用户名: 密码: 验证码:
干旱荒漠区辣椒耗水规律及对调亏灌溉的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究干旱荒漠区露地辣椒生产的耗水规律,探讨辣椒在调亏灌溉条件下的耐旱、节水、增产机理,为干旱地区辣椒合理灌溉和高效种植提供理论依据。本研究以鲜食型辣椒(陇椒2号)和制干型辣椒(美国红)为试验材料,在定植-座果期、结果盛期和结果末期分别设置充分灌溉(对照)、轻度调亏、中度调亏和重度调亏4个灌溉水平,研究调亏灌溉对辣椒生育期耗水量、耗水模数、耗水强度、植株生长及果实生产、叶片生理生化特性的影响,主要研究结果如下:
     1.露地栽培辣椒耗水量与灌水量极显著正相关(P<0.01,r=0.955),调亏灌溉有效降低了辣椒的耗水量,在定植-座果期和结果盛期中度和重度调亏下,陇椒2号耗水量较充分灌溉分别减少了7.49%、11.00%和14.21%、15.83%;美国红耗水量下降更明显,分别减少了9.55%、11.80%和18.33%、20.08%。在充分灌溉条件下,美国红的生育期耗水量(470.08mm)显著(P<0.05)小于陇椒2号(514.14mm),两品种耗水模数相当,均表现为结果盛期(46%)>定植-座果期(40%)>结果末期(14%),耗水强度也表现为结果盛期>定植-座果期>结果末期,美国红三个生育时期的耗水强度(4.81mm/d、4.18mm/d、2.79mm/d)均显著(P<0.05)小于陇椒2号(5.32mm/d、4.31mm/d、3.46mm/d)。调亏灌溉显著(P<0.05)降低了各调亏时期的耗水模数和耗水强度,定植-座果期中度调亏、结果盛期和结果末期调亏灌溉的美国红耗水强度均显著(P<0.05)小于陇椒2号。干旱荒漠区露地辣椒结果盛期的K c最大,在充分灌溉条件下,陇椒2号和美国红的均为:结果盛期(1.16和1.05)>定植-座果期(0.88和0.85)>结果末期(0.85和0.69),调亏灌溉也显著(P<0.05)降低了两品种的值,结果盛期和结果末期调亏处理的两者差异显著(P<0.05)。
     2.定植-座果期和结果盛期中度、重度调亏灌溉显著(P<0.05)降低了辣椒株高、茎粗和叶面积指数,陇椒2号植株生长对水分亏缺更为敏感。各生育期调亏灌溉均有不同程度的减产效应,定植-座果期重度调亏和结果盛期中度、重度调亏下,陇椒2号单株果数、单果重、单株产量和总产量显著下降(P<0.05),美国红单株果数、单株产量和总产量显著降低(P<0.05),结果盛期水分亏缺导致的减产最明显,为辣椒的需水关键期。
     3.定植-座果期中度调亏下,陇椒2号和美国红的WUEET(13.29kg. m-3和7.44kg. m-3)和WUEI(18.76kg. m-3和10.08kg. m-3)最高,其单株干物质积累量接近对照,茎、叶、根干物质分配比例适中,最有利于果实产量形成,并能够显著(P<0.05)提高果实的VC和TSS含量。综合效果来看,干旱荒漠区露地辣椒高产、优质、节水栽培应在定植-座果期将土壤含水量控制为55%~65%f,在结果盛期和结果末期控制在75%~85%。
     4.调亏灌溉降低了辣椒叶片光合色素含量、Pn、Tr、Gs和PSⅡ的活性。轻度调亏下辣椒叶片Chla+b和Car含量、PSⅡ的活性下降不明显(P>0.05),但Pn和Tr下降显著(P<0.05),Gs和Ci降低,Ls值增加,叶片Pn下降是主要是由气孔因素引起的。定植-座果期中度调亏使Tr的降幅较Pn更加明显,叶片WUE达到最大,PSⅡ的Fv/Fm和ΦPSⅡ下降不明显(P>0.05),气孔限制仍是引起Pn下降的主导因素。定植-座果期重度调亏和结果盛期中度、重度调亏条件下,叶片光合色素含量、Pn、Tr、WUE均显著(P<0.05)降低,PSⅡ的Fv/Fm和ΦPSⅡ受到明显抑制(P<0.05),热耗散能力下降,PSⅡ受到严重损伤(P<0.05),Pn下降主要由非气孔因素所致。同一调亏水平下,美国红光合参数比陇椒2号的变幅小,具有较高的叶片WUE和PSⅡ光化学活性,对干旱荒漠绿洲环境具有更好的适应性。
     5.调亏灌溉使辣椒叶片RWC明显下降(P<0.05),WSD和Va/Vs明显增大(P<0.05),抗旱能力增强。定植-座果期轻度、中度调亏灌溉下,Pro和SS可能是陇椒2号耐旱的主要渗透调节物质;美国红则主要通过Pro的积累进行渗透调节,重度调亏下Pro成为两品种主要的渗透调节物质。结果盛期轻度和中度调亏下,两辣椒品种主要是通过Pro和SS发挥渗透调节作用,重度调亏下以SS和SP的渗透调节为主。定植-座果期中度调亏对辣椒叶片产生了一定的膜脂过氧化作用,但叶片能通过SOD和CAT酶的协同作用产生抗氧化保护,重度调亏使叶片膜脂过氧化明显加剧(P<0.05),陇椒2号的抗氧化能力明显下降;美国红能通过SOD、CAT酶和AsA的共同作用来减轻过氧化伤害。结果盛期中度、重度调亏下叶片抗氧化系统清除活性氧的能力明显下降,膜系统受到显著伤害(P<0.05),且定植-座果期重度调亏和结果盛期中度调亏对陇椒2号膜系统的伤害明显(P<0.05)大于美国红。
     6.定植-座果期轻度、中度调亏灌溉复水后,两辣椒品种茎粗生长、叶面积指数、叶片光合色素含量表现出补偿效应,渗透调节物质和抗氧化系统产生了生化补偿作用,使膜系统得到修复。重度调亏灌溉复水后未表现出补偿效应。
     研究结果表明,定植-座果期中度调亏灌溉条件下,干旱荒漠区露地栽培辣椒通过积累Pro和SS提高叶片渗透势,保证了生长及光合过程的进行;通过SOD和CAT活性氧清除机制和热耗散机制,保护膜系统,维持PSⅡ系统的光化学活性;通过增强气孔调节能力,提高叶片WUE;光合产物的分配格局更有利于果实生产;复水后茎粗生长、叶面积扩展、光合色素含量产生补偿效应,从而在不明显减产的情况下,达到了节水、增效、改善果实品质的目的。美国红较陇椒2号具有更强的干旱适应性和节水增产潜力。
     本研究明确了干旱荒漠区露地辣椒栽培适宜的调亏时期和程度,揭示了其耐旱、节水、增产的机理,对制定干旱地区合理的辣椒灌溉制度,挖掘辣椒的生产潜力具有现实的指导意义。
The effect of regulated deficit irrigation(RDI) on water consumption, water consumptionmodulus, water consumption intensity, plant growth, fruit production, physiological andbiochemical characteristics in the leaves were researched taking the fresh Capsicum (Longjiao2)and drying Capsicum(Meiguohong) as materials, designing four irrigation level including fullirrigation(CK), light RDI, medium RDI and severe RDI at planting-fruit setting stage, middlefruiting and late fruiting stage, respectively aiming at researching water consumption of Capsicumin arid desert area, discussing mechanism of drought resistence, water saving and yield increasingunder RDI and providing some theoretical basis for rational irrigation and high efficient plantingof Capsicum in arid area. The results are as follows:
     1. Water consumption was significantly positively correlated to irrigation amount ofCapsicum cultivated in open field (P<0.05, r=0.955). Compared with full irrigation,waterconsumption of Long jiao2(LJ) was reduced by7.49%,11.00%and14.21%,15.83%under mediumand severe RDI at planting-fruit setting and middle fruiting stage, water consumption ofMeiguohong(MGH) was reduced more with reduction of9.55%,11.80%and18.33%,20.08%.Total water consuption of MGH(470.08mm) was significantly lower than of LJ (514.14mm)under full irrigation. The water consumption modulus of the two varieties showed in the order ofmiddle fruiting stage(46%), planting-fruit setting stage(40%), late fruiting stage(14%), waterconsumption intensity of the two varieties also appeared in the same order and water consumptionintensity at each growth stage of MGH(4.81mm/d,4.18mm/d,2.79mm/d) was markedly lower thanof LJ (5.32mm/d,4.31mm/d,3.46mm/d). RDI significantly decreased water consumption modulusand intensity of the stage ued RDI and water consumption intensity of MGH was significantlylower than that of LJ under medium RDI at planting-fruit setting stage and RDI at middle and latefruiting stage. The crop coefficient(K c) at middle fruiting stage was the maximum for Capsicumcultivated in in arid desert region, and of LJ and MGH changed in the order of middle fruitingstage(1.16and1.05), planting-fruit setting stage(0.88and0.85), late fruiting stage(0.85and0.69)under full irrigation. RDI significantly reduced and difference in of the two varieties wassignificant under RDI at middle and late fruiting stage.
     2. Medium and severe RDI at planting-fruit setting and middle fruiting stage significantlydecreased plant height, plant diameter and leaf area index (LAI) of Capsicum, and plant growth ofLJ was more sensitive to water deficit than MGH. Under severe RDI at planting-fruit setting andmedium and severe RDI at middle fruiting stage, fruit number per plant, fruit weight, per plant yield and total yield of LJ reduced significantly and fruit number per plant, per plant yield and totalof MGH also decreased distinctly. Capsicum yield was maximaly decreased by water deficit atmiddle fruiting stage being water critical period.
     3. Under medium RDI at planting-fruit setting stage, water use efficiency of LJ and MGHbased on water consumption(13.29kg. m-3and7.44kg. m-3) and on irrigation amount (18.76kg.m-3and10.08kg. m-3) reached the maximum. Dry matter accumulation per plant returned to thecontrol level and ratio of dry matter distributed in stems, leaves and roots was proper, whichimproved the fruit production and significantly increased the content of Vc and total soluble solid.Taking above data into consideration, soil water content should be controlled between55%and65%of field water capacity at planting-fruit setting stage and75%to85%at middle and latefruiting stage, which can realize high yield, good quality and water saving cultivation of Capsicumin arid desert area.
     4. RDI reduced photosynthetic pigment content, net photosynthetic rate(Pn), transpirationrate(Tr), gas conductance(Gs) and PSⅡactivity in the leaves of Capsicum. There was no obviouschanges in the content of Chla+b, Car and PSⅡactivity under light RDI, but Pn and Tr decreasedsignificantly with more decline in Tr, when Pn reduced, Gs and interlellular CO2concentration(Ci)also cut down but stomatal limitation(Ls) increased, which indicated that the reduction of Pn wasmainly caused by stomatal limitation. Medium RDI at planting-fruit setting stage caused moresignificant reduction in Tr than in Pn reaching maximal WUE at leaf level, maximal photochemicalquantum efficiency of PSⅡ(Fv/Fm) and actual photochemical quantum yield of PSⅡ (PSⅡ)appeared no significant reduction and heat dissipation increased, which showed stomatal limitationwas still the main factor causing Pn reduction. Under severe RDI at planting-fruit setting stage andmedium and severe RDI at middle fruiting stage, the content of photosynthetic pigments, Pn, Trand WUE decreased significantly, Fv/Fm and PSⅡof PSⅡwere markedly inhibited, thermaldissipation decreased, non-stomatal limitation was responsible for reduction in Pn. The changerange of photosynthetic parameters were smaller in MGH than in LJ and MGH maintained higherWUE at leaf level and photochemical PSⅡactivity under the same RDI level, which indicates thatMGH better adapts to dry desert-oasis environment.
     5. RDI caused significant decrease of relative water content(RWC) and increase of watersaturation deficit(WSD) and ratio of bound water to free water(Va/Vs) enchancing droughtresistence of Capsicum. Under light and medium RDI at planting-fruit setting stage, proline(Pro)and soluble sugar(SS) might be the main osmotic regulation substances for LJ drought resistence,Pro mainly carried out osmotic adjustment in MGH and played improtant osmotic regulation rolein the two varieties under severe RDI. Under medium and severe RDI at middle fruiting stage, Pro and SS played main osmotic regulation function and SP accumulated significantly under severeRDI taking an important role in osmotic adjustment. Medium RDI at planting-fruit setting stageresulted in some membrane peroxidation in the leaves of Capsicum, but superoxidedismutase(SOD) and catalase(CAT) were induced to reduce peroxidation extent. Lipidperoxidation was intensified significantly under severe RDI and anti-oxidative capability decreasedmarkedly and it was SOD, CAT and asorbic acid(AsA) that reduced lipid peroxidation in MGH.Under medium and severe RDI at middle fruiting stage, the ability of antioxidant system toscanvege active oxygen markedly decreased, which resulted in significant membrane impairment.The membrane impairmment of LJ was sigificantly more than MGH by severe RDI atplanting-fruit setting stage and medium RDI at middle fruiting stage.
     6. Rewater at middle fruiting stage after light and medium RDI at planting-fruit setting stageproduced compensatory effect in the plant diameter, LAI, photosynthetic pigment content ofCapsicum, osmotic regulation and antixodant system produced some biochemical compensatoryrole and memberance system was healed but rewater after severe RDI could not producecompensatory effect for Capsicum.
     The above results show that under medium RDI at planting-fruit setting stage Capsicumcultivated in arid desert area accumulated Pro and SS in the leaves to improve osmotic potentialensuring growth and photosynthetic processes, protected membrane structure and maintainedphotochemical activity of PSⅡby mechanisms of scavenging reactive oxygen of SOD and CATand thermal dissipation, improved WUE at leaf level by stomatal regulation, distribution ofphotosynthates promoted fruit production and rewater produced compensatory effect in plantdiameter, leaf area, photosynthetic pigment content, which is helpful to attain the goal of watersaving, high efficiency and good fruit quality preventing from significant yield reduction. MGHshows better adaptability to drought and potential of water saving and yield increasing.
     The research determined reasonable RDI period and degree of Capsicum cultivated in ariddesert area, and revealed the mechanisms of drought resistance, water saving and yield increasing,which has practical significance in making scientific irrigation schedule and exploiting productivepotential of Capsicum.
引文
[1]鲍思伟.水分胁迫对蚕豆(Vicia faba L.)叶片水分状况的影响[J].大津师范大学学报(自然科学版),2001a,6(3):67-70.
    [2]鲍思伟,谈锋,廖志华.蚕豆(Vicia faba L.)对不同水分胁迫的光合适应性研究[J].西南师范大学学报,2002,26(4):448-451.
    [3]鲍思伟,谈锋,廖志华.土壤干旱对蚕豆叶片渗透调节能力的影响[J].西南农业大学学报,2001b,23(4):353-356.
    [4]卜令铎,张仁和,韩苗苗,常宇,薛吉全.苗期玉米叶片光合特性对水分胁迫的响应[J].生态学报,2010,30(5):1184-1191.
    [5]卜令铎,张仁和,韩苗苗,薛吉全,常宇.干旱复水激发玉米叶片补偿效应的生理机制[J].西北农业学报,2009,18(2):88-92.
    [6]蔡焕杰,康绍忠,张振华,柴红敏,胡笑涛,王健.作物调亏灌溉的适宜时间与调亏程度的研究[J].农业工程学报,2000,16(3):24-27.
    [7]蔡焕杰,邵光成,张振华.不同水分处理对膜下滴灌棉花生理指标及产量的影响[J].西北农林科技大学学报(自然科学版),2002,30(4):29-32.
    [8]曹慧,韩振海,许雪峰.水分胁迫下苹果属植物叶片叶绿素降解的膜脂过氧化损伤作用[J].中国农业科学2003,3(610):1191-1195.
    [9]陈成升,谢志霞,刘小京.等渗盐分、干旱胁迫下冬小麦叶片部分渗透调节物质的动态变化[J].植物研究,2009,29(6):708-713.
    [10]陈凤,蔡焕杰,王健,马海亭.杨凌地区冬小麦和夏玉米蒸发蒸腾和作物系数的确定[J].农业工程学报,2006,22(5):191-193.
    [11]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55.
    [12]陈金平,刘祖贵,段爱旺,孟兆江,张寄阳.土壤水分对甜椒叶片某些生理特性的影响[J].山地农业生物学报,2005,24(1):48-52.
    [13]陈平,杜太生,王峰,董平国.西北旱区温室辣椒产量和品质对不同生育期灌溉调控的响应[J].中国农业科学,2009,42(9):3203-3208.
    [14]陈少裕.脂膜过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90.
    [15]陈晓远,罗远培.土壤水分变动对冬小麦干物质分配及产量的影响[J].中国农业大学学报,2001,6(1):96-103.
    [16]陈新明,蔡焕杰,单志杰,赵伟霞.根区局部控水无压地下灌溉技术对黄瓜和番茄产量及其品质影响的研究[J].土壤学报,2006,43(3):486-492.
    [17]陈玉民,郭国双,王广兴,郭国双,王广兴,康绍忠,罗怀彬,张大中.中国主要作物需水量与灌溉[M].北京:中国水利电力出版社,1995:50-188.
    [18]程国栋,肖洪浪,徐中民,李锦秀,陆明峰.中国西北内陆河水问题及其应对策略以黑河流域为例[J].冰川冻土,2006,28(3):406-413.
    [19]程智慧,孟焕文, Rolfe S A, Scholes J D.水分胁迫对番茄叶片气孔传导及光合色素的影响[J].西北农林科技大学学报(自然科学版),2002,12(6):93-95.
    [20]单长卷.土壤干旱对冬小麦水分生理和生物量分配的影响[J].麦类作物学报,2006,26(2):127-129.
    [21]丁林.调亏灌溉对蚕豆生长动态与生理指标及产量的研究[D].兰州:甘肃农业大学,2007.
    [22]丁兆堂,卢育华,徐坤.环境因子对番茄光合特性的影响[J].山东农业大学学报(自然科学版),2003,34(3):356-360.
    [23]董伊晨,刘悦秋.土壤水分对异株荨麻(Urtica dioica)保护酶和渗透调节物质的影响及其与叶片光合和生物量的相关性[J].生态学报,2009,29(6):2845-2851.
    [24]杜磊,赵尊练,巩振辉,郭建伟,牛哲辉,郭永青.水分胁迫对线辣椒叶片渗透调节作用的影响[J].干旱地区农业研究,2010,28(3):188-191.
    [25]杜社妮,白岗栓,梁银丽.灌溉方式对黄瓜生长、产量及水分利用效率的影响[J].浙江大学学报(农业与生命科学版),2010,36(4):433-439.
    [26]冯金朝,黄子琛.春小麦蒸发蒸腾的调控[J].作物学报,1995,21(5):544-550.
    [27]付秋实,李红岭,崔健,赵冰,郭仰东.水分胁迫对辣椒光合作用及相关生理特性的影响[J].中国农业科学,2009,42(5):1859-1866.
    [28]高方胜.土壤水分对番茄生长发育及某些生理特性的影响[D].山东泰安:山东农业大学,2006.
    [29]龚吉蕊,张立新,赵爱芬.油蒿抗旱生理生化特性研究初报[J].中国沙漠,2002,22(4):387-391.
    [30]郭海涛,邹志荣,杨兴娟,周贺芳.调亏灌溉对番茄生理指标、产量品质及水分生产效率的影响[J].干旱地区农业研究,2007,25(3):133-137.
    [31]郭相平,康绍忠.调亏灌溉—节水灌溉的新思路[J].西北水资源与水工程,1998,9(4):22-25.
    [32]郭艳波,冯浩,吴普特.水分亏缺对番茄生理特性及水分生产效率的影响[J].灌溉排水学报,2008,27(3):52-55.
    [33]郭艳波,冯浩,吴普特.西北地区不同土壤水分处理对温室大棚番茄产量和耗水的影响[J].自然资源学报,2009,24(1):50-57.
    [34]韩淑敏.不同灌水方式下温室青椒的耗水规律[J].干旱地区农业研究,2005,23(2):54-58.
    [35]何冰,许鸿源,陈京.干旱胁迫对甘薯叶片质膜透性及抗氧化酶类的影响[J].广西农业大学学报,1997,12(4):287-290.
    [36]何承坤,郭素枝,李家慎.干旱胁迫对番茄活性氧代谢的影响[J].福建农业大学学报,1996,25(3):307-311.
    [37]何华,杜社妮,梁银丽,张成娥.土壤水分条件对温室黄瓜需水规律和水分利用的影响[J].西北植物学报,2003,23(8):1372-1376.
    [38]何军,许兴,李树华,米海莉,张源沛,赵天成,马有明.水分胁迫对牛心朴子叶片光合色素及叶绿素荧光的影响[J].西北植物学报,2004,24(9):1594-1598.
    [39]胡文海,陈春霞,胡雪华.干旱胁迫对2种辣椒植株形态可塑性与持水力的影响[J].江西农业大学学报,2008a,30(4):643-647.
    [40]胡文海,曾建军,曹玉林,肖宜安,段智辉.干旱胁迫对两种辣椒叶片气体交换和叶绿素荧光特性的影响[J].干旱地区农业研究,2008b,26(5):156-160.
    [41]黄梦琪.水分亏缺条件下作物需水量的计算及地下水补给量的确定[D].陕西杨凌:西北农林科技大学,2007.
    [42]黄明丽. N、P营养对旱地小麦生理过程和产量形成的补偿效应研究进展[J].麦类作物学报,2002,22(4):74-78.
    [43]黄兴学,邹志荣.温室辣椒节水灌溉指标的研究[J].陕西农业科学,2002(2):8-10.
    [44]霍海霞.灌水控制上限对辣椒耗水及产量的试验研究[D].陕西杨凌:西北农林科技大学,2007.
    [45]霍振荣,庞金安,杜胜利.辣椒光合特性研究[J].华北农学报1998,13(3):121-124.
    [46]姜凤超,石磊,李玉欣,刘孟雨.水分和锌对番茄叶水势、光合特性及蒸腾效率的影响[J].灌溉排水学报,2009,28(6):125-127.
    [47]康绍忠,蔡焕杰.作物根系分区交替灌溉和调亏灌溉的理论与实践[M].北京:中国农业出版社,2001:123-129.
    [48]康绍忠,史文娟,胡笑涛,梁银丽.调亏灌溉对于玉米生理生态和水分利用效率的影响[J].农业工程学报,1998,14(4):82-72.
    [49]李波,任树梅,杨培岭,孔清华.供水条件对温室番茄根系分布及产量影响[J].农业工程学报,2007,23(9):39-44.
    [50]李合生,孙群,赵世杰,章文华.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:167,196-197,248-249,258-263.
    [51]李清明.温室黄瓜(Cucumis sativus L.)对干旱胁迫与CO2浓度升高的响应与适应机理研究[D].陕西杨凌:西北农林科技大学,2008.
    [52]梁宗锁,康绍忠,胡炜,张建华,高俊风.控制性分根交替灌水的节水效应[J].农业工程学报,1997(4):58-63.
    [53]刘安能,孟兆江.玉米调亏灌溉效应及其优化农艺措施[J].农业工程学报,1999,15(3):108-111.
    [54]刘昌明,张喜英,由懋正.大型蒸渗仪与小型棵间蒸发器结合测定冬小麦蒸散的研究[J].水利学报,1998(10):36-39.
    [55]刘浩,孙景生,王聪聪.土壤水分状况对温室青茄水分利用和外观品质的影响[J].中国生态农业学报,2011,19(4):812-817.
    [56]刘浩.温室番茄需水规律与优质高效灌溉指标研究[D].北京:中国农业科学院,2010.
    [57]刘明池,陈殿奎.亏缺灌溉对樱桃番茄产量和品质的影响[J].中国蔬菜,2004,(6):4-6.
    [58]刘晓建,谢小玉,薛兰兰.辣椒开花结果期对干旱胁迫响应机制的研究[J].西北农业学报,2009,18(5):246-249.
    [59]刘祖贵,段爱旺,吴海卿,张寄阳,王广兴.水肥调配施用对温室滴灌番茄产量及水分利用效率的影响[J].中国农村水利水电,2003(1):10-12.
    [60]罗贞礼,黄璜.红三角地区农产品虚拟水的计算分析[J].冰川冻土,2005,27(3):426-431.
    [61]马国军,林栋,王万雄.石羊河流域水资源利用与经济发展系统分析[J].中国沙漠,2009,29(5):1003-1007.
    [62]马艳青.我国辣椒产业形势分析[J].辣椒杂志,2011(1):1-5.
    [63]马永欢,周立华,杨根生,邸醒民.石羊河流域生态经济系统的主要问题与协调发展对策[J].干旱区资源与环境,2009,23(4):12-18.
    [64]毛洪霞.滴灌大豆需水规律及灌溉制度的研究[D].陕西杨凌:西北农林科技大学,2008.
    [65]孟兆江,贾大林,刘安能.调亏灌溉对冬小麦生理机制及水分利用效率的影响[J].农业工程学报,2003,19(4):66-69.
    [66]庞秀明,康绍忠,王密侠.作物调亏灌溉理论与技术研究动态及其展望[J].西北农林科技大学学报,2005a,33(6):141-146.
    [67]庞秀明.干旱荒漠绿洲区西瓜耗水规律与调亏灌溉模式的研究[D].陕西杨凌:西北农林科技大学,2005b.
    [68]彭强,梁银丽,陈晨,贾文燕,田治国.土壤水分对辣椒叶片光合特性及保护酶系统的影响[J].灌溉排水学报,2010a,29(4):101-104.
    [69]彭强,梁银丽,陈晨,贾文燕,田志国,郝旺林,吴兴.辣椒叶片生理特性对光照强度和土壤水分的响应[J].农业工程学报,2010b,26(增刊):115-121.
    [70]彭强,梁银丽,陈晨,朱娟娟,韦泽秀,贾文燕,吴燕.土壤含水量对结果期温室辣椒生长及果实品质的影响[J].西北农林科技大学学报,2010c,38(1):154-160.
    [71]齐述华,李子忠,龚元石.应用农田水量平衡原理计算三种蔬菜的需水量和作物系数[J].中国农业大学学报,2002,7(l):71-76.
    [72]山仑.节水农业与作物高效用水[J].河南大学学报(自然科学版),2003,33(1):1-5.
    [73]邵光成,刘娜,陈磊.温室辣椒时空亏缺灌溉需水特性与产量的试验[J].灌溉排水学报,2008a,39(4):117-121.
    [74]邵光成,张娟,陈磊.时空亏缺灌溉对温室盆栽辣椒生理生态指标的影响[J].农业机械学报,2008b,39(3):96-100.
    [75]时丽冉,刘志华.干旱胁迫对苣荬菜抗氧化酶和渗透调节物质的影响[J].草地学报,2010,18(5):673-677.
    [76]司建华,冯起,张小由,张艳武,苏永红.植物蒸散耗水量测定方法研究进展[J].水科学进展,2005,16(3):450-459.
    [77]苏培玺,杜明武,赵爱芬,张小军.荒漠绿洲主要作物及不同种植方式需水规律研究[J].干旱地区农业研究,2002,20(2):79-85.
    [78]孙海锋,战勇,魏凌基,刘胜利,张恒斌,林海容,雷明.开花期干旱对大豆叶绿素荧光参数的影响[J].干旱地区农业研究,2008,26(2):61-64.
    [79]孙宏勇,刘昌明,张喜英,张永强,裴冬.华北平原冬小麦田间蒸散与棵间蒸发的变化规律研究[J].中国农业生态学报,2004,12(3):62-64.
    [80]孙华银,康绍忠,胡笑涛,李志军.根系分区交替灌溉对温室甜椒不同灌水下限的响应[J].农业工程学报,2008,24(6):78-64.
    [81]孙景生,刘祖贵,张寄阳,段爱旺.风沙区春小麦作物系数试验研究[J].农业工程学报,2002,18(6):55-58.
    [82]孙俊环,龚时宏,李光永.地下滴灌不同土壤水分下限对番茄生长发育及产量的影响[J].灌溉排水学报,2006,25(3):17-20.
    [83]汤章城.植物对环境的适应和环境资源的利用[J].植物生理学通讯,1994,30(6):401-405.
    [84]汤章城.植物对水分胁迫的反应性和适应性[J].植物生理学通讯,1983,98(4):1-7.
    [85]田义,张玉龙,虞娜,张辉,邹洪涛.温室地下滴灌灌水控制下限对番茄生长发育、果实品质和产量的影响[J].干旱地区农业研究,2006,24(5):88-92.
    [86]汪耀富,蔡寒玉,李进平,陈振国.不同供水条件下土壤水分与烤烟蒸腾耗水的关系[J].农业工程学报,2007,23(1):19-23.
    [87]汪志农.灌溉排水工程学[M].北京:中国农业出版社,2000:20-22.
    [88]王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,26(6):55-57.
    [89]王邦锡.渗透胁迫引起的膜损伤与膜脂过氧化和一些自由基的关系[J].中国科学(B),1992,22(4):364-368.
    [90]王焘,郑国生,邹奇.干旱与正常供水条件下小麦光合午休及其机理的研究[J].华北农学报,1997,12(4):48-51.
    [91]王锋,康绍忠,王振昌.甘肃民勤荒漠绿洲区调亏灌溉对西瓜水分利用效率、产量与品质的影响[J].干旱地区农业研究,2007,25(4):123-129.
    [92]王健,蔡焕杰,陈凤,陈新民.夏玉米田蒸发蒸腾量与棵间蒸发的试验研究[J].水利学报,2004(11):1-7.
    [93]王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报,2001,l8(4):459-465.
    [94]王磊,张彤,丁圣彦.干旱和复水对大豆光合生理生态特性的影响[J].生态学报,2006,26(7):2073-2078.
    [95]王密侠,康绍忠,蔡焕杰,马祥华.玉米调亏灌溉节水调控机理研究[J].西北农林科技大学学报,2004,32(12):87-90.
    [96]蒋志荣,杨占彪,汪君,柴薇薇.兰州九州台四种绿化树种抗旱性机理比较研究[J].中国沙漠,2006,26(4):553-558.
    [97]王启明,徐心诚,吴诗光.干旱胁迫对不同大豆品种苗期叶片渗透调节物质含量和细胞膜透性的影响[J].种子,2005,24(8):9-12.
    [98]王启明.干旱胁迫对大豆苗期叶片保护酶活性和膜脂过氧化作用的影响[J].农业环境科学学报,2006,25(4):918-921
    [99]王荣富,张云华,钱立生,于江龙.超级杂交稻两优培九及其亲本光氧化特性[J].应用生态学报,2003,14(8):1309-1312.
    [100]王韶唐,荆家海,丁钟荣.植物生理学实验指导[M].西安:陕西科学技术出版社,1987:2-10.
    [101]王邵辉.日光温室黄瓜栽培需水规律及生理机制的研究[D].北京:中国农业大学,2000.
    [102]王霞,候平,伊林克.水分胁迫对柽柳植物可溶性糖的影响[J].干旱地区研究.1999,16(2):1-10.
    [103]王学文,付秋实,王玉珏,张京红,路河,郭仰东.水分胁迫对番茄生长及光合系统结构性能的影响[J].中国农业大学学报,2010,15(1):7-13.
    [104]王玉珏,付秋实,郑禾,温常龙,程琳,赵冰,郭仰东.干旱胁迫对黄瓜幼苗生长、光合生理及气孔特征的影响[J].中国农业大学学报,2010,15(5):12-18.
    [105]武立权,沈圣泉,王荣富,舒庆尧.水稻黄叶突变体光合特性的日变化[J].核农学报,2007,21(5):425-429.
    [106]夏国军,阎耀礼,程水明,高松洁,罗毅.旱地冬小麦水分亏缺补偿效应研究[J].干旱地区农业研究,2001,19(1):79-82
    [107]肖俊夫,刘站东,段爱旺,不同灌溉处理对冬小麦产量及水分利用效率的影响研究[J].灌溉排水学报,2006,(25):20-23
    [108]须晖.高洁.王蕊.李天来.马健.刘满昌.番茄幼苗叶绿素荧光参数对水分胁迫的响应[J].中国农学通报,2011,27(10):189-193.
    [109]徐淑琴,宋军,吴砚.大豆需水规律及喷灌模式探讨[J].节水灌溉,2003(3):23-25.
    [110]徐淑贞,张双宝,鲁俊奇,金江波.日光温室滴灌番茄需水规律及水分生产函数的研究与应用[J].节水灌溉,2001(4):26-28.
    [111]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    [112]薛松,王沛洪.水分胁迫对冬小麦CO2同化作用的影响[J].植物生理学报,1992,18(2):1-7.
    [113]闫成仕,李德全,张建华.冬小麦旗叶旱促衰老过程中氧化伤害与抗氧化系统的响应[J].西北植物学报,2000,20(4):568-576.
    [114]杨红,姜虹,詹永发,余文忠,涂祥敏,赖卫.不同水肥条件对辣椒干物质积累、养分吸收及产量的影响[J].作物杂志,2008(6):26-29.
    [115]杨林娟.甘肃石羊河流域民勤绿洲水资源可持续利用对策[J].中国农业资源与区划,2007,28(1):30-33.
    [116]杨泱,冷平生,张博,王倩,何敬房.3种边坡绿化植物抗旱性研究[J].中国农学通报2010,26(13):272-278.
    [117]尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报,2007,23(1):105-110.
    [118]余玲,王彦荣,Garnett T,Auricht G,韩德梁.紫花苜蓿不同品种对干旱胁迫的生理响应[J].草业学报,2006,15(3):75-85.
    [119]曾化伟.土壤水分与施氮量对辣椒部分生理特性及产量品质的影响[D].贵阳:贵州大学,2007.
    [120]曾昭西,王以柔,刘鸿先.低温光照下与黄瓜子叶叶绿素降低有关的酶促反应[J].植物生理学报,1991,17(2):177-182.
    [121]翟胜,梁银丽,王巨媛,杜社妮.干旱半干旱地区日光温室黄瓜水分生产函数的研究[J].农业工程学报,2005,21(4):136-139.
    [122]张娟.辣椒时空亏缺灌溉最优模式试验研究[D].南京:河海大学,2007.
    [123]张明生,杜建厂,谢波,谈锋,杨永华.水分胁迫下甘薯叶片渗透调节物质含量与品种抗旱性的关系[J].南京农业大学学报,2004,27(4):123-125.
    [124]张仁和,郑友军,马国胜,张兴华,路海东,史俊通,薛吉全.干旱胁迫对玉米苗期叶片光合作用和保护酶的影响[J].生态学报,2011,31(5):1303-1311.
    [125]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [126]张岁岐,山仑,薛青武.氮磷营养对小麦水分关系的影响[J].植物营养与肥料学报,2000,6(2):147-151.
    [127]张宪法,于贤昌,张振贤.土壤水分对温室黄瓜结果期生长与生理特性的影响[J].园艺学报,2002,29(4):343-347.
    [128]张永强,姜杰.水分胁迫对冬小麦叶片水分生理生态过程的影响[J].干旱区研究,2001,18(1):57-61.
    [129]张永胜,成自勇,薛翎燕,冯静霞,张芮.甜椒在非充分灌溉条件下的耗水特征及其与产量的关系[J].水资源与水工程学报,2009,20(2):63-66.
    [130]张云华,王荣富,阮龙.水分胁迫对甘薯叶绿素荧光和光合特性的影响[J].中国农学通报,2005,21(8):208-210.
    [131]赵会贤,汪沛洪,郭蔼光.水分胁迫对小麦幼苗抗氧化物质含量的影响及其与抗旱性的关系[J].西北农业学报,1992,1(3):37-40.
    [132]赵可夫,李军.盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中的贡献的影响[J].植物学报,1999,41(12):1287-1292.
    [133]赵丽英,邓西平,山仑.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究[J].中国生态农业学报,2007,15(1):63-66.
    [134]赵义涛,梁运江,许广波.水肥耦合对保护地辣椒水分利用效率的影响[J].吉林农业大学学报,2007,29(5):523-527.
    [135]郑成岩,于振文,马兴华,王西芝,白洪立.高产小麦耗水特性及干物质的积累与分配[J].作物学报,2008,34(8):1450-1458.
    [136]郑健,蔡焕杰,王燕,陈新明.不同灌水方式下番茄产量构成因素分析及耗水规律研究[J].塔里木大学学报,2008,20(3):56-61.
    [137]种培芳,李毅,苏世平,高暝,邱珍静.红砂3个地理种群的光合特性及其影响因素[J].生态学报,2010,30(4):0914-0922.
    [138]朱成刚,陈亚宁,李卫红,付爱红,杨玉海.干旱胁迫对胡杨PSII光化学效率和激能耗散的影响[J].植物学报,2011,46(4):413-424.
    [139]诸葛玉平,张玉龙,张旭东,冯永军,李军,黄毅,刘鸣达.塑料大棚渗灌灌水下限对番茄生长和产量的影响[J].应用生态学报,2004:15(5):767-771.
    [140]庄丽,陈亚宁.塔里木河下游干旱胁迫条件下柽柳生理代谢的响应[J].科学通报,2006,51(4):442-447.
    [141]邹琦.植物生理生化实验指导[M].北京:中国农业出版社.1995:76-77.
    [142] Aderson M N, Kohom B D. Inactivation of arabidopsis lead to reduced levels of sugars and droughttolerance[J].Journal of Plant Physiology,2001,158:1215-1219.
    [143] Allen R G, Luis S P, Raes D. Crop evapotranspiration-Guidelines for computing crop water requirements
    [M].FAO Irrigation and Drainage,1998:56.
    [144] Arnon D I. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris[J]. Plant Physiol,1949,24(1):1-15.
    [145] Asada K.The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excessphotons[J].Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:601-639.
    [146] Ashraf M, Iram A. Drought stress induced changes in some organic substances in nodules and other plantparts of two potential legumes differing in salt tolerance[J]. Flora,2005,200(6):535-546.
    [147] Bartoli C G, Pastori G M, Foyer C H. Ascorbate biosynthesis in mitoehondria is linked to the electrontransport chain between complexes Ⅲ and IV[J]. Plant Physiology,2000,123:335-343.
    [148] Boland A M, Mitchell P D, Jerie P H, Goodwin I. The effect of regulated deficit irrigation on tree wateruse and growth of peach[J].Journal of Horticultural Science,1993,68(2):261-274.
    [149] Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of PlantPhysiology and Plant Molecular Biology,1992,43:83-86.
    [150] Cahn M D, Herrero E V, Snyder R L, Hanson B R. Water management strategies for improving fruitquality of drip irrigated processing tomatoes[J].Acta Hort,2001,542,111-117.
    [151] Chalmers D J, Burge P H, Mitchell P D. The mechanism of regulation of Bartlett pear fruit and vegetativegrowth by irrigation withholding and regulated deficit irrigation[J]. Journal of the American Society forHorticultural Science,1986,111(6):904-907.
    [152] Chalmers D J, Mitchell P D, Jerie P H. The physiology of growth control of perch and pear trees usingreduced irrigation[J]. Acta Horticulture,1983,146:143-148.
    [153] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the wholeplant[J].Functional Plant Biol.2003,30:239-264.
    [154] Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits: prospects for watersaving agriculture[J]. Journal of Experimental Botany,2005,55(407):2365-2384.
    [155] Chaves M M, Pereira J S, Maroco J, Rodrigues M L, Ricardo C P P, Osorio M L, Carvalho I, Faria T,Pinheiro C. How plants cope with water stress in the field? Photosynthesis and growth [J].Annals ofBotany,2002,89(7):907-916.
    [156] Cornic G, Fresneau C. Photosynthetic carbon reduction and carbon oxidation cycles are the main electronsinks for photosystem II activity during a mild drought[J].Annals of Botany,2002,89:887-894.
    [157] Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in dryingsoil[J].Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:55-76.
    [158] Dorji K, Behboudian M H, Zegbe-Domínguez J A. Water relations, growth, yield, and fruit quality of hotpepper under deficit irrigation and partial rootzone drying[J].Agricultural Water Management2005,104:137-149.
    [159] Ellman G L.Tissue eulfhydryl group[J]. Arch Biochem Biophys,1959,82:70-77.
    [160] Ennahli S, Earl H J. Physiological limitations to photosynthetic carbon assimilation in cotton under waterstress[J]. Crop Science,2005,45:2374-2382.
    [161] Fabeiro C, Martin F, Juan J A. Production of muskmelon under controlled deficit irrigation in a semi-aridclimate[J].Agricultural WaterManagement,2002,54:93-105.
    [162] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of PlantPhysiology,1982,33:317-345.
    [163] Favati F, Lovelli S, Galgano F, Miccolis V, Tommaso T D, Candido V. Processing tomato quality asaffected by irrigation scheduling[J].Scientia Horticulturae.2009,122:562-571.
    [164] Flexas J, Medrano H. Drought inhibition of photosynthesis in C3plants: stomatal and non-stomatallimitation revisited[J].Annals of Botany,2002,89:183-189.
    [165] Gamayun L M. Development, growth and productivity of mid-season tomato in relation to irrigationregimes[J]. Sel skokhozyaistvennaya Biologyia,1980,15(1):141-142.
    [166] García L F, Rharrabti Y, Villegas D, Royo C. Evaluation of grain yield and its components in durum wheatunder mediterranean conditions[J].Agronomy Journal,2003,95(2):266-274.
    [167] Gimenez C, Mitchell V G, Lawlor D W. Regulation of photosynthetic rate of two sunflower hybrids underwater stress [J].Plant Physiology,1992,98:516-524.
    [168] Girona J, Mata M, Fereres E, Goldhamer D A Cohen M. Evapotranspiration and soil water dynamics ofpeach trees under water deficits[J].Agricultural Water Management,2002,54:107-122.
    [169] Gonzalez-Dugo V, Orgaz F, Fereres E. Responses of pepper to deficit irrigation for paprika production [J].Scientia Horticulturae,2007,114(2):77-82.
    [170] Harmanto, Salokhe V M, Babel M S, Tantau H J. Water requirement of drip irrigated tomatoes grown ingreenhouse in tropical environment[J].Agricultural Water Management,2005,71:225-242.
    [171] Heitholt J J. Water use efficiency and dry matter distribution in nitrogen-and water-stressed winter wheat[J]. Agronomy Journal,1989,81(3):464-468.
    [172] Holmberg N, Bulow L. Improving stress tolerance in plants by gene transfer[J].Trends in Plant Science,1998,3:61-66.
    [173] Howell T A, Tolk J A, Schneider A D, Evett S R, USDA ARS. Evapotranspiration, yield, and water useefficiency of corn hybrids differing in maturity [J]. Agronomy Journal,1998,90(1):3-9.
    [174] Huang B R, Fu J M. Photosynthesis, respiration, and carbon allocation of two cool-season perennialgrasses in response to surface soil drying[J].Plant and Soil,2000,227,17-26.
    [175] Hui H X, Xu X, Li Q R. Exogenous betaine improves the photosynthesis of Lycium barbarum under saltstress[J].Acta Bot Boreal-Occident Sin,2003,23(12):2137-2422.
    [176] Hunsaker D J. Basal crop coefficients and water use for early maturity cotton[J]. Transaction of theASABE,1999,42(4):927-936.
    [177] Kang S Z, Shi W J, Zhang J H. An improved water-use efficiency for maize grown under regulated deficitirrigation[J]. Field Crops Research,2000,67(3):207-214.
    [178] Kobata T, Palta J A, Turner N C. Rate of development of postanthesis water deficits and grain filling ofspring wheat[J].Crop science,1992,32(5):1238-1242.
    [179] Larry E, Williams D W, Grimes C J, Phene. The effects of applied water at various fractions of measuredevapotranspiration on reproductive growth and water productivity of Thompson Seedless grapevines[J].Irrig Sci,2010,28:233-243.
    [180] Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to waterdeficits in higher plants[J].Plant, Cell and Environment,2002,25:275-294.
    [181] Leipner J, Stamp P, Sinsawat V, Fracheboud Y. Effect of heat stress on the photosynthetic apparatus inmaize (Zea mays L.) grown at control or high temperature[J].Environmental and Experimental Botany,2004,52(2):123-129.
    [182] Li F M, Liu X L, Guo A H. Effects of early soil moisture distribution on the dry matter partition betweenroot and shoot of winter wheat[J].Agricultural Water Management,2001,49:163-171.
    [183] Li X, Jian D M, Liu Y L,Huang X Q. Chlorophyll fluorescence and membrane lipid peroxidation in theflag leaves of different high yield rice variety at late stage of development under natural condition[J]. ActaBotanica Sinica,2002,44(4):413-421.
    [184] Lu C M, Zhang J H. Effects of water stress on photosystem II photochemistry and its thermo-stability inwheat plants[J]. Journal of Experimental Botany,1999,50(336):1199-1206.
    [185] Mao X S, Liu M Y, Wang X Y, Liu C M, Hou Z M, Shi J Z. Effects of deficit irrigation on yield and wateruse of greenhouse grown cucumber in the North China plain[J]. Agricultural Water Management,2003,61:219-228.
    [186] Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide [J].Journal of Experimental Botany,2000,51:659-668.
    [187] Medrano H,Escalona J M, Bota J, Gulias J, Flexas J. Regulation of photosynthesis of C3plants in responseto progressive drought: stomatal conductance as a reference parameter [J]. Annals of Botany,2002,89:895-905.
    [188] Mitchell J P, Shennan C, Grattan S R. Developmental changes in tomato fruit composition in response towater deficit and salinity[J].Physiologia Plantarum,1991,83:177-185.
    [189] Moran J F, Becana M, Iturbe-Ormaetxe I, Frechilla S, Robert V. Klucas and Pedro Aparicio-Tejo. Droughtinduces oxidative stress in pea plants[J]. Planta,1994,194(3):346-352.
    [190] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinachchloroplasts[J]. Plant and Cell Physiology,1981,22:867-880.
    [191] Ngugi M R, Hunt M A, Doley D, Ryan P, Dart P. Dry matter production and allocation in Eucalyptuscloeziana and Eucalyptus argophloia seedlings in response to soil water deficits[J]. New Forests,2003,26,187-200.
    [192] Niinomi A, Morimoto M, Shimizu S. Lipid peroxidation by the [peroxidase/H2O2/phenolic] system[J].Plantand Cell Physiology,1987,28(4):731-734.
    [193] Noctor G, Foyer C. Aceorbate and glutathione: keeping active oxygen under control[J]. Annual ReviewPlant Physiology and Plant Molecular Biology,1998,49:249-279.
    [194] Odasz-Albrigtsen A M, Tommervik H, Murphy P. Decreased photosynthetic efficiency in plant speciesexposed to multiple airborne pollutants along the Russian-Norwegian border[J].Canadia Journal ofBotany,2000,78(8):1021-1033.
    [195] Patakas A, Nikolaou N, Zioziou E, Radoglou K, Noitsakis B. The role of organic solute and ionaccumulation in osmotic adjustment in drought stressed grapevines[J].Plant Science,2002,163:361-367.
    [196] Paul M J, Pellny T K, Goddijn O J M. Enhancing photosynthesis with sugar signals [J]. Trends in PlantScience,2001,6:197-200.
    [197] Pulupol L U, Behboudian M H, Fisher K J. Growth, yield and postharvest attributes of glasshouse tomatoesproduced under water deficit[J].Hort Sci,1996,31:926-929.
    [198] Ranney T Q, Bassuk N L,Whitlow T M. Osmotic adjustment and solute constituents in leaves and root ofwater-stressed cherry (Prunus) tree[J]. Journal of the American Society for Horticultural Science,1991,116(4):684-689.
    [199] Saleh M.Ismail. Influence of deficit Irrigation on water use efficiency and bird pepper production(Capsicum annuum L.)[J]. Env&Arid Land Agric Sci,2010,21(2):29-43.
    [200] Sarijeva G, Knapp M, Lichtenthaler H K. Differences in photosynthetic activity, chlorophyll andcarotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo andFagus[J].Journal of Plant Physiology,2007,164(7):950-955.
    [201] Scandalios J G. Oxygen stress and superoxide dimutases[J].Plant Physiol,1993,101(1):7-12.
    [202] Seel W E, Hendry GAF. Lee J A. Effects of desiccation on some activated oxygen processing enzymes andanti-oxidants in mosses [J].Journal of Experimenal Botany,1992,43:1031-1037.
    [203] Sergi M B, Lenonor A. Drought induced changes in the redox state of-tocopherol, ascorbate and thediterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents [J].PlantPhysiology,2003,131:1816-1825.
    [204] Serra J R, Sinelair T R.Osmolyte accumulation: Can it really help increase crop yield under droughtconditions?[J]. Plant Cell and Environment,2002,25:333-341.
    [205] Shalata A, Mittova V, VolokitaM, Guy M, Tal M. Response of the cultivated tomato and its wildsalt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidativesystem[J].Physiologia Plantarum,2001.112:487-494.
    [206] Shangguan Z P, Shao M A, Dyckmans J. Effects of nitrogen nutrition and water deficit on netphotosynthetic rate and chlorophyll fluorescence in winter wheat[J].Plant Physiology,2000,156:46-51.
    [207] Shao G C, Zhang Y Z, Yu S E, Xing W G. Comparative effects of deficit irrigation (DI) and partialrootzone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hotpepper[J]. Scientia Horticulturae,2008,119(1):11-16.
    [208] Subbarao G V, Chauhan Y S, Johansen C. Patterns of osmotic adjustment in pigeonpea-its importance as amechanism of drought resistance[J]. European Journal of Agronomy,2000,12:3-4.
    [209] Sudhakar C,Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficiency in two highyielding genotypes of mulberry(Morus alba L.) under NaCl salinity[J]. Plant science,2001,161:613-619.
    [210] Tolk J A, Howell T A, Evett S R. Evapotranspiration and yield of corn grow on three high plains soils[J].Agronomy Journal,1998,90:447-454.
    [211] Tyagi N K, Shrnma D K, Luthra S K. Determination of evapotranspiration and crop coefficients of rice andsunflower with lysimeter [J].Agricultural water management,2000,45(1):41-54.
    [212] Wang H X, Zhang L, Dawes W R, Liu C M. Improving water use efficiency of irrigated crops in the NorthChina plain--measurements and modeling [J].Agricultural Water Management,2001,48(2):151-167.
    [213] Wang R Z, Gao Q. Photosynthesis, transpiration and water use efficiency in two divergent Leymuschinensis populations from northeast China[J].Photosynthetica,2001,39:123-126.
    [214] Wang X F, Xu F, Shang U. Evaporation from bare soil in extremely arid environment in southern Israel[J].Pedosphere,1996,6(2):139-146.
    [215] White A J, Critchley C. Rapid light curves: A new fluorescence method to assess the state of thephotosynthetic apparatus[J].Photosynthesis Research,1999,59(1):63-72.
    [216] Zegbe-Dominguez J A, Behboudian M H, Lang A, Clothier B E. Deficit irrigation and partial rootzonedrying maintain fruit dry mass and enhance fruit quality in Petopride processing tomato (Lycopersiconesculentum, Mill)[J]. Scientia Horticulturae,2003,98:505-510.
    [217] Zhang Y Q, Kendy E, Yu Q, Liu C M, Shen Y J, Sun H Y. Effect of soil water deficit on evapo-transpiration, crop yield, and water use efficiency in the North China plain[J]. Agricultural WaterManagement,2004,64(2):107-122.
    [218] Zhao C M, Wang G X. Effects of drought stress on photoprotection in Ammopiptanthus mongolicus leaves[J].Acta Botanica Sinica,2002,44(11):1309-1313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700