用户名: 密码: 验证码:
油菜细胞核雄性不育基因Bnms3的克隆及功能标记开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
9012AB是我国上世纪90年代选育的一类甘蓝型油菜新型细胞核雄性不育两型系,它利用临保系成功克服了其它核不育系统在制种过程中需要拔除50%可育株的难题。早期遗传分析表明,9012AB雄性不育性状受三对独立的基因(BnMs3, BnMs4和BnRf)互作控制(陈凤祥等,1998)。而最近的研究发现,BnMs4与BnRf等位,从而将三基因互作修正为双基因控制的隐性核不育(董发明等,2010)。为揭示该不育系雄性不育发生的分子机理,在前期标记定位的基础上,本研究重新构建了与9012AB遗传背景不同的三个定位群体(PopB, PopC和PopD),并通过图谱整合实现了核不育基因Bnms3的精细遗传和物理定位,采用图位克隆和比较基因组学相结合的方法,最终成功分离BnMs3基因。主要结果如下:
     1.通过对与9012AB遗传背景不同的三个新定位群体8,000余单株的分析,将原来与目标基因BnMs3共分离的标记SCR2和9W21定位于基因的同一侧,分别包含有2个和1个重组单株;而SCR1仍然与BnMs3共分离。MT7则位于BnMs3的另一侧,包含有1个重组单株。根据JBnB004A17的序列在9W21和SCRl之间设计23对SSR引物,其中重组标记BSR73的鉴定进一步将BnMs3的候选区间缩小至39kb。
     2.利用能有效区分甘蓝和白菜亚基因组的标记DM1检测前期构建的BAC克隆重叠群显示,候选克隆JBnB004A17来源于甘蓝型油菜A10染色体,对应BnMs3的同源区。因而利用该标记扩增BnMs3连锁的片段为探针重新筛选BAC文库并获得12个阳性BAC克隆。指纹图谱分析和标记分型表明,BnMs3候选区间可由6个来源于C9染色体的BAC克隆构建成一个完整的重叠群。测序其中可能包含目标位点的克隆JBnB043L23,获得其约118kb插入的序列。
     3.基于JBnB043L23和JBnB004A17在标记BSR73和MT7定位区段的差异序列设计新的SCAR和SSR引物,检测BnMs3所位于的甘蓝亚基因组片段的多态性。利用各定位群体的重组单株分析,标记RCP137和RCP145最终将BnMs3限定在JBnB043L23上约9.3kb的物理区段内。
     4.基因预测显示,9.3kb的候选区间存在一个完整的开放读码框(ORF2)和另外两个读码框(ORF1和ORF3)的部分序列。候选基因遗传转化实验证实ORF1为BnMs3的目标基因,其DNA序列及预测的编码蛋白均与拟南芥基因At5g16620(Tic40)高度同源,因此将BnMs3命名为BnaC9.TlC40.a,突变体Bnms3命名为bnaC9.tic40.a-2,位于A10染色体的高度同源基因则命名为BnaA10.TIC40.a。序列分析表明BnaC9.TIC40.a含有14个外显子,编码一个包含455个氨基酸残基的蛋白,具有丝氨酸/脯氨酸富集结构域、跨膜结构域、TPR结构域和Sti1p/Hop/Hip结构域等4个保守结构域。RT-PCR的分析表明,BnaC9.TIC40.a在9012B的1-5级雄蕊、根、茎、叶和花瓣等各个组织中均存在表达,bnaC9.tic40.a-2和BnaA10.TIC40.a在9012B和9012A的各个组织中亦存在表达。
     5.从BnMs3野生型材料(9012F),Bnms3突变型材料(9012A和临保系T45),以及两个同源BAC克隆中分别分离两侧最近标记锚定的序列,比较发现9012A中候选区间序列与来源于C9染色体的目标克隆JBnB043L23的相似性仅为79.1%,但与来源于A10染色体的同源克隆JBnB004A17之间相似性却为85.5%。相反,9012F中候选区间序列与JBnB043L23具有93.3%的相似性,与JBnB004A17之间相似性仅为80.8%。该数据暗示着9012A中Bnms3等位基因型很可能是由甘蓝型油菜中A10与C9染色体间的同源重组(homologous recombination)而致。而来源于临保系T45的候选区间序列与JBnB043L23之间的相似度高达99.9%,表明其内的Bnms3等位基因型是由BnMs3等位基因型的少量碱基自然变异所致。因此,不育基因型Bnms3存在两种不同的单倍型。
     6.临保系T45与野生型材料Tapidor之间在BnaC9.TIC40.a内部只存在2bp的缺失变异,根据该处碱基变异设计的InDel标记RCP170L/R能够很好的区分临保系来源的Bnms3与其它所有材料,表明标记RCP170L/R为临保系T45中Bnma3单倍型的功能标记。而基于9012A和野生型材料Tapidor及9012F中BnaC9.TIC40.a序列差异处开发的共显性标记RCP170L2-3/R2能够很好的区分9012A与其他所有材料。因此,原则上,上述两个标记可准确的鉴别任何分离群体中BnMs3位点的基因型。
A novel recessive genic male sterility line,9012AB, has been characterized by generating a complete male-sterile population through pollinating9012A male-sterile plants with the temporary maintainers. Preliminary genetic analyses suggested that three loci (BnMs3, BnMs4and BnRf) are responsible for the male sterility in9012AB (Chen et al.,1998). Recent study, however, suggests that the BnMs4locus should be allelic to BnRf, turning the trigenic inheritance model to a digenic one (Dong et al.,2010). In this research, we constructed three new populations with different genetic compositions (Pop B, Pop C and Pop D, respectively) to isolate the BnMs3locus, on basis of the fine genetic mapping of BnMs3(He et al.,2008). With the integration of classic map-based cloning strategy and comparative genomics, we successfully cloned the gene, BnMs3. Main results are as follows:
     1. Genetyping of more than8,000individuals among the new populations showed that BnMs3, still cosegregated with SCR1, can be restricted by two previously BnMs-cosegregated markers9W21and MT7. each with one recombination event. Hereby, we designed new SSR primers according to the sequence between9W21and SCR1on BAC clone JBnB004A17. The development of a new marker (BSR73) on the same side as9W21further reduced the candidate region of BnMs3to a39-kb fragment on JBnB004A17.
     2. We used DM1, a BnMs3-linked marker which can effectively differentiate the A and C subgenome in B. napus, to identify the BAC clone JBnB004A17. It was revealed that the resulting fragment corresponds to the band in B.rapa, and is different from the polymorphic band associated with BnMs3in the mapping polulations, suggesting that JBnB004A17is actually originated from a BnMs3paralogous region in the A subgenome. The BnMs3-linked fragment amplified by DM1from Tapidor was therefore employed to screen the BAC library again. PCR and Southern blotting analysis found that6BAC clones from C subgenome possibly cover the BnMs3candidate region. One BAC clone from them, JBnB043L23, was then shotgun sequenced, harvesting an insertion fragment of118kb.
     3. High sequence similarity was observed on a large scale between JBnB043L23and JBnB004A17, while extensive variations including fragment insertion/deletion and massive SNPs were also revealed. According to the sequence differences between the two homologous BAC clones, SCAR primers specifically binding to JBnB043L23as well as SSR primers were designed from the61-kb region delimited by marker BSR73and MT7. Population analysis showed that massive primers located in this region could generate good polymorphism. Assay of recombinantion individuals with these markers led to our final delimitation of BnMs3to a9.3-kb physical region, restricted by closest flanking markers RCP145and RCP137.
     4. Gene prediction analysis of the9.3-kb fragment identified only one complete ORF (ORF2) and partial genomic sequences of its two flanking genes (ORF1and ORF3). Complementation test indicated that the ORF1, restoring the fertility of the male-sterile9012A plants, is the target gene of BnMs3. We designed BnMs3as BnaC9.TIC40.a, since ORF1was highly homologous with Arabidopsis gene At5g16620(Tic40), and the mutant of9012A was braC9.tic40.a-2. Consistently, the A10paralogue of BnMs3was referred to BnaA10.TIC40.a. The allele of BnaC9.TIC40.a from Tapidor includes14exons, and is predicted to encode a protein with455amino acids, which contains four conserved domains, i.e.. a Ser/Pro-rich domain, transmembrane domain. TPR domain and Stilp/H op/Hip domain. RT-PCR analysis showed that BnaC9. TIC40.a can be expressed in all the tissues tested in9012B, including stamens with diffenerent sizes, roots, stems, petals and leafs. Additionly, whether in9012A and9012B, bnaC9.1ic40.a-2and BnaA10. TIC40.a were found to be expressed in all the tissues tested.
     5. The genomic sequences corresponding to the9.3-kb BAC fragment were individually isolated from9012A,9012F and T45. Comparison of these fragments among different lines showed that9012A has an85.5%similarity with JBnB004A17, much higher than that with JBnB043L23(79.1%). In contrast,9012F has a93.3%similarity with JBnB043L23, while its similarity with JBnB004A17is only80.8%. In most cases,9012A was found to have an identical sequence with JBnB004A17in the sites polymorphic between JBnB004A17and JBnB043L23, whereas9012B is closely identical to JBnB043L23. However, the sequence similarity in the candidate region between T45and JBnB043L23was99.9%. Thus, we proposed that the Bnms3allele in9012A was originally caused by an occasional homeologous reciprocal recombination between chromosome A10and C9, whereas the Bnms3allele from T45was most likely to be derived from a spontaneous mutation. So, there are two Bnms3alleles with distinctive origins.
     6. We designed an InDel marker according to the2-bp nucleotide variation between T45and Tapidor in BnaC9.TIC40.a. RCP170L/R can accurately differentiate the BnMs3allele from all the inbred lines (OP cultivars) from the Bnms3allele in T45, indicating it is a functional marker for the Bnms3locus in T45. We also developed another codominant marker RCP170L2-3/R2according to the differences between9012A and9012B of BnaC9.TIC40.a, which can successfully differentiate the Bnms3allele in9012A from all the other materials with a wild-type BnMs3allele as well as T45. In principle, utilization of these two markers can accurately trarget the genotype of the BnMs3locus in any segregation generation involved in RGMS breeding.
引文
1.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24(4):431-438
    2.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新,李成,陈维生.甘蓝型油菜隐性上位互作核不育双低杂交种皖油14的选育.中国油料作物学报,2003,25(1):63-68
    3.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新.甘蓝型油菜隐性上位互作核不育双低杂交种“皖油18”的选育.安徽农业科学,2002,30(4):535-537
    4.陈凤祥,胡宝成,李强生等.甘蓝型油菜细胞核不育材料9012A的发现与初步研究.北京农业大学学报,1993,19(增刊):57-61
    5.董发明,洪登峰,刘平武,谢彦周,何庆彪,杨光圣.甘蓝型油菜隐形细胞核雄性不育系9012AB遗传模式新释.华中农业大学学报,2010,29:262-267
    6.傅廷栋,涂金星.油菜杂种优势利用的现状与展望.见:刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002
    7.何俊平.甘蓝型油菜隐性细胞核雄性不育基因ms3的精细定位.[博士学位论文].武汉:华中农业大学图书馆,2008
    8.侯国佐.甘蓝型油菜隐性核不育系可育、不育型初花前后特性的观察.种子,1991,5:29-31
    9.李殿荣.甘蓝型油菜三系选育初报.陕西农业科学,1980,1:26-29
    10.李加纳,谌利,唐章林,张学昆.油菜细胞核+细胞质双重不育系选育初报.西南农业大学学报,1994,16:403-405
    11.李石开,刘其宁,吴学英,苏振喜,张庆莹,邱怀珊,赵庭周.芥菜型油菜光温敏核不育系K121S的选育.中国油料作物学报,2002,24(3):1-5
    12.龙欢,姚家玲,涂金星.3种甘蓝型油菜雄性不育系花药发育的细胞学研究.华中农业大学学报,2005,6:570-575
    13.龙艳.甘蓝型油菜基因组中开花期QTL的检测和分析.[博士学位论文].武汉:华中农业大学图书馆,2007
    14.马磊.油菜隐性细胞核雄性不育基因区段的比较分析与特异标记的开发.[硕士 学位论文].武汉:华中农业大学图书馆,2009
    15.潘涛,曾凡亚,吴书慧,赵云.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究.中国油料,1988,(3):5-8
    16.孙超才,王伟荣,李延莉,周熙荣,钱小芳.甘蓝型双低隐性核不育杂种“沪油杂2号”的选育.上海农业学报,2005,21:1-3
    17.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型双低隐性核不育杂交种沪油杂1号的选育.中国油料作物学报,2004,26(1):63-65
    18.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型油菜隐性核不育系20118A的遗传与利用探讨.中国油料作物学报,2002,24(4):1-4
    19.王军,张太平,魏忠芬,李德文.甘蓝型油菜隐性核不育材料ZWA的遗传利用研究.种子,2004,23(5):8-11
    20.席代文,陈卫江,宁祖良.甘蓝型油菜温敏核不育系湘91S的选育.湖南农业科学,1994,(4):25-27
    21.谢彦周.甘蓝型油菜隐性细胞核雄性不育上位抑制基因的精细定位.[博士学位论文].武汉:华中农业大学图书馆,2010
    22.徐小栋.甘蓝型油菜隐性上位核不育系统育性基因的定位.[硕士学位论文].杭州:浙江师范大学图书馆,2010
    23.杨光圣,傅廷栋,杨小牛,马朝芝.甘蓝型油菜生态雄性不育两用系的研究Ⅰ.雄性不育两用系的遗传.作物学报,1995,21:129-135
    24.杨光圣,傅廷栋.植物杂种优势利用的一条新途经——细胞核+细胞质雄性不育(GCMS).北京农业大学学报,1993,19(增刊):48-53
    25.杨光圣,瞿波,傅廷栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学观察.华中农业大学学报,1999,18(6):520-523
    26.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展.作物学报,2007,33(4):523-530
    27.姚雪琴.芸薹属A、C基因组及拟南芥BnMs候选基因区共线性比较.[硕士学位论文].武汉:华中农业大学图书馆,2007
    28.易斌.甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆.[博士学位论文].武汉:华中农业大学图书馆,2008
    29.袁美,杨光圣,傅廷栋.甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ.8-8112AB的温度敏感性及其遗传.作物学报,2003,29(3):330-335
    30.张瑞茂,陈大伦,汤晓华,李敏.甘蓝型油菜细胞核雄性不育材料118A的遗传与应用研究.种子,2007,26(5):90-94
    31.俎峰,夏胜前,顿小玲,周正富,曾芳琴,易斌,文静,马朝芝,沈金雄,涂金星,傅廷栋.基于分子标记的油菜隐性核不育7-7365AB遗传模式探究.中国农业科学,2010,43:3067-3075
    32. ARABIDOPSIS GENOME INITIATIVE. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000,408:796-815
    33. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros C F, Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:complexity of the comparative map. Mol Genet Genomics,2003,268: 656-665
    34. Becker T, Hritz J, Vogel M, Caliebe A, Bukau B, Soll J, Schleiff E. Tocl2, a novel subunit of the intermembrane space preprotein translocon of chloroplasts. Mol Biol Cell,2004,15:5130-5144
    35. Bedard J, Kubis S, Bimanadham S, Jarvis P. Functional similarity between the chloroplast translocon component, Tic40, and the human co-chaperone, Hsp70-interacting protein (Hip). J Biol Chem,2007,282:21404-21414
    36. Bentolila S, Hanson M R. Identification of a BIBAC clone that co-segregates with the petunia restorer of fertility (Rf) gene. Mol Genet Genomics,2001,266:223-230
    37. Brunel D, Froger N, Pelletier G. Development of amplified consensus genetic markers (ACGMs) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome,1999,42:387-402
    38. Brunner S, Keller B, Feuillet C. Molecular mapping of the Rph7.g leaf rust resistance gene in barley (Hordeum vulgare L.). Theor Appl Genet,2000,101:783-788
    39. Buchner J. Hsp90 & Co.-a holding for folding. Trends Biochem. Sci,1999,24: 136-141
    40. Budar F, Pelletier G. Male sterility in plants:occurrence, determinism, significance and use. C R A cad Sci Ⅲ,2001,324:543-550
    41. Camus-Kulandaivelu L, Veyrieras J B, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A. Maize adaptation to temperate climate:relationship with population structure and polymorphism in the Dwarf8 gene. Genetics,2006,10:1534-1572
    42. Cavell A C, Lydiate D J, Parkin I A P, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome,1998,41:62-69
    43. Chen F X, Hu B C, Li Q S, Wu X J, Hou S M, Fei W X, Jiang Y F. Study and utilization on the recessive epistatic genic male sterility line of Brassica napus in China. In:Chinese abstract of the 12th International Rapeseed Congress,2007, Wuhan, China, p 11
    44. Chen W, Zhang Y, Liu X, Chen B, Tu J, Fu T. Detection of QTL for six yield-related traits in oilseed rape(Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet,2007,115:849-858
    45. Cheng X M, Xu J S, Xia S, Gu J X, Yang Y, Fu J, Qian X J, Zhang S C, Wu J S, Liu K D. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet,2009,118:1121-1131
    46. Cheung F, Trick M, Drou N, Lim Y P. Park J Y. Kwon S J. Kim J A. Scott R. Pires J C, Paterson A H, Town C, Bancroft I. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell,2009,21:1912-1928
    47. Chiu C-C, Li H-M. Tic40 is important for reinsertion of proteins from the chloroplast stroma into the inner membrane. Plant J,2008,56:793-801
    48. Choi S R, Teakle G R, Plaha P, Kim J H, Allender C J, Beynon E, Piao Z Y, Soengas P, Han T H, King G J, Barker G C, Hand P, Lydiate D J, Batley J, Edwards D, Koo D H, Bang J W, Park B S, Lim Y P. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet,2007, 115:777-792
    49. Chou M-L, Chu C-C, Chen L-J, Akita M, Li H-M. Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts. J Cell Biol,2006,175:893-900
    50. Chou M-L, Fitzpatrick LM, Tu S-L, Budziszewski G, Potter-Lewis S, Akita M, Levin J Z, Keegstra K, Li H-M. Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO Journal,2003,22:2970-2980
    51. Choudhary B R, Joshi P, Ramarao S. Interspecific hybridization between Brassica carinata and Brassica rapa. Plant Breeding,2000,119:417-420
    52. Chuck G, Meeley R, Irish E, Sakai H, Hake S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikeletl. Nature genetics,2007,39(12):1517-1521
    53. Diers B W, McVetty P B W, Osborn T C. Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L.). Crop Sci,1996,36:79-83
    54. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997,386:485-488
    55. Doebley J. A tomato gene weighs in. Science,2000,289:71-72
    56. Dong F M, Hong D F, Xie Y Z, Wen Y P, Dong L, Liu P W, He Q B, Yang G S. Molecular validation of a multiple-allele recessive genie male sterility locus (BnRf) in Brassica napus L. Mol Breeding,2012, DOI:10.1007/s 11032-012-9708-9
    57. Dun X L, Zhou Z F, Xia S Q, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D. BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J,2011,68:532-545
    58. Dyall S D, Brown M T, Johnson P J. Ancient invasions:from endosymbionts to organelles. Science,2004,304:253-257
    59. Ertel F, Mirus O, Bredemeier R, Moslavac S, Becker T, Schleiff E. The evolutionarily related β-barrel polypeptide transporters from Pisum sativum and Nostoc PCC7120 contain two distinct functional domains. J Biol Chem,2005,280: 28281-28289
    60. Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet,2006,112(6): 1164-1171
    61. Fan C C, Yu S B, Wang C R, Xing Y Z. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet,2009,118(3):465-472
    62. Faris J D, Fellers J P, Brooks S A, Gill B S. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics,2003,164:311-321
    63. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA,2003,100:15253-15258
    64. Formanova N, Li X Q, Ferrie A M R, DePauw M, Keller W A, Landry B, Brown G G. Towards positional cloning in Brassica napus:generation and analysis of doubled haploid B. rapa possessing the B. napus pol CMS and Rfp nuclear restorer gene. Plant Mol Biol,2006,61:269-281
    65. Formanova N, Stollar R, Geddy R, Mahe L, Laforest M, Landry B S, Brown G G. High-resolution mapping of the Brassica napus Rfp restorer locus using Arabidopsis-devived molecular markers. Theor Appl Genet,2010,120:843-851
    66. Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot,2009,60(4):1319-1332
    67. Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt R J, McSteen P. sparse inflorescence 1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci USA.2008. 105(39):15196-15201
    68. Gao M, Li G, Yang B, McCombie WR, Quiros C F. Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome,2004,47:666-679
    69. Guan H Z, Duan Y L, Liu H Q, Chen Z W, Zhuo M, Zhuang L J, Qi W M, Pan R S, Mao D M, Zhou Y C, Wang F, Wu W R. Genetic analysis and fine mapping of an enclosed panicle mutant esp2 in rice (Oryza sativa L.). Chinese Sci Bull,2011, 56(14):1476-1480
    70. Hanson P, Whiteheart S. AAA+ proteins:have engine, will work. Nat Rev Mol Cell Biol,2005,6:519-529
    71. He J P, Ke L P, Hong D F, Xie Y Z, Wang G C, Liu P W, Yang G S. Fine mapping of a recessive genie male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP and Arabidopsis-derived PCR markers. Theor Appl Genet,2008,117:11-18
    72. Hong D F, Wan L L, Liu P W, Yang G S, He Q B. AFLP and SCAR makers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L.). Euphytica,2006,151:401-409
    73. Howell E C, Kearsey M J, Jones G H, King G J, Armstrong S J. A and C genome distinction and chromosome identification in Brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization. Genetics,2008, 180:1849-1857
    74. Huang L, Brooks S A, Li W L, Fellers J P, Trick H N, Gill B S. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics,2003,164:655-664
    75. Huang Z, Chen Y F, Yi B, Xiao L, Ma C Z, Tu J X, Fu T D. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet, 2007,115:113-118
    76. Huang Z, Xiao L, Dun X L, Xia S Q, Yi B, Wen J, Shen J X, Ma C Z, Tu J X, Meng J L, Fu T D. Improvement of the recessive genic male sterile lines with a subgenomic background in Brassica napus by molecular marker-assisted selection. Mol Breeding, 2010,29(1):181-187
    77. Imai R, Koizuka N, Fujimoto H, Hayakawa T, Sakai T, Imamura J. Delimitation of the fertility restorer locus Rfkl to a 43-kb contig in Kosena radish (Raphanus sativus L.). Mol Gen Genomics.2003,269:388-394
    78. Inaba T, Alvarez-Huerta M, Li M, Bauer J, Ewers C, Kessler F, Schnell D J. Arabidopsis Tic110 is essential for the assembly and function of the protein import machinery of plastids. Plant Cell,2005,17:1482-1496
    79. Inaba T, Li M, Alvarez-Huerta M, Kessler F, Schnell D J. atTic110 functions as a scaffold for coordinating the stromal events of protein import into chloroplasts. J Biol Chem,2003,278:38617-38627
    80. Inaba T, Schnell D J. Protein trafficking to plastids:one theme, many variations. Biochem J,2008,413:15-28
    81. Inomata N. Wide hybridization and meiotic pairing. In:Kalia HR, Gupta SK (eds) Recent advances in oilseed Brassicas. Kalyani Publ, Ludhiana,1997, pp 53-57
    82. Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M. An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci USA,2007,104: 13833-13838
    83. Ishimaru K, Ono K, Kashiwagi T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta,2004,218:388-395
    84. Jackson D T, Froehlich J E, Keegstra K. The hydrophilic domain of Tic110, an inner envelope membrane component of the chloroplastic protein translocation apparatus, faces the stromal compartment. J Biol Chem,1998,273:16583-16588
    85. Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M, Last R L. Arabidopsis map-based cloning in the post-genome era. Plant Physiology,2002,129:440-450
    86. Jarvis P. Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol, 2008,179:257-285
    87. Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, Hogan P, Jesse T, Wijbrandi J, Simons G, Vos P, Zabel P, Williamson V M. Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Mol Gen Genet, 1998,257:376-385
    88. Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identification of AFLP markers linked to one recessive male sterility gene in oilseed rape, Brassica napus. Plant Breeding,2005,124:367-370
    89. Ke L P, Sun Y Q, Liu P W, Yang G S. Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed(Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica,2004,138: 163-168
    90. Kessler F, Blobel G, Patel H A, Schnell D J. Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science,1994,266:1035-1039
    91. Kessler F, Blobel G. Interaction of the protein import and folding machineries in the chloroplast. Proc Natl Acad Sci USA,1996,93:7684-7689
    92. Kim H R, Choi S R, Bae J, Hong C P, Lee S Y, Hossain M J, Nguyen D V, Jin M, Park B S, Bang J W, Bancroft I, Lim Y P. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics,2009,10:432
    93. Ko K, Budd D, Wu C B, Seibert F, Kourtz L, Ko Z W. Isolation and characterization of a cDNA clone encoding a member of the Com44/Cim44 envelope components of the chloroplast protein import apparatus. J Biol Chem,1995,270:28601-28608
    94. Koester R P, Sisco P H, Stuber C W. Identification of quantitative trait loci controlling days to flowering and plant height in two near-isogenic lines of maize. Crop Sci,1993,33:1209-1216
    95. Kouranov A, Chen X, Fuks B, Schnell D J. Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol, 1998,143:991-1002
    96. Kovacheva S, Bedard J, Patel R, Dudley P, Twell D, Rios G, Koncz C, Jarvis P. In vivo studies on the roles of Tic 110, Tic40 and Hsp93 during chloroplast protein import. Plant J,2005,41:412-428
    97. Kowalski S, Lan T, Feldmann K, Paterson A. Comparative mapping of Arabidopsis thaliana and Brassica oleracea reveal islands of conserved organization. Genetics, 1994,138:499-510
    98. Lagercrantz U, Lydiate D. Comparative genome analysis in Brassica. Genetics,1996, 144:1903-1909
    99. Lagercrantz U, Putterill J, Coupland G, Lydiate D. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J,1996,9:13-20
    100. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics,1998,150:1217-1228
    101.Le Cunff L. Garsmeur O, Marie Raboin L et al. Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Brul) in highly polyploid sugarcane (2n-12x-115). Genetics,2008,180:649-660
    102. Lei S L, Yao X Q, Yi B, Chen W, Ma C Z, Tu J X, Fu T D. Towards map-based doing:fine mapping of the recessive genic male-sterile gene(Bnms2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet,2007,115:643-651
    103. Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet,2003, 107:168-180
    104. Li H-M, Chiu C-C. Protein transport into chloroplasts. Annu Rev Plant Biol,2010,61: 157-180
    105. Li M, Chen X, Meng J. Intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome Ar from B. rapa and Cc from B. carinata. Crop Sci,2006,46:234-242
    106. Li M, Qian W, Chen X, Meng J. The progress of intersubgenomic heterosis studies in Brassica napus. Afr J Biotechnol,2010,9:1543-1550
    107. Li M, Qian W, Li Z, Meng J. Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Res,2004,12:417-426
    108. Li M, Schnell D J. Reconstitution of protein targeting to the inner envelope membrane of chloroplasts. J Cell Biol,2006,175:249-259
    109. Li Y Y, Ma C Z, Fu T D, Yang G S, Tu J X, Chen Q F, Wang T H, Zhang X G, Li C Y. Construction of a molecular functional map of rapeseed(Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphitica,2006,152: 25-39
    110. Liu H. Genetics and breeding in Rapeseed. Chinese Agricultural University Press, Beijing,2000, pp 82-177
    111. Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus × B. campestris). Theor Appl Genet,2002,105:1050-1057
    112. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B S, Choi S R, Lim Y P, Meng J. Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics,2007,177:2433-2444
    113.Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics,2003,164:359-372
    114. Mariani C, Beckeleer M D, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plant by a chimaeric ribonuclease gene. Nature,1990,347:737-741
    115. Mariani C, Gossele V, Beuckeleer M, Block M D, Goldberg R B, Greef W, Leemans J. A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature,1992,357:384-387
    116. Mason A. Creating allohexaploid plants from tetraploid Brassica species through unreduced gametes. In:abstract of the 13th International Rapeseed Congress,2011, Prague Congress Centre, Czech Republic, p 107
    117.Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V K, Good A G, Parkin I A P. Complexities of chromosome landing in highly duplicated genome:toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics,2005,171:1977-1988
    118.McGrath J M, Quiros C F. Generation of alien chromosome addition lines from synthetic Brassica napus, morphology, cytology, fertility, and chromosome transmission. Genome,1990,33:374-383
    119.Nagaharu U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization. Japan J Bot,1935,7: 389-452
    120. Nielsen E, Akita M, Davila-Aponte J, Keegstra K. Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J,1997,16: 935-946
    121.O'Neill C N, Bancroft I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J,2000,23:233-243
    122.Ogura H. Studies on the new male sterility in Japanese Radish, with special references to the utilization of this sterility towards the practical raising of hybrid seed. Mem FacAgric Kagoshima Univ,1968,6(2):39-78
    123. Oh K, Hardeman K, Ivanchenko M G, Ellard-Ivey M, Nebenfuhr A, White T J, Lomax T L. Fine mapping in tomato using microsynteny with the Arabidopsis genome:the Diageotropica (Dgt) locus. Genome Biol,2002,3:research 0049
    124. Oh K, Ivanchenko M G, White T J, Lomax T L. The diageotropica gene of tomato encodes a cyclophilin:a novel player in auxin signaling. Planta,2006,224:133-144
    125.Osborn T C, Butrulle D V, Sharpe A G, Pickering K J, Parkin I A P, Parker J S, Lydiate D J. Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics,2003,165:1569-1577
    126.Osborn T C, Kole C, Parkin I A P, Sharpe A G, Kuiper M, Lydiate D J, Trick M. Comparison of flowering time gene in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics,1997,146:1123-1129
    127. Ostergaard L, King G J. Standardized gene nomenclature for the Brassica genus. Plant Methods,2008,4:10
    128.Palaisa K A, Morgante M, Williams M, Rafalski A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant cell,2003,15:1795-1806
    129. Pang P, Meathrel K, Ko K. A component of the chloroplast protein import apparatus functions in bacteria. J Biol Chem,1997,272:25623-25627
    130.Panjabi P, Jagannath A, Bisht N C, Padmaja K L, Sharma S, Gupta V, Pradhan A K, Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers:homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics,2008,9:113
    131. Parkin I A P, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C, Lydiate D J. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics,2005,171:765-781
    132. Parkin I A P, Lydiate D J, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome, 2002,45:356-366
    133.Parkin I A P, Sharpe A G Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome,1995,38(6): 1122-1131
    134. Parkin I A P, Sharpe A G, Lydiate D J. Patterns of genome duplication within the Brassica napus genome. Genome,2003,46:291-303
    135.Pflieger S, Lefebvre V, Causse M. The candidate gene approach in plant genetics:a review. Mol Breeding,2001.7:275-291
    136.Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape(Brassica napus L.) genetic map with SSR markers. Theor Appl Genet,2005,111:1514-1523
    137.Qian W, Chen X, Fu D, Zou J, Meng J. Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theor Appl Genet,2005,110:1187-1194
    138.Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet,2006,13:49-54
    139. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTLs analysis of seed oil and erucic acid content. Theor Appl Genet,2006,114:67-80
    140. Rahman M, Sun Z D, McVetty P B E, Li G Y. High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in plant breeding. Theor Appl Genet,2008,117:895-904
    141. Rana D, van den Boogaart T, O'Neill C M, Hynes L, Bent E, Macpherson L, Park J P, Kim Y P, Bancroft I. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J,2004,40:725-733
    142.Rawlings N D, Barrett A J. Evolutionary families of metallopeptidases. Methods Enzymol,1995,248:183-228
    143.Reumann S, Inoue K, Keegstra K. Evolution of the general protein import pathway of plastids. Mol Membr Biol,2005,22:73-86
    144. Riaz A, Li Q, Quresh Z, Swati M S, Quiros C F. Genetic diversity of oilseed Brassica napus inbred lines on sequence related amplified polymorphism and its relation to hybrid performance. Plant Breeding,2001,120:411-415
    145.Richter S, Lamppa G K. A chloroplast processing enzyme functions as the general stromal processing peptidase. Proc Natl Acad Sci USA,1998,95:7463-7468
    146.Rozen S, Skaletsky H J. Primer3 on the WWW for general users and for biologist programmers. In:Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press. Totowa. NJ.1999.365-386
    147. Ryder C D, Smith L B, Teakle G R, King G J. Contrasting genome organisation:two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome. Genome,2001,44:808-817
    148.Sanchez-Pulido L, Devos D, Genevrois S, Vicente M, Valencia A. POTRA:a conserved domain in the FtsQ family and a class of β-barrel outer membrane proteins. Trends Biochem Sci,2003,28:523-526
    149. Scheufler C, Brinker A, Bourenkov G, Pegpraro S, Morder L, Bartunik H, Hartl F U, Moarei I. Structure of TPR domain-peptide complexes:critical elements in the assembly of the Hsp70-Hsp90 multi-chaperone machine. Cell,2000,101:199-210
    150.Schnell D J, Blobel G, Keegstra K, Kessler F, Ko K, Soil J. A consensus nomenclature for the protein-import components of the chloroplast envelope. Trends Cell Biol,1997,7:303-304
    151. Schnell D J, Kessler F, Blobel G. Isolation of components of the chloroplast protein import machinery. Science,1994,266:1007-1012
    152.Schranz M E, Lysak M A, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes. Trends Plant Sci,2006,11: 535-542
    153.Seedorf M, Waegemann K, Soll J. A constituent of the chloroplast import complex represents a new type of GTP-binding protein. Plant J,1995,7:401-411
    154. Simons K J, Fellers J P, Trick H N, Zhan Z, Tai Y S, Gill B S, Faris J D. Molecular characterization of the major wheat domestication gene Q. Genetics,2006,172: 547-555
    155. Smith M D. Protein import into chloroplasts:an ever-evolving story. Botany,2006, 84(4):531-542
    156. Snowdon R J, Friedrich T, Friedt W, Kohler W. Identifying the chromosomes of the A-and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor Appl Genet,2002,104:533-538
    157. Snowdon R J, Kohler W, Friedt W, Kohler A. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet,1997,95: 1320-1324
    158. Soll J, Schleiff E. Protein import into chloroplasts. Nat Rev Mol Cell Biol,2004,5: 198-208
    159. Stahl T, Glockmann C, Soll J, Heins L. Tic40. a new "old" subunit of the chloroplast protein import translocon. J Biol Chem,1999,274:37467-37472
    160. Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B. Sub-genome chromosome walking in wheat:a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat. Proc Natl Acad Sci USA,2000,97: 13436-13441
    161. Stiewe G, Pleines S, Coque M, Gielen J. New hybrid system for Brassica napus. US patent application 20100222605
    162. Su P-H and Li H-M. Stromal Hsp70 is important for protein translocation into Pea and Arabidopsis chloroplasts. Plant Cell,2010,22:1516-1531
    163.Tanksley S D, Ganal M W, Martin G B. Chromosome landing:a paradigm for map-based gene cloning in plants with large genomes. Elseveiver Science Lid,1995, 11:63-68
    164.Teng Y-S, Su Y-S, Chen L-J, Lee Y J, Hwang I, Li H-M. Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell,2006,18:2247-2257
    165.Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nature genetics. 2001,28:286-289
    166. Town C D, Cheung F, Maiti R, Crabtree J, Haas B J, Wortman J R, Hine E E, Althoff R, Arbogast T S, Tallon L J, Vigouroux M, Trick M, Bancroft I. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell,2006,18:1348-1359
    167. Viana A A B, Li M, Schnell D J. Determinants for stop-transfer and post-import pathways for protein targeting to the chloroplast inner envelope membrane. J Biol Chem,2010,285:12948-12960
    168. Wan L L, Xia X Y, Hong D F, Li J, Yang G S. Abnormal vacuolization of the tapetum during the tetrad stage is associated with male sterility in the recessive genic male sterile Brassica napus L. line 9012A. J Plant Biol,2010,53:121-133
    169. Wang J, Long Y, Wu B D, Liu J, Jiang C C, Shi L, Zhao J W, King G J, Meng J L. The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks. BMC Evolutionary Biol,2009,9:271
    170. Wang J, Lydiate D J, Parkin I A P, Falentin C, Delourme R, Carion P W C, King G J. Integration of linkage maps for the amphidiploids Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics,2011,12:101
    171. Wang X W, Wang H Z, Wang J, et al. The genome of the mesopolyploid crop species Brassica rapa. Nature genetics,2011,43:1035-1039
    172. Westermeier P, Wenzel G, Mohler V. Development and evaluation of single-nucleotide polymorphism markers in allotetraploid rapeseed(Brassica napus L.). Theor Appl Genet,2009,119:1301-1311
    173. Williams M E, Lecmans J, Michiels F. Male sterility through recombinant DNA technology. In:Shivanna K R and Sawhney V K (eds), Pollen Biotechnology for Crop Production and Improvement. Cambridge Univ. Press,1997,237-257
    174. Wu C B, Seibertn F S, Ko K. Identification of chloroplast envelope proteins in close physical proximity to a partially translocated chimeric precursor protein. J Biol Chem, 1994,269:32264-32271
    175. Wu J Z, Mizuno H, Hayashi-Tsugane M et al. Physical maps and recombination frequency of six rice chromosomes. Plant J,2003,36:720-730
    176. Xia S Q, Cheng L, Zu F, Dun X L, Zhou Z F, Yi B, Wen J, Ma C Z, Shen J X, Tu J X, Fu T D. Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers. Theor Appl Genet,2012,124(7):1193-1200
    177. Xiao L, Yi B, Chen Y F, Huang Z, Chen W, Ma C Z, Tu J X, Fu T D. Molecular markers linked to Bn;rf:a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L. Euphytica,2008,164:377-384
    178. Xie Y Z, Dong F M, Hong D F, Wan L L, Liu P W, Yang G S. Exploiting comparative mapping among Brassica species to accelerate the physical delimitation of a genie male-sterile locus (BnRf) in Brassica napus. Theor Appl Genet,2012, DOI: 10.1007/s00122-012-1826-6
    179. Xie Y Z, Hong D F, Xu Z H, Liu P W, Yang G S. Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers. Plant Breeding,2008,127:145-149
    180.Xu Z H, Xie Y Z, Hong D F, Liu P W, Yang G S. Fine mapping of the epistatic suppressor gene (esp) of a recessive genic male sterility in rapeseed (Brassica napus L.). Genome,2009,52(9):755-760
    181. Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature genetics,2008,40(6):761-767
    182. Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J,2004,37:528-538
    183. Yan J B, Kandianis C B, Harjes C E, Bai L, Kim E H, Yang X H, Skinner D, Fu Z Y, Mitchell S, Li Q, Fernandez M G S, Zaharieva M, Babu R, Fu Y, Palacios N, Li J S, DellaPenn D, Brutnell T P, Buckler E S, Warburton M L, Rocheford T. Rare genetic variation at Zea mays crtRBl increases β-carotene in maize grain. Nature genetics, 2010,42:322-327
    184. Yan J B, Warburton M, Crouch J. Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci,2011,51:433-449
    185. Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science,2004,303:1640-1644
    186. Yan L, Loukoianov A, Tranuilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acid Sci USA,2003,100: 6263-6268
    187.Yang T J,Kim J S,Kwon S J,Lim K B,Choi B S,Kim J A,Jin M,Park J Y, Lim M H,Kim H I,Lim Y P.Kang J J,Hong J H,Kim C B,Bhak J,Bancroft I,Park B S. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa.Plant Cell,2006,18:1339-1347
    188.Yi B,Chen Y N,Lei S L,Tu J X,Fu T D.Fine mapping of the recessive genic male-sterile gene(Bnms1)in Brassica napus.Theor Appl Genet,2006,113(4): 643-650
    189.Yi B,Zeng F Q,Lei S L,Chen Y N,Yao X Q,Zhu Y Wen J,Shen J X,Ma C Z,Tu J X,Fu T D.Two duplicate CYP7D4B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus.Plant J, 2010,63:925-938
    190.Zhou Z F.Dun X L,Xia S Q,Shi D Y Qin M M,Yi B,Wen J,Shen J X,Ma C Z,Tu J X, Fu T D. BnMs3 is required for tapetal differentiation and degradation, microspore separation,and pollen-wall biosynthesis in Brassica napus. J Exp Bot, 2011,DOI:10.1093/jxb/err405
    191.Zhu Y, Dun X L.Zhou Z F,Xia S Q,Yi B,Wen J,Shen J X,Ma C Z,Tu J X,Fu T D. A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassic napus:the role of abscisic acid in early anther development. Plant Mol Biol,2010,72:111-123
    192.Zou J,Zhu J,Huang S,Tian E,Xiao Y, Fu D,Tu J,Fu T,Meng J.Broadening the avenue of intersubgenomic heterosis in oilseed Brassica.Theor Appl Genet,2010, 120:283-290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700