103]赵世伟,苏静,吴金水,等.子午岭植被恢复过程中土壤团聚体有机碳含量的变化.水土保持学报,2006,20(3):114-117
    [104] Cotrufo M F, Conant R T, Paustian K. Soil organic matter dynamics: land use, management and globalchange. Plant and Soil,2011,338:1-3
    [105]李锋,孙司衡.景观生态学在荒漠化监测与评价中应用的初步研究——以青海沙珠玉地区为例.生态学报,2001,21(3):481-485
    [106]周志宇,张莉丽,高文星,等.试论灌木是干旱、半干旱区草地恢复中重要的生物资源.草业科学,2007,24(12):19-21
    [107]苏永中,赵哈林,张铜会.几种灌木、半灌木对沙地土壤肥力影响机制的研究.应用生态学报,2002,13(7):802-806
    [108]中国科学院中国植物志编辑委员会.中国植物志(第20(2)卷).北京:科学出版社,1984:353
    [109]许大全.光合速率、光合效率与作物产量.生物学通讯,1999,34(8):8-9
    [110]于贵瑞,王秋凤.植物光合蒸腾与水分利用的生理生态学.北京:科学出版社,2010:171-172
    [111] Xu D Q. Progress in photosynthesis research: from molecular mechanisms to green revolution. ActaPhytophysiologica Sinica,2001,27(2):97-108
    [112]郑淑霞,上官周平.8种阔叶树种叶片气体交换特征和叶绿素荧光特征比较.生态学报,2006,26(4):1080-1087
    [113]简在友,王文全,孟丽,等.芍药组内不同类群间光合特性及叶绿素荧光特性比较.植物生态学报,2010,34(12):1463-1471
    [114] Bertamini M, Muthuchelian K, Nedunchezhian N. Shade effect alters leaf pigments and photosyntheticresponses in Norway spruce (Picea abies L.) grown under field conditions. Photosynthetica,2006,44(2):227-234
    [115] Larcher W.植物生理生态学.北京:中国农业大学出版社,1997:93-94
    [116] Harley P C, Tenhunen J D. Modeling the photosynthetic response of C3leaves to environmentalfactors∥Boote K J and Loomis R S eds. In symposium on modeling crop photosynthesis-frombiochemistry to canopy. CSSA special publication NO.19, American Society of Agronomy and CropScience Society of America, Madison, WI,1991:17-39
    [117] Harley P C, Thomas R B, Reynolds J F, Strain B R. Modeling photosynthesis of cotton grown inelevated CO2. Plant, Cell and Enviroment,1992,15(3):271-282
    [118]蔡时青,许大全.大豆叶片CO2补偿点和光呼吸的关系.植物生理学报,2000,26(6):545-550
    [119] Gimenez C, Mitchell V J, Lawlor D W. Regulation of photosynthetic rate of two sunflower hybridsunder water stress. Plant Physiology,1992,98(2):516-524
    [120]许大全.光合作用测定及研究中一些值得注意的问题.植物生理学通讯,2006,42(6):1163-1167
    [121]许大全.光合作用“午睡”现象的生态、生理与生化.植物生理学通讯,1990,26(6):5-10
    [122] Xu H, Li Y, Xu G Q, Zou T. Ecophysiological response and morphological adjustment of two CentralAsian desert shrubs towards variation in summer precipitation. Plant, Cell and Enviroment,2007,30(4):399-409
    [123]许大全.光合作用效率.上海:上海科学技术出版社,2002:33-51
    [124] Lusk C H, Reich P B. Relationships of leaf dark respiration with light environment and tissue nitrogencontent in juveniles of11cold temperate tree species.Oecologia,2000,123(3):318-329
    [125]许大全,张玉忠,张荣铣.植物光合作用光抑制.植物生理学通讯,1992,28(4):237-243
    [126]张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,1694):444-448
    [127] Ort D R. When there is too much light. Plant Physiology,2001,125(1):29-32
    [128]李吉跃,翟洪波.木本植物水力结构与抗旱性.应用生态学报,,2000,11(2):301-305
    [129]郑志兴,孙振华,张志明,等.干热河谷植物叶片,树高和种子功能性状比较.生态学报,2011,31(4):0982-0988
    [130] Shipley B, Lechowicz M J, Wright I J, et al. Fundamental trade-offs generating the worldwide leafeconomics spectrum. Ecology,2006,87:535-541
    [131] Güsewell S. N:P ratios in terrestrial plants: variation and functional significance. New phytologist,2004,164:243-266
    [132]邹琦.植物生理学实验指导.北京:中国农业出版社,2000:195
    [133]刘丽颖.共和盆地两种人工灌木林水分利用策略和生长适应性研究.北京:中国林业科学研究院,2011:34-35
    [134] Chesson P, Gebauer R L E, Schwinning S, et al. Resource pulses, species interactions, and diversitymaintenance in arid and semi-arid environments. Oecolagia,2004,141:236-253
    [135] Songsri P, Jogloy S, Holbrook C C, et al. Association of root, specific leaf area and SPAD chlorophyⅡmeter reading to water use efficiency of peanut under different available soil water. Agricultural WaterManagement,2009,96:790-798
    [136] Gallé A, Haldimann P, Feller U. Photosynthetic performance and water relations in young pubescentoak (Quercus pubescens) trees during drought stress and recovery. New Phytologist,2007,174:799-810
    [137]阎恩荣,王希华,周武.天童常绿阔叶林演替系列植物群落的N:P化学计量特征.植物生态学报,2008,32(1):13-22
    [138] Hobbie S E, Gough L. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages innorthern Alaska. Oecolagia,2002,131:453-462
    [139]丁凡,廉培勇,曾德慧.松嫩平原草甸三种植物叶片N、P化学计量特征及其与土壤N、P浓度的关系.生态学杂志,2011,30(1):77-81
    [140] Tessier J T, Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrientlimitation and nitrogen saturation. Journal of Applied Ecology,2003,40:523-534
    [141] Garrish V, Cernusak L A, Winter K, et al. Nitrogen to phosphorus ration of plant biomass versus soilsolution in a tropical pioneer tree, Ficus insipida. Journal of Experimental Botany,2010,61:3735-3748
    [142]刘彤,胡丹,魏晓雪,等.红松人工林林下植物物种多样性分析.东北林业大学学报,2010,38(5):51-53
    [143]冯耀宗.物种多样性与人工生态系统稳定性探讨.应用生态学报,2003,14(6):853-857
    [144]褚建民,卢琦,崔向慧,等.人工林林下植被多样性研究进展.世界林业研究,2007,20(3):9-13
    [145]张金屯.数量生态学.北京:科学出版社,2004:221-235
    [146]张晶晶,赵忠,宋西德,等.渭北黄土高原人工刺槐林植物多样性动态.西北植物学报,2010,30(12):2490-2496
    [147]杨兆平,欧阳华,宋明华,等.青藏高原多年冻土区高寒植被物种多样性和地上生物量.生态学杂志,2010,29(4):617-623
    [148]方精云,王襄平,沈泽昊,等.植物群落清查的主要内容、方法和技术规范.生物多样性,2009,17(6):533-548
    [149]马克平,刘灿然,刘玉明.生物群落多样性的测度方法Ⅱ——β多样性的测度方法.生物多样性,1995,3(1):38-43
    [150]吴玉虎.青海茶卡—共和盆地及其毗邻地区种子植物区系.云南植物研究,2007,29(3):265-276
    [151]雷淑慧,卢爱英,张先平,等.庞泉沟自然保护区森林群落物种多样性.生态学杂志,2009,28(12):2431-2436
    [152] Asner G P, Borghi C E, Ojeda R A. Desertification in Cerrtral Argentina: changes in ecosystem carbonand nitrogen from imaging spectroscopy. Ecological Applications,2003,13(3):629-648
    [151]左小安,赵哈林,赵学勇,等.科尔沁沙地不同恢复年限退化植被的物种多样性.草业学报,2009,18(4):9-16
    [152]杨洪晓,卢琦,吴波,等.高寒沙区植被人工修复与种子植物物种多样性的变化.林业科学,2004,40(5):45-49
    [153]李衍青,孙英杰,张铜会,等.科尔沁沙地不同演替阶段油蒿群落的结构特征.应用生态学报,2011,22(7):1725-1730
    [154]李玉新,赵忠,陈金泉.不同林龄人工沙棘林结构与林下物种多样性研究.西北植物学报,2010,30(4):0645-0651
    [155]刘志民,蒋德明,阎巧玲,等.科尔沁草原主要草地植物传播生物学简析.草业学报,2005,14(6):23-33
    [156]何忆玲,傅懋毅.人工林林下植被的研究现状.林业科学研究,2002,15(6):727-733
    [157] Tilman D, Reich P B, Knops J, et al. Diversity and productivity in a long-term grassland experiment.Science,2001,294:843-845
    [158]江小雷,岳静,张卫国,等.生物多样性,生态系统功能与时空尺度.草业学报,2010,19(1):219-225
    [159]温远光,陈放,刘世荣,等.广西桉树人工林物种多样性与生物量关系.林业科学,2008,44(4):14-19
    [160]赵哈林,周瑞莲,苏永中,等.科尔沁沙地沙漠化过程中土壤有机碳和全氮含量变化.生态学报,2008,28(3):976-982
    [161]吴志祥,谢贵水,陶忠良,等.海南儋州不同林龄橡胶林土壤氮和全氮特征.生态环境学报,2009,18(4):1484-1491
    [162]贾月慧,王天涛,杜睿.3种林地土壤碳和氮含量的变化.北京农学院学报,2005,20(3):63-66
    [163]齐雁冰,常庆瑞,刘梦云,等.荒漠化土壤对人工植被恢复工程的响应.干旱地区农业研究,2011,29(3):180-185
    [164] Groffman P M, Eagan P, Sullivan W M, et al. Grass species and soil type effects on microbial biomassand activity. Plant and Soil,1996,183:61-67
    [165]赵哈林,赵学勇,张铜会,等.沙漠化的生物过程与植被恢复机理.北京:科学出版社,2007
    [166]中国科学院南京土壤研究所土壤系统分类课题组,中国土壤系统分类课题研究协作组.中国土壤系统分类(修订方案).北京:中国农业科技出版社,1995:325-329
    [167]赵哈林,郭轶瑞,周瑞莲,等.人工林建设对沙地土壤结皮发育及其表土理化性质的影响.水土保持学报,2010,24(1):202-207
    [168]杨秀莲,张克斌,曹永翔.封育草地土壤生物结皮对水分入渗与植物多样性的影响.生态环境学报,2010,19(4):853-856
    [169] Lopez M V, Gracia R, Arrue J L. Effects of reduced tillage on soil surface properties affecting winderosion in semiarid fallow lands of Central Aragon. European Journal of Agronomy,2000,12:191-199
    [170] Lowery B, Swan J, Schumacher T, et al. Physical properties of selected soils by erosion class. Journalof Water Conservation,1995,50:306-311
    [171] Jobbagy E G, Jackson I A. The vertical distribution soil organic carbon and its relation to climate andvegetation. Ecological Applications,2000,10:423-436
    [172] Arrouays D, Pelissier P. Modeling carbon storage profiles in temperate forest humic loamy soils ofFrance. Soil Science,1994,157(3):185-192
    [173] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks toclimate change. Nature,2006,440:165-173
    [174] Rosell R A, Galantini J A, Suner L G. Long-term crop rotation effect on organic carbon, nitrogen, andphosphorus in Haplustoll soil fraction. Arid Soil Research and Rehabilitation,2000,14:309-315
    [175] Srinivasan V, Maheswarappa H P, Lai R. Long term effects of topsoil depth and amendments onparticulate and non particulate carbon fractions in a Miamian soil of Central Ohio. Soil and TillageResearch,2012,121:10-17
    [176]施雅风,沈永平,李栋梁,等.中国西北气候由暖干向暖湿转型的特征和趋势探讨.第四纪研究,2003,23(2):152-164
    [177]徐利岗,周宏飞,梁川,等.中国北方荒漠区降水多时间尺度变异性研究.水利学报,2009,40(8):1002-1011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700