用户名: 密码: 验证码:
不同氮水平下水稻氮素利用率及相关性状的遗传基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水稻生产过程中,农民往往会施用过量的氮肥,一方面导致大量的氮肥流失,污染环境;另一方使得氮肥回收率、氮肥利用率降低。因此选用氮高效品种来减少氮肥用量、降低生产成本、减少氮肥污染、提高氮肥效率是水稻生产中迫切需要解决的问题。
     本研究目的:1)在不同氮水平下,研究氮素利用效率与产量及产量构成因子等性状之间的关系以及QTL定位;2)在不同氮水平下,研究不同时期水稻组织氮浓度性状与氮素利用效率的关系以及QTL定位;3)在不同氮水平下,研究氮积累量性状和氮转运性状与氮素利用效率之间的关系以及QTL定位;4)在不同年份间,研究耐缺氮能力性状与氮素利用效率之间的关系以及QTL定位。期望揭示水稻氮营养遗传规律,为分子标记辅助选择氮高效品种和氮营养性状的遗传改良、培育氮高效利用的水稻品种等后续研究提供依据。本实验在两个氮水平(低氮0kg N hm-2和正常氮130kg N hm-2),以源于珍汕97B与明恢63的重组自交系为研究材料,分别于2006年和2007年在湖北孝感徐山村(30°56”N,113°54”E)和武穴大金镇(29°51”N,115°33"E)种植。现已取得的主要研究结果如下:
     1)在两种氮水平下,籽粒氮素利用效率与产量、结实率和每穗颖花数呈显著正相关,因而提高产量、结实率和每穗颖花数可以改良籽粒氮素利用效率。对籽粒氮素利用效率而言,分别在2006年两种氮水平下各检测到2个QTLs,2007年低氮情况下检测到4个QTLs和正常氮情况下检测到2个QTLs,这些QTLs分别位于1、2、6、7和11号染色体。对产量和产量构成因子而言,分别在2006年两种氮水平下各检测到18个QTLs,2007年低氮情况下检测到15个QTLs和正常氮情况下检测到17个QTLs,这止匕QTLs分别位于1、2、3、4、5、6、7、10和11号染色体。本研究发现3个QTL基因簇,1号染色体C86-C567区域、2号染色体RM53-R1738区域和7号染色体RZ471-C1023区域,在不同环境下同时影响籽粒氮素利用效率和产量及构成因子等性状。这3个QTL基因簇为籽粒氮素利用效率与产量及构成因子之间的相关性提供了部分遗传基础,同时为分子标记辅助选择氮高效品种提供有用的信息。
     2)在两种氮水平下,籽粒氮素利用效率与抽穗期组织氮浓度和成熟期组织氮浓度呈显著负相关,可以通过降低抽穗期组织氮浓度和成熟期组织氮浓度来改良籽粒氮素利用效率。2006年,低氮条件下检测到16个组织氮浓度QTLs,正常氮条件下检测到19个组织氮浓度QTLs,位于染色体1、2、4、6、7、8和10。2007年低氮条件下检测到13个组织氮浓度QTLs,正常氮条件下检测到17个组织氮浓度QTLs,位于染色体1、2、3、6、7、10和11。4个QTL基因簇在不同环境下影响大部分籽粒氮素利用效率和水稻组织氮浓度性状,包括1号染色体C86-C567区域、2号染色体RM53-R1843区域、6号染色体R2749-R1952a区域和7号染色体RZ471-C1023区域。这4个QTLs基因簇为籽粒氮素利用效率和水稻组织氮浓度性状之间的相关性提供了部分遗传基础,同时为分子标记辅助选择稳定组织氮浓度基因型提供了有用的信息。
     3)在多环境下,籽粒氮素利用率与氮积累量性状呈显著负相关,而与氮转运性状呈正相关,暗示着可以通过降低氮积累量和提高氮转运效率来改良籽粒氮素利用效率。对氮积累量性状而言,2006年低氮条件下检测到9个QTLs和正常氮条件下12个QTLs;2007年低氮条件下检测到10个QTLs和正常氮条件下8个QTLs;这些氮积累量性状QTLs分别定位在1、2、3、4、5、6、7、9、10和11号染色体。对氮转运效率性状而言,2006年低氮条件下检测到9个QTLs和正常氮条件下8个QTLs;2007年低氮条件下检测到13个QTLs和正常氮条件下8个QTLs;这些氮转运性状QTLs分别定位在1、2、3、4、5、6、7、10、11和12号染色体。本研究还发现几个QTLs基因簇:2号染色体RZ5993-R1738区域、6号染色体R1962-C1496区域、7号染色体RZ471-C1023区域,11号染色体G44-RG118区域和3203-RM20a区域,在不同氮环境下同时影响籽粒氮素利用效率与氮积累和转运性状等大部分性状。这5个QTLs基因簇为籽粒氮素利用效率与氮积累和转运性状之间的相关性提供了部分遗传基础,为分子标记辅助选择稳定氮积累和氮转运品种提供了有用的信息。
     4)耐缺氮能力性状通常定义为低氮条件下的性状值与正常氮条件下性状值的比值,其中包括相对籽粒产量性状、相对干物质产量性状、相对籽粒氮性状和相对总氮积累量性状。氮素利用率性状包括氮反应、籽粒产量反应和氮素生理利用效率。在不同的年份间,除氮素生理利用效率与相对总氮积累量外,氮素利用率性状与耐缺氮能力性状呈负相关。2006年和2007年分别检测到7个和8个耐缺氮能力性状QTLs,分别定位在染色体1、2、3、4、7、9、10和11。对氮素利用率性状而言,2006年检测到5个QTLs,2007年检测到6个QTLs,这些氮素利用率性状QTLs分别位于染色体1、2、3、4、6、7、9、10和11。4个QTLs基因簇在不同年份间影响部分耐缺氮能力性状与氮素利用效率性状,包括1号染色体G393-C922区域、3号染色体RM232-C63区域、4号染色体G235-G102区域和7号染色体RG678-R1440区域。这4个QTLs基因簇为耐缺氮能力性状与氮素利用效率性状之间的相关性提供了部分遗传基础,也为分子标记辅助选择稳定耐缺氮能力基因型提供了有用的信息。
In modern farming system, the excessive use of nitrogen fertilizers results in increasingly severe adverse effects to the environments, the problem of nitrogen uptake and use efficiency stepwise decreased is usually accompanied with the greater increased nitrogen application. Undoubtedly, improvement of grain nitrogen use efficiency is one of most important goal in modern rice breeding program. Therefore, selection for high nitrogen use efficiency with high grain yield for decreasing the cost of rice production and environmental pollution remains a big challenge in rice breeding.
     The objectives of this study were:1) to investigate the relationships between grain nitrogen use efficiency and grain yield and its component under two nitrogen levels, and mapped QTLs for these traits;2) to study the relationships between grain nitrogen use efficiency and rice tissue nitrogen concentration traits under two nitrogen conditions, and detect QTLs for these traits;3) to examine the relationships between grain nitrogen use efficiency and nitrogen accumulation and translocation traits under two nitrogen levels, and identify QTLs for these traits;4) to explore the relationships between nitrogen use efficiency and nitrogen deficiency tolerance traits under two nitrogen conditions, and investigate QTLs for these traits. The results of QTLs mapping will provide useful information for the improvement of nitrogen use efficiency and related traits with marker assistant selection. The2006experiment was conducted at Xusan villiage, Xiaogan City (30°56'N,113°54'E), while the2007experiment was carried out at Dajin town, Wuxue City (29°51'N,115°33'E). For low-nitrogen (LN), no artificial nitrogen fertilizer was applied. For normal nitrogen (NN),135kg N ha-1in2006and130kg N ha-1in2007were applied. The following results were obtained:
     1) Grain nitrogen use efficiency was significant positively correlated with grain yield, grain filling and the number of spikelets per panicle under both nitrogen conditions, suggested that grain nitrogen use efficiency may be improved though the improvement of grain yield, grain filling and the number of spikelets per panicle. For grain nitrogen use efficiency, two QTLs under LN and two QTLs under NN were identified in2006; four QTLs under LN and two QTLs under NN were detected in2007; all of these QTLs were located on chromosome1,2,6,7and11. For grain yield and its components, eighteen QTLs under LN and eighteen QTLs under NN were detected in2006and fifteen QTLs under LN and seventeen QTLs under NN were detected in2007, which were positioned on chromosome1,2,3,4,5,6,7,10and11. The close linkage genomic regions, including C86-C567on chromosome1, RM53-R1738on chromosome2and RZ471-C1023on chromosome7, were confirmed to affect most of grain nitrogen use efficiency, grain yield and yield component under both nitrogen conditions, and provided genetic basis of the relationship between grain nitrogen use efficiency, grain yield and yield component. All of these genomic regions would be very useful for improving nitrogen use efficiency in rice breeding though marker assisted selection.
     2) Grain nitrogen use efficiency was significant negatively correlated with nitrogen concentration traits at heading and maturity stage under both nitrogen conditions, suggested that grain nitrogen use efficiency may be improved though decreasing nitrogen concentration traits. Sixteen QTLs under LN and nineteen QTLs under NN in2006for rice tissue concentration were identified on chromosome1,2,4,6,7,8and10, and thirteen QTLs under LN and seventeen QTLs under NN in2007were identified on chromosome1,2,3,6,7,10and11. The close linkage genomic regions, including C86-C567on chromosome1, RM53-R1843on chromosome2, R2749-R1952a on chromosome6and RZ471-C1023on chromosome7, were confirmed to affect most of tissue nitrogen concentration traits and grain nitrogen use efficiency under both nitrogen conditions, and provided genetic basis of relationship between tissue nitrogen concentration traits and grain nitrogen use efficiency. This would be very useful for improving nitrogen use efficiency in rice breeding though marker assisted selection.
     3) Grain nitrogen use efficiency was significant negatively correlated with nitrogen accumulation traits at heading and maturity stage, however, positively correlated with nitrogen translocation traits under both nitrogen conditions, suggested that grain nitrogen use efficiency may be improved though decreasing nitrogen accumulations and increasing nitrogen translocation efficiency. For nitrogen accumulation traits, nine QTLs under LN and twelve QTLs under NN in2006, and ten QTLs under LN and eight QTLs under NN in2007were identified on chromosome1,2,3,4,5,6,7,9,10and11. For nitrogen translocation traits, nine QTLs under LN and eight QTLs under NN were detected in2006 and thirteen QTLs under LN and eight QTLs under NN were detected in2007, which were located on chromosome1,2,3,4,5,6,7,10,11and12. The close linkage genomic regions, including RZ5993-R1738on chromosome2, R1962-C1496on chromosome6, RZ471-C1023on chromosome7, G44-RG118and R3203-RM20a on chromosome11, were confirmed to affect most of all traits under both nitrogen conditions, and provided genetic basis of relationship between grain nitrogen use efficiency, nitrogen accumulation and nitrogen translocation traits.
     4) Nitrogen deficiency tolerance traits were the ratio of a trait value under LN to NN, including grain yield, biomass yield, grain nitrogen and biomass nitrogen. Nitrogen use efficiency traits were nitrogen response, grain yield response and physiological nitrogen-use efficiency. Nitrogen use efficiency traits significantly negatively correlated with nitrogen deficiency tolerance traits in the two testing years, except for the correlations between physiological nitrogen-use efficiency and relative biomass nitrogen. For nitrogen deficiency tolerance traits, seven and eight QTLs were identified in2006and2007, respectively. These QTLs were on chromosomes1,2,3,4,7,9,10and11. For nitrogen use efficiency traits, five and six QTLs were detected on chromosomes1,2,3,4,6,7,9,10and11in2006and2007, respectively. Four genomic regions, including G393-C922on chromosome1, RM232-C63on chromosome3, G235-G102on chromosome4and RG678-R1440on chromosome7, were found to contain QTLs for nitrogen deficiency tolerance and nitrogen use efficiency traits, provides partial explanation and genetic mechanism for the observed correlations between nitrogen deficiency tolerance and nitrogen use efficiency traits, and could be used as targets for improving nitrogen deficiency tolerance and nitrogen use efficiency traits in future breeding.
引文
1.安林升,倪晋山,李共福.耐低钾水稻的钾营养特性.植物生理学通讯,1995,31(4):257-259
    2.白建江.水稻氮素高效利用QTLs定位及基因互作关系.[硕士学位论文].苏州:苏州大学图书馆.2010
    3.曹黎明,潘晓华.水稻耐低磷基因型种质的筛选与鉴定.江西农业大学学报,2000,22(2):162-168
    4.董桂春,王余龙,吴华,王坚刚,蔡惠荣,张传胜,蔡建中.供氮浓度对水稻根系生长的影响.江苏农业研究,2001,22(4):9-13
    5.董桂春,王余龙,王坚钢,单玉华,马爱京,杨洪建,张传胜,蔡惠荣.不同类型水稻品种间根系性状的差异.作物学报,2002,28(6):749-755.
    6.董桂春,王余龙,吴华,周小冬,单玉华,王坚刚,蔡惠荣,蔡建中.水稻主要根系性状对施氮时期反应的品种间差异.作物学报,2003,29(6):871-877
    7.方萍,陶勤南,吴平.水稻吸氮能力与氮素利用率的QTLs及其基因效应分析.植物营养与肥料学报,2001,7(2):159-165
    8.傅志坚,王德先.水稻对红壤中氮磷的吸收利用.核农学报,1992,6(4):214-218
    9.顾铭洪.水稻高产育种中一些问题的讨论.作物学报,2010,36(9):1431-1439
    10.黄见良,李合生,李建辉,邹应斌,陈开铁.不同杂交水稻吸氮特性与物质生产的关系.核农学报,1998,12(2):89-94
    11.江立庚,戴廷波,韦善清,甘秀芹,徐建云,曹卫星.南方水稻氮素吸收与利用效率的基因型差异及评价.植物生态学报,2003,27(4):466-471
    12.李共福.水稻品种对N、K的反应及其与肥料效益的关系.土壤肥料,1987,2:25-27
    13.李木英,潘晓华,石庆华,谭雪明,程永盛.氮素营养对水稻两优培特的物质生产和产量形成影响研究初报.江西农业大学学报,1997,19(3):25-29
    14.李庆逵,朱兆良,于天任.中国农业持续发展中的肥料问题.江西:江西科学技术出版社,1997
    15.李荣刚,崔玉亭,程序.苏南太湖地区水稻氮肥施用与环境可持续发展.耕作与栽培,1999,(4):49-50
    16.李生秀.植物营养与肥料学科的现状与展望.植物营养与肥料学报,1999,5(3):1-12
    17.林葆.提高作物产量、增加施肥效应.中国土壤学会.中国土壤科学现状与前景.江苏科学技术出版社,1991,29-36
    18.练兴明.水稻氮胁迫基因表达谱研究及耐低氮特性数量性状分析.[博士学位论文].武汉:华中农业大学图书馆,2005
    19.廖红,严小龙.高级植物营养学,北京:科学出版社,2003
    20.林振武,郑朝峰,吴少伯,王玉琴,汤玉玮.硝酸还原酶活力与作物耐肥性的研究Ⅱ籼粳稻对硝态氮的吸收和同化.作物学报,1986,12(1):9-14
    21.刘枫,张辛未,汪春水.皖南双季稻区长期施肥效应研究.植物营养与肥料学报,1998,4(3):224-230
    22.刘桂富,卢永根,王国昌,黄宁.水稻产量、株高及其相关性状的QTL定位.华南农业大学学报.1998,19(3):5-9
    23.刘国栋.水稻的氮素利用效率、光合作用和产量潜力.世界农业,2000,3:251
    24.凌启鸿,张洪程,戴其根,丁艳锋,凌励,苏祖芳,徐茂,阙金华,王绍华.水稻精确定量施氮研究.中国农业科学,2005,38(12):2457-2467.
    25.刘宝玉,徐家宽,王余龙,姚友礼,吕贞龙,黄建晔.不同生育时期氮素供应水平对杂交水稻根系生长及其活力的影响.作物学报,1997,23(6):699-706
    26.吕忠贵,杨圆.浅析氮磷化肥的使用、利用及对农业生态环境污染.农业环境与发展,1997,3:30-34
    27.卢学兰,蔡大同,史瑞和.水稻植株对土壤氮和肥料氮的吸收同化和分配.南京农业大学学报,1991,14(4):56-64
    28.潘映华,李振高,李良漠.杂交粳稻的氮素利用率及根际微生物.土壤,1995,3:144-146
    29.单玉华,王余龙,山本由德,黄建晔,董桂春,杨连新,张传胜.不同类型水稻在氮素吸收及利用上的差异.扬州大学学报(自然科学版)2001a,4(3):42-50
    30.单玉华,王余龙,山本由德,黄建晔,董桂春,杨连新,张传胜,居静.常规籼稻与杂交籼稻氮素利用效率的差异.江苏农业研究,2001b,(1):12-15
    31.单玉华.不同类型水稻品种氮素吸收利用的差异及控制:[博士学位论文].扬州: 扬州大学,2002
    32.石庆华,李木英,涂起红.杂交水稻根系生长优势与吸氮特性关系的初步研究.江西农业大学学报,1996,21(2):145-148
    33.孙静文,陈温福,臧春明,王彦荣,吴淑琴.水稻根系研究进展.沈阳农业大学学报,2002,12(6):466-470
    34.王余龙,津野幸人.水稻不同层次根量与活性的关系及其对氮素吸收的影响.江苏农学院学报,1989,10(2):13-16
    35.王余龙,姚友礼,蒋军民,蔡建中.高产水稻养分吸收规律及氮素调控机理研究.见:凌启鸿主编,水稻群体质量理论与实践.中国农业出版社,1995,118-130
    36.温贤芳,郭志芬,陈良.稳定同位素15N在我国农业研究中的应用进展.同位素,1991,4(4):60-64
    37.吴平,罗安程.应用分子标记研究氮素胁迫条件下水稻叶片叶绿素含量差异的遗传背景.遗传学报,1996,23(6):431-438
    38.谢建昌.世界肥料使用的现状与前景.植物营养与肥料学报,1998,4(4):321-330
    39.严小龙,张福锁.植物营养遗传学.中国农业出版社.1997,1-44
    40.杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机制的研究,土壤学报,1992,29(1):73-79
    41.杨肖娥,孙羲.杂交稻和常规稻生育后期追施N03-N和N地-N的生理效应.作物学报,1991,17(4):283-291
    42.杨肖娥.植物适应氮磷钾营养胁迫的机理研究进展.见:张福锁主编,植物营养-生理生态学和遗传学.中国科学技术出版社,1993,36-76
    43.余叔同,汤章城.植物生理与分子生物学.北京:科学出版社,1998
    44.张福锁,王兴仁,王敬国.提高作物养分资源利用效率的生物学途径.北京农业大学学报,1995,21(增刊):104-110
    45.张绍林,朱兆良,徐银华,陈荣业,李阿荣.关于太湖地区稻麦上氮肥的适宜用量.土壤,1988,20:5-9
    46.张云桥,吴荣生,蒋宁.水稻的氮肥利用效率与品种类型的关系.植物生理学通讯,1989,(2):45-47
    47.赵全志,黄丕生,凌启鸿.水稻群体光合速率和茎鞘贮藏物质与产量关系的研 究.中国农业科学,2003,4(3):304-310
    48.钟旭华,黄农荣,郑海波.禾谷类作物氮素利用率与收获指数及植株氮浓度的定量关系.全国第十一届水稻优质高产理论与技术研讨会论文集,中国作物学会作物栽培专业委员会主办,武汉,中国,2005:22-29
    49.郑圣先,蔡立湘.土壤植物营养学与农业持续发展.湖南农业科学,1998,(4):5-7
    50.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6
    51.朱兆良.我国土壤供氮和化肥氮去向研究的进展.土壤,1985,17(1):2-9
    52.曾建敏.水稻氮效率评价系统的建立与氮高效形成机理的研究.[博士学位论文].武汉:华中农业大学图书馆.2006
    53. Agrama H A S, Zakaria A G, Said F B, Tuinstra M R. Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breed,1999,5:187-195
    54. Bertin P, Gallais A. Physiological and genetic basis of nitrogen use efficiency in maize:Ⅱ.QTL detection and coincidences. Maydica,2000,45:67-80
    55. Broadbent F E, De Datta S K, Laureles E V. Measurement of nitrogen utilization efficiency in rice genotypes. Agron J,1987,79:786-791
    56. Bronson K F, Hussain F, Pasuquin E, Ladha J K. Use of 15N-Labeled Soil in Measuring Nitrogen Fertilizer Recovery Efficiency in Transplanted Rice. Soil Sci Soc Am J,2000,64:235-239
    57. Bufogle A J, Bollich P K, Kovar J L Lindau C W, Macchiavelli R E. Rice plant growth and nitrogen accumulation from a midseason application. J Plant Nutr,1997, 20(9):1191-1201
    58. Cassman K G, Gines G C, Dizon M A. Nitrogen-use efficiency in tropical lowland rice systems:contributions from indigenous and applied nitrogen. Field Crops Res, 1996,47:1-12
    59. Cassman K G, Peng S, Olk D C, Ladha J K, Reichardt W, Dobermann A, Singh U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res,1998,56:7-39
    60. Cassman K G, Pingali P L. Extrapolating trends from long-term experiments to farmers'fields:the case of irrigated rice systems in Asia. In:Barnett V eds., Agricultural Sustainability in Economic, Environmental and Statistical Terms. London, U K:John Wiley and Sons Ltd,1995.63-68
    61. Cassman K G. Ecological intensification of cereal production systems:Yield potential, soil quality, and precision agriculture. Proc National Acad Sci (USA),1999, 96:5952-5959
    62. Chen J Y, Xu L, Cai Y L, Xu J. QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites. Plant Soil,2008, 313:251-266
    63. Chen Y S, Lubberstedt T. Molecular basis of trait correlations. Trends Plant Sci,2010, 15:454-461
    64. Chichester F W, Legg J O, Stanford G. Relative mineralization rates of indigenous and recently incorporated 15N-labeled nitrogen. Soil Sci,1975,120(6):455-460
    65. Cho Y, Jiang W Z, Chin J H, Piao Z P, Cho Y G, McCouch S R, Koh H J. Identified of QTLs associated with physiological nitrogen use efficiency in rice. Mol Cells, 2007,23:72-79
    66. Chuichill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics,1994,138:963-971
    67. Coque M, Martin A, Veyrieras J B, Hirel B, Gallais A. Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences. Theor Appl Genet,2008,117:729-747
    68. Cui K H, Peng S B, Xing Y Z, Yu S B, Xu C G. Molecular dissection of relationship between seedling characteristics and seed size in rice. Acta Botanica Sinica,2002,44 (6):702-707
    69. Cui K H, Peng S B, Xing Y Z, Yu S B, Xu C G, Zhang Q F. Molecular dissection of genetic relationship of source, sink and transport tissue with yield traits in rice. Theor Appl Genet,2002,106:649-658
    70. De Datta S K, Broadbent F E. Development changes related to nitrogen-use efficiency in rice. Field Crops Res,1993,34:47-56
    71. De Datta S K, Broadbent F E. Methodology for evaluating nitrogen utilization efficiency by rice genotypes. Agron J,1988,80:793-798
    72. De Datta S K, Broadbent F E. Nitrogen use efficiency of 24 rice genotypes on an N-deficient soil. Field Crops Res,1990,23:81-92
    73. De Datta S K, Buresh R J, Samson M I, Wang K R. Nitrogen use efficiency and nitrogen-15 balances in broadcast-seeded flooded and transplanted rice. Soil Sci Soc Am J,1988,52:849-855
    74. De Datta S K, Buresh R J. Integrated nitrogen management in irrigated rice. Advances in Soil Sci,1989,10:143-169
    75. De Datta S K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. Fertilizer Res.1986, (9):171-186
    76. Deleens E, Morot-Gaudry J F, Martin F, Thoreux A, Gojon A. 15N methodology. In: Jean-Francois, Gaudry M eds., Nitrogen Assimilation by Plants. Science Publishers, 2001.301-316
    77. Dyson T. World food trends and prospects to 2025. Proc National Acad Sci (USA), 1999,96:5929-5936
    78. Evans J R. Nitrogen and photosynthesis in the flag leaf of wheat (triticum aestivun L). Plant Physiol,1983,72:297-302
    79. Faferia N K, Baligar V C, Jones C A. Growth and mineral nutrition of field crops. Marcel Dekker, Inc. New York:NY,1991.159-197
    80. Fageria N K, Filho M P B. Nitrogen use efficiency in lowland rice genotypes. Commun Soil Sci Plan,2001,32:2079-2089
    81. Fan C H, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encoding a putative transmembrane protein. Theor Appl Genet,2006, 112:1164-1171
    82. FAO,2007, "Concern about rice production practices", Retrieved 9 November 2007, Food and Agriculture Organization of United Nations, Website:http://www.fao.org
    83. Feng Y, Cao L Y, WU W M, Shen X H, Zhan X D, Zhai R R, Wang R C, Chen D B, Cheng S H. Mapping QTLs for nitrogen-deficiency tolerance at seedling stage in rice (Oryza sativa L.). Plant Breed,2010,129:652-656
    84. Fischer K S. Increasing nutrient-use efficiency in rice cropping systems the next generation of technology. Field Crops Res,1998,6:1-6
    85. Frink C R, Waggoner P E, Ausubel J H. Nitrogen fertilizer:retrospect and prospect. Proc National Acad Sci USA,1999,96:1175-1180
    86. Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize. J ExpBot,2004,55:295-306
    87. Granato T C, Raper C D. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate. J Exp Bot,1989,40:263-275
    88. Guo L B, Xing Y Z, Mei H W, Xu C G, Shi C H, Wu P, Luo, L J. Dissection of component QTL expression in yield formation in rice. Plant Breed,2005,124: 127-132
    89. Hasegawa T, Koroda Y, Seligman N G, Horie T. Response of spikelet number to plant nitrogen concentration and dry weight in paddy rice. Agron J,1994,86: 673-676
    90. Heffner, E L, Sorrels M R, Jannink J L. Genomic selection for crop improvement. Crop Sci,2009,49:1-12
    91. Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol,2001,125: 1258-1270
    92. Hirel B, Le Gouis J, Ney B, Gallais A. The challenge of improving nitrogen use efficiency in crop plants:towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot,2007,58:2369-2387
    93. Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics,2002,162:1885-1895
    94. Inthapanya P, Sipaseuth P, Sihavong P, Sihathep V, Chanphengsay M, Fukai S, Basnayake J. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non-fertilized conditions. Field Crops Res,2000,65:57-68
    95. Ishimaru K, Kobayashi N, Ono K, Yano M, Ohsugi R. Are contents of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? J Exp Bot,2001,52:1827-1833
    96. Ju J, Yamamoto Y, Wang Y L, Shan Y H, Dong G C, Yoshida T, Miyazaki A. Genotypic differences in grain yield, and nitrogen absorption and utilization in recombinant inbred lines of rice under hydroponic culture. Soil Sci Plant Nutri,2006, 52:321-330
    97. Kamachi K, Yamaya T, Hayakawa T, Mae T, Ojima K. Changes in cytosolic glutamine synthetase polypeptide and its mRNA in a leaf blade of rice plants during natural senescence. Plant Physiol,1992,98:1323-1329
    98. Koutroubas S D, Ntanos D A. Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice. Field Crops Res,2003,83:251-260
    99. Ladha J K, Kirk G J D, Bennett J, Peng S, Reddy C K, Reddy P M, Singh U. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crops Res,1998,56:41-71
    100. Lafitte H R. Research opportunities to improve nutrient use efficiency in rice cropping systems. Field Crops Res,1998,56:223-236
    101. Lafitte H R, Edmeades G O. Improvement for tolerance to low soil nitrogen in tropical maize. Ⅱ. Grain yield, biomass production, and N accumulation. Field Crops Res,1994,39:15-25
    102. Li H H, Li Z, Wang J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental population. Theor Appl Genet,2008, 116:243-260
    103. Li J X, Yu S B, Xu C G, Tan Y F, Gao X H, Zhang Q F. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of elite rice hybrid. Theor Appl Genet,2000,101:248-254
    104. Li Z S, Pinson S R M, Stansel J W, Paterson A H. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice. Mol Breed,1998,4: 419-426
    105. Lian X M, Xing Y Z, Yan H, Xu C G, Li X H, Zhang Q F. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet,2005,112:85-96
    106. Lin H X, Qian H R, Zhuang J Y, Lu J, Min S K, Xiong Z M, Huang N, Zheng K L. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet,1996,92:920-927
    107. Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F. Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol,2003a, 131:345-358
    108. Loudet O, Chaillou S, Krapp A, Daniel-Vedele F. Quantitative trait loci analysis of water and anion contents in interaction with nitrogen availability in Arabidopsis thaliana. Genetics,2003b,163:711-722
    109. Mae T, Makino A, Ohira K. Changes in the amount of ribulose bisphosphate carborylase synthesized and degraded during the life span of rice leaf (Oryza sativa L.). Plant Cell Physiol,1983,24(6):1079-1086
    110. Mae T, Ohira K. The relationship between proteolytic activity and loss of soluble protein in rice leaves from anthesis though senescence. Soil Sci Plant Nutri,1984, 30(3):427-434
    111. Mae T, Ohira K. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza Sativu L.). Plant Cell Physio,1981,22(6):1067-1074
    112. Mae T. Physiological nitrogen efficiency in rice:nitrogen utilization, photosynthesis, and yield potential. Plant Soil,1997,196:201-210
    113.Makino A, Mae T, Ohira K. Relation between nitrogen and 1,5-bisphosphate carboxylase in rice leaves from emergence through senescence. Plant Cell Physiol, 1984a,25:429-437
    114. Makino A, Mae T, Ohira K. Changes in photosynthetic capacity in rice leaves from emergence through senescence. Analysis from ribulose-1,5-biphosphate carboxylase and leaf conductance. Plant Cell Physiol,1984b,25:511-521
    115.McCouch S R, Cho Y G, Yano M, Paul E, Blinstruub M. Report on QTL nomenclature. Rice Genet Newsl,1997,14:11-13
    116. Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J,1982,74:562-564
    117. Namai S, Toriyama K, Fukuta Y. Genetic variation in dry matter production and physiological nitrogen use efficiency in rice (Oryza sativa L.) varieties. Breed Sci, 2009,59:269-276
    118. Novoa R, Loomis R S. Nitrogen and plant production. Plant Soil,1981,58:177-204
    119. Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res,2002, 74:93-101
    120. Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, Yamaya T, Sato T. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthasein rice (Oryza saliva L.). J Exp Bot,2001,52:1209-1217
    121. Obara M, Sato T, Sasaki S, Kashiba K, Nagano A, Nakamura I, Ebitani T, Yano M,Yamaya T. Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theor Appl Genet, 2004,110:1-11
    122. Ohnishi M, Horie T, Homma K, Supapoj N, Takano H, Yamamoto S. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand. Field Crops Res,1999,64:109-120
    123. Olivier L, Sylvain C, Patricia M, Joel T, Francoise D V. Quantitative trait analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol,2003,131:345-358
    124. Peng S B, Cassman K G, Kropfif M J. Relationship between leaf photosynthesis and nitrogen content of field-grown rice in the tropics. Crop Sci,1995.35:1627-1630
    125. Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhu Q S, Roland B J, Christian W. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. China Agricul Sci,2002, 1(7):776-785
    126. Peng S, Cassman K G. Upper thresholds of nitrogen uptake rates and associated nitrogen fertilizer efficiencies in irrigated rice. Agron J,1998,90:178-185
    127. Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice system in China. Field Crops Res,2006,96:37-47
    128. Przulj N, Momcilovic V. Genetic variation for dry matter and nitrogen accumulation and translocation in two-rowed spring barley I. Dry matter translocation. Eur J Agron, 2001,15:241-254
    129. R CORE Development Team,2008, R:a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Website:http://www.R-project.org
    130. Rauh B L, Basten C, Buckler E S. Quantitative trait loci analysis of growth response to varying nitrogen sources in Arabidopsis thaliana. Theor Appl Genet,2002, 104:743-750
    131.Sahu R K, Tirol-Padre A, Ladha J K, Singh U, Baghel S S, Srivastava M N. Screening genotypes for nitrogen use efficiency on a nitrogen deficient soil. Oryza, 1997,34:350-357
    132. SAS,1996, SAS User's Guide:Statistics. SAS Institute Inc. Cary, NC
    133. Sattelmacher B, Horst W J, Becker H C. Factors that contribute to genetic variation for nutrient efficiency of crop plants. J Plant Nutr Soil Sci,1994,157:215-224
    134. Schepers J S, Francis D D, Vigil M, Below F E. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Commun Soil Sci Plant Anal,1992,23: 2173-2187
    135. Schnier H F, De Datta S K, Megel K. Dynamics of 15N-labeled ammonium aulfate in various inorganic and organic soil froactions of wetland rice soils. Bio Fertil Soils, 1987,4:171-177
    136. Schnier H F, Dingkuhn M, De Datta S K, Marqueses E P, Faronilo J E. Nitrogen-15 balance in transplanted and direct-seeded flooded rice as affected by different methods of urea application. Biol Fertil Soils,1990,10:89-96
    137. Schnier H F. Nitrogen-15 recovery in flooded tropical rice as affected by added nitrogen interaction. Eur J Agron,1994,3(2):161-167
    138. Senapathy S, Kunnummal K V, Palaniappan M, Marappa M.QTL and QTL×Environment effects on agronomic and nitrogen acquisition traits in rice. J Integr Plant Biol,2008,50:1108-1117
    139. Shan Y H, Wang Y L, Pan X B. Mapping of QTLs for nitrogen use efficiency and related traits in rice (Oryza sativa L). Acta Agron Sinca,2005,4(10):721-727
    140. Shreshtha R K, Ladha J K. Rice genotypic variation romotion of rice dinitrogen fixation as deter mined by 15N dilution. Soil Sci Soc Am J,1996,60:1815-1821
    141. Sidwell R J, Smith E L, McNew R W. Inheritance and interrelationships of grain yield and selected yield related traits in a hard red winter wheat cross. Crop Sci,1976, 16:650-654
    142. Singh U, Ladhab J K, Castilloa E G, Punzalanb G, Tirol-Padre A, Duqueza M. Genotypic variation in nitrogen use efficiency in medium-and long-duration rice. Field Crops Res,1998,58:35-53
    143. Socolow R H. Nitrogen management and the future of food:lessons from the management of energy and carbon. Proc Natl Acad Sci USA,1999,96:6001-6008
    144. Sohei K, Yoshimichi F, Hiroshi T, Tadashi S, Mitsuru O. Identification and characterization of genomic regions associated with nitrogen dynamics in rice plants (Oryza sativa L.). Breed Sci,2008,58:113-120
    145. Takai T, Fukuta F, Shiraiwa T, Horie T. Time-related mapping of quantitative trait loci controlling grain filling in rice. J Exp Bot,2005,56:2107-2118
    146. Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi T M, Ashikari M, Matsuoka M, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2003,33:513-520
    147. Tirol-Padre A, Ladha J K, Singh U, Laureles E, Punzalan G, Akita S. Grain yield performance of rice genotypes at sub-optimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res,1996,46:127-143
    148. Tong H H, Chen L, Li W P, Mei H W, Xing Y Z, Yu X Q, Xu X Y, Zhang S Q, Luo L J. Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.). Mol Breed,2010, DOI 10.1007/sl 1032-010-9499-9
    149. Tong H H, Mei H W, Yu X Q, Xu X Y, Li M S, Zhang S Q, Luo L J. Identification of related QTLs at late developmental stage in rice (Oryza sativa L.) under two nitrogen levels. Acta Genet Sin,2006,33:458-467
    150. Vlek P L G, Byrnes B H. The efficiency and loss of fertilizer N in lowland rice. Fertilizer Res,1986,9:131-147.
    151. Wang H G. Research on Food Security in China. Beijing:China Agriculture Press, 2005.157-241
    152. Wang S C, Zeng Z B,2004, Windows QTL cartographer 2.0. Department of statistics, North Carolina State University, Raleigh, NC
    153. Wang Y, Sun Y J, Chen D Y, Yu S B. Analysis of quantitative trait loci in response to nitrogen and phosphorus deficiency in rice using chromosomal segment substitution lines. Acta Agron Sin,2009,35(4):580-587
    154. Wang Z M, Wang S A. Develop super high yielding techniques of grain crops for feeding 1.6 billion people in future. Rev China Agric Sci Technol,2000,2(3):8-11
    155. Wei D, Cui K H, Pan J F, Ye G Y, Nie L X, Huang J L. Genetic dissection of grain nitrogen use efficiency and grain yield and their relationship in rice. Field Crops Res, 2011,124:340-346
    156. Wei D, Cui K H, Ye G Y, Pan J F, Xing J, Huang J L, Nie L X. QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice. Plant Soil, 2012, DOI 10.1007/s11104-012-1142-6
    157. Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res,2008,18:1199-1209
    158. William R R, Gordon V J. Improving nitrogen use efficiency for cereal production. Agron J,1999,91:357-363
    159. Wu P, Tao Q N. Genotypic response and selection pressure on nitrogen-use efficiency in rice under different nitrogen regimes. J Plant Nutri,1995,18(3):487-500
    160. Xing Y Z, Tan Y F, Hua J P, Sun X L, Xu C G, Zhang Q F. Characterization of the main effects, epi static effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet,2002,105:248-257
    161. Xing Y Z, Zhang Q F. Genetic and molecular bases of rice yield. Annu Rev Plant Biol,2010,61:421-442
    162. Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu Cai G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Gent,2008,40:761-767
    163.Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot,2002,53:917-925
    164. Yang Q H, Lu W, Hu M L, Wang C M, Zhang R X, Yano M, Wan J M. QTL and espistatic interaction underlying leaf chlorophyll and H2O2 content variation in rice. Acta Genet Sinica,2003,30(3):245-250
    165. Ying J F, Peng S B, Yang G Q, Zhou N, Visperas R M, Cassman K G. Comparison of high-yield rice in tropical and subtropical environments:Ⅱ. Nitrogen accumulation and utilization efficiency. Field Crops Res,1998,57:85-93
    166. Yoshida S. Fundamentals of rice crop science. International Rice Research Institute, Los Banos, Philippines,1981.135-147
    167. Yoshida S, Forno D A. Cock D H. Gomez K A. Laboratory Manual for Physiological Studies of Rice. IRRI. Los Banos, Philippines,1976.14-17
    168. Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F, Maroof MAS. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,1997,94:9226-9231
    169. Zeng J M, Cui K H. Huang J L, He F, Peng S B. Responses of physio-biochemical properties to N-fertilizer application and its relationship with nitrogen use efficiency in rice(Oryza sativa L.). Acta Agron Sin,2007,33(7):1168-1176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700