用户名: 密码: 验证码:
石羊河流域留茬免耕对小麦/玉米间作土壤碳和硝态氮变化的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田中土壤碳排放量过高和硝态氮损失均会导致土壤肥力下降,影响作物产量并对环境产生污染。适宜的留茬方式和种植模式可以增加土壤碳固存,减少农田碳排放、增加作物氮素利用,降低土壤硝态氮损失的风险,保证作物产量。2010-2011年,在甘肃省河西绿洲灌区甘肃农业大学武威试验站,在单作小麦、单作玉米、小麦/玉米间作三种种植模式下,设置翻耕秸秆还田(TIS)、免耕立茬(NTSS)、翻耕秸秆焚烧(T,仅2010年)、免耕焚烧(NT,仅2011年)等不同留茬方式,研究留茬方式对不同种植模式下农田土壤呼吸和碳平衡、农田氮平衡、土壤物理性状、作物产量和生长发育等指标的影响。主要研究结果如下:
     1.在河西绿洲灌区,作物籽粒含氮量三种种植模式对留茬效应影响不同,基本规律为免耕立茬处理比其他留茬方式更有利于提高作物籽粒含氮量,免耕焚烧处理其次;植株总吸氮量受作物种类,作物前茬和留茬方式多方面影响。在小麦单作农田,翻耕秸秆是否还田对植株总吸氮量影响不显著(TIS和T),翻耕还田和免耕立茬比免耕焚烧显著提高植株吸氮量;在小麦间作带,不同留茬方式间均差异不显著;在玉米单作农田,前茬为小麦茬时,免耕立茬和翻耕秸秆还田与翻耕焚烧相比均能提高小麦植株总吸氮量,前茬为玉米茬时,免耕处理(NTSS和NT)均比翻耕秸秆还田处理植株吸氮量显著提高;在玉米间作带,前茬为小麦茬时,免耕立茬和翻耕秸秆还田均可以提高植株吸氮量,而前茬为玉米茬时,免耕处理(NTSS和NT)比翻耕秸秆还田更能提高植株吸氮量;种植模式间比较(2010-2011留茬方式均值),单作小麦植株总吸氮量显著低于单作玉米和小麦/玉米间作,单作玉米和小麦/玉米间作处理间差异不显著,单作小麦植株总吸氮量比单作玉米和小麦/玉米间作分别低11.47%和10.47%。
     2.免耕立茬和翻耕秸秆还田可以增加表层土壤硝态氮分布(0-20cm),前茬为小麦茬比玉米茬对土壤硝态氮分布影响更显著。综合两年试验可得,在单作小麦农田,免耕立茬和翻耕秸秆还田可以缓解硝态氮向下运移,降低损失风险;在小麦间作带,翻耕秸秆还田比不还田可以显著增加表层(0-20cm)土壤硝态氮含量,降低土壤硝态氮含量下移,免耕留茬比不留茬显著降低土壤硝态氮下移;在单作玉米农田,前茬为小麦茬时,不同留茬方式对0-60cm土层土壤硝态氮含量影响显著,前茬为玉米时仅影响0-20cm土层硝态氮含量。在玉米间作带,土壤硝态氮分布规律与单作玉米相似。
     3.免耕立茬处理可以显著降低土壤硝态氮损失,翻耕焚烧处理损失风险最高。在单作小麦种植中,翻耕秸秆是否还田对土壤硝态氮的损失无显著影响,免耕留茬比不留茬显著降低土壤硝态氮损失量;在单作玉米种植中,无论前茬为小麦还是玉米,免耕处理(NTSS和NT)均能显著降低土壤硝态氮损失量;在小麦/玉米间作种植中,前茬均为小麦茬口时(2010),免耕立茬和翻耕还田处理可以降低硝态氮的损失,前茬为小麦/玉米混合茬口时(2011),免耕处理可以有效降低硝态氮损失。在2010年,NTSS、T和TIS土壤硝态氮损失量分别为35.61、49.49和39.67kghm-2, NTSS和TIS分别比T处理低28.04%和10.23%,在2011年,TIS、NT和NTSS的硝态氮损失量分别为38.7、27.77和21.07kghm-2, NTSS和NT的硝态氮损失量比TIS分别低17.63和10.93kg hm-2。
     4.不同处理土壤呼吸速率生育期均呈单峰曲线变化,峰值出现在作物生长最旺盛的时期,但具体峰值出现时间有所不同。不同留茬方式间比较,免耕比翻耕处理土壤呼吸速率显著降低,不同种植模式间排序为单作小麦>小麦/玉米>单作玉米。免耕对土壤呼吸速率的影响作用大于秸秆还田的作用;不同处理土壤呼吸的日变化均呈单峰曲线变化,日变化幅度为小麦/玉米间作<单作小麦<单作玉米,免耕立茬对单作小麦峰值出现时间(14:00)比翻耕处理(12:00)有所延迟,对单作玉米和小麦/玉米间作影响不显著。
     同一种植模式下不同留茬方式间比较均为NTSS处理净生态系统生产力(NEP)最高,在单作小麦农田,2010年,NTSS处理的NEP比TIS和T处理高1671和1276kgChm-2,2011年,NTSS处理比TIS和NT处理高1822和4124kg C hm-2;在单作玉米农田,前茬为小麦茬时,NTSS处理比TIS和T处理高2248和4231kg kg Chm-2(2010),前茬为玉米茬时,NTSS处理比TIS和NT处理高1969和1219kg C hm-2;在小麦/玉米间作中,NTSS处理比TIS和T处理高2150和3293kg C hm-2(2010), NTSS处理比TIS和NT处理高974和1663kgChm-2(2011)。
     将同一种植模式下不同留茬方式求平均值,单作小麦、单作玉米、小麦/玉米间作NEP分别为3166、4060和4161kgChm-2,单作玉米和小麦/玉米间作的NEP比单作小麦分别高894和995kg C hm-2,说明三种种植模式中小麦/玉米间作碳汇的作用最高,单作小麦最低。
     5.在不同种植模式下,免耕留茬比免耕焚烧产量显著提高,其他留茬处理间大都差异不显著。在小麦单作农田,免耕立茬和翻耕还田可以显著提高单作小麦籽粒产量,分别比免耕焚烧处理高12.13%和8.80%;不同留茬方式对小麦间作和玉米单作籽粒产量无显著影响;在玉米间作带,在2010年,NTSS的籽粒产量显著高于T处理,NTSS与TIS、TIS与T处理间差异不显著,NTSS的籽粒产量比TIS和T分别增加3.34%和7.24%。在2011年,NTSS、TIS和NT间籽粒产量差异不显著;在小麦/玉米间作中不同留茬方式间籽粒产量差异不显著。
     6.在小麦单作农田,NTSS水分利用效率(WUE)显著高于TIS、T处理和NT处理,TIS与(翻耕或免耕)焚烧处理之间差异不显著,在2010年,NTSS的WUE比TIS和T分别增加16.13%和20.37%,在2011年,比TIS和NT分别增加9.01%和17.41%。在小麦间作种植中,规律与单作相似,在2010年,NTSS的WUE比TIS和T分别增加14.53%和14.87%。在2011年,分别比TIS和NT高8.66%和12.51%;玉米农田在2010年,NTSS处理显著高于TIS和T处理,TIS和T处理间差异不显著,在单作种植中,NTSS的WUE比TIS和T分别增加10.90%和16.73%。在间作种植中,分别增加11.85%和17.07%。在2011年,前茬为玉米茬时不同留茬方式间均差异不显著;在小麦/玉米间作中,NTSS处理WUE显著高于TIS、T和NT处理。TIS与(翻耕或免耕)焚烧处理之间差异不显著,NTSS的籽粒产量比T和TIS分别增加12.87%和17.55%(2010)。比TIS和NT分别增加7.54%和9.61%(2011)。
     7.不同留茬和种植模式下,土壤呼吸受土壤温度和作物生长的影响明显,而受水分的影响规律不明显。0-5cm土壤温度与土壤呼吸速率相关性最高。在小麦和玉米单作农田,土壤呼吸和温度的回归系数均为免耕立茬处理最低,在小麦/玉米间作中,前茬为小麦时与单作规律相似,前茬为小麦/玉米混合茬口时,土壤呼吸和温度之间无显著相关;不同留茬和种植模式土壤呼吸与0-10cm土壤含水量无显著相关关系;土壤呼吸速率与干物质累积速率呈显著正相关关系,不同种植模式间R2排序为单作玉米>单作小麦>小麦/玉米间作
     8.综上所述,从减少土壤碳排放、降低土壤硝态氮损失、增加作物产量和WUE等方面考虑,河西绿洲灌区最适宜的留茬和种植模式为小麦/玉米间作体系下免耕立茬种植,土壤硝态氮损失主要受硝态氮在土壤中的分布和植物吸氮量两方面影响,土壤呼吸主要受土壤温度和作物生长两方面的影响,与土壤水分相关不显著,间作体系下影响有所降低。
High soil CO2emissions and nitrate leaching can lead to decline in soil fertility, whichcause crop yield decline and environmental pollution. Suitable cropping system and standingmode can enhance soil C sequestration, reduce soil CO2emissions, improve nitrogen (N)uptake efficiency, reduce nitrate leaching, which result in crop yield increase. A fieldexperiment was conducted to investigate the effect of tillage and crop treatments on soil CO2emissions, carbon and nitrogen balance, soil physical properties, and crop yield and growthdevelopment in Gansu Agricultural University Experimental Station in Wuwei city in the theHexi Oasis irrigation, Gansu province during2010to2011. The experiment consisted of threetypes of standing mode: sole wheat, sole corn and wheat/corn intercropping, and four types oftillage pattern: tillage with stubble incorporated, no tillage with stubble standing and tillagewith stubble burning only conducted in2010, no tillage with stubble burning only conductedin2011. The main results are as follows:
     1. N content in crop seeds was affected by cropping pattern in three standing mode, thebasic law of which was crop seed N content under NTSS was at the first place, crop seed Ncontent under no tillage with stubble burning was at the second place; plant total N uptakediffered among crop species, previous crops and tillage method. In sole wheat, plant total Nuptake did not differ significantly from T and TIS, but higher under TIS and NTSS than underNT; In intercropped wheat, plant total N was not affected by tillage methods; In sole andintercropped corn, when previous crop is wheat, plant total N was higher under NTSS and TISthan under T; when previous crops is corn, plant total N was higher under NTSS and NT thanunder T; results from Comparison of standing modes, plant total N under sole wheat waslower than under sole corn and wheat/corn intercropping for11.47and10.47%, respectively.There were no significant differences existed between sole corn and wheat/corn intercropping.
     2. Soil nitrate distribution was higher under NTSS and TIS than under other tillagemethod at020cm. when previous crops were wheat, it is significantly higher than corn. Formtwo years experiment results, we found surface soil soil nitrate content of sole wheat underNTSS and TIS was higher than under other tillage method, which can decrease the leaching loss of nitrate from soil; the risk of soil nitrate losses through leaching after stubble return waslower when compared with stubble burning in tillage and no tillage treatment; soil nitrate wasnot changed significantly by tillage at060cm depth layers for sole corn when previous cropsis wheat, but significantly different was found at020cm depth layers when previous crops iscorn. The same trend was found in intercropped corn.
     3. NTSS can reduce the soil nitrate leaching; T treatment had the highest risk of soilnitrate leaching. The risk of soil nitrate losses through leaching after stubble return was lowerwhen compared with stubble burning for sole wheat in tillage treatment, there was nodifference existed between TIS and T; sole con under NTSS and NT had lower soil nitrateleaching than other tillage method; NTSS and TIS for intercropping system could reduce thesoil nitrate leaching when previous crop is wheat (2010), and this effect is found in no tillagesystem when previous crop is corn (2011). The soil nitrate leaching, in NTSS┚T and TIS,were35.61,49.49and39.67kg hm2in2010, and were38.7┚27.77and21.07kg hm2in2011.Compared with the T treatment, the decreases of soil leaching in the NTSS and TIS were28.04%and10.23%respectively in2010, Compared with the TIS treatment, the decreases ofsoil leaching in the NTSS and NT, were17.63and10.93kg hm2respectively in2011.
     4. The different treatment of soil respiration rate growth period showed a single peakcurve, the peak appears in the most productive period of crop growth, but the specific peaktimes vary. Soil respiration was significantly lower under no tillage than tillage, the order ofdifferent standing mode was sole wheat> wheat/corn> sole corn. No tillage had moresignificant impacts on soil respiration than residue; different treatment of the diurnal variationof soil respiration showed a single peak curve, diurnal variation of wheat/maize intercropping     NEP was highest under NTSS in the same standing mode, NTSS for sole wheatincreased NEP compared to TIS and T by1671and1276kg C hm2(2010), and compared toTIS and T by1822and4124kg C hm2, respectively. NTSS for sole corn increased NEPcompared to TIS and T by2248and4231kg C hm2while previous crop is wheat (2010), and compared to TIS and T by1969and1219kg C hm2while previous crop is corn (2011),respectively. NTSS for wheat/corn increased NEP compared to TIS and T by2150and3293kg C hm2(2010), and compared to TIS and T by974and1663kg C hm2(2011), respectively.
     The NEP, in sole wheat┚sole corn and wheat/corn intercropping, were3186┚4060and4161kg C hm2. Compared with the sole wheat treatment, the increase of NEP in the sole cornand wheat/corn intercropping, were874and975kg C hm2, respectively, carbon sequencewas highest under wheat/corn, and was lowest under sole wheat.
     5. The grain yield was higher under NTSS than NT; there were no differences underother tillage. NTSS and TIS for sole wheat increased grain yield compared to NT by12.13%and8.80%, respectively. But there were no differences under intercropped wheat, sole corn;NTSS for intercropped corn increased grain yield compared to TIS and T by3.34%and7.24%, respectively. But there were no differences under three tillage methods in2011. Grainyield for wheat/corn intercropping was not impacted by tillage method.
     6. The NTSS treatments for sole wheat had16.13and20.37C hm2higher WUE thanTIS and T (2010), and9.01%and17.41%higher WUE than TIS and NT (2011). The similartrend were found in intercropped wheat, The NTSS treatments for sole wheat had14.53%and14.87%C hm2higher WUE than TIS and T (2010), and8.66%and12.51%higherWUE than TIS and NT (2011); The NTSS treatments for sole corn had14.53%and14.87%C hm2higher WUE than TIS and T, and for intercropped had8.66%and12.51%higherWUE than TIS and T. There was no difference under tillage while previous crop is corn; TheNTSS treatments for wheat/corn intercropping had12.87%and17.55%C hm2higher WUEthan TIS and T (2010), and7.54%and9.61%higher WUE than TIS and NT (2011).7. Under different tillage method and standing mode, soil respiration was significantlyaffected by soil temperature and crop growth, while soil water content was not a significantaffect factor. Soil temperature was highly correlated with soil respiration rate in05cm soillayer. sole wheat and corn under NTSS showed the lowest regression coefficients betweensoil respiration and temperature, There were no differences existed under different tillage inwheat/corn intercropping when previous crops is wheat/corn. Soil respiration wassignificantly correlated to soil water content in010cm soil depth; soil respiration rate and dry matter accumulation rate showed a significant positive correlation. Under the differentstanding mode, the order of R2was sole wheat> wheat/corn intercropping> sole corn.
     In summary, from the view of reducing soil carbon emission, reducing nitrate leachingand increasing crop yield and WUE, the most appropriate tillage method and standing modewas wheat/maize intercropping under no tillage with stubble standing in the Hexi OasisIrrigation, nitrate leaching is mainly affected by nitrate distribution and plant nitrate N uptakefrom soil. Soil respiration is mainly affected by both soil temperature and crop growth,wheras soil moisture was not significantly correlated with soil respiration, the impact wasdecreased under intercropping system.
引文
[1]Kristensen HL, Debosz K, McCarty GW. Short-term effects on mineralization of nitrogen and carbon in soil[J].Soil Biol. Biochem,2003,35,979-986.
    [2]朱兆良,孙波,杨林章,等.我国农业面源污染的控制政策和措施[J].科技导报,2005,23(4)47-51.
    [3]张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策,I.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    [4]Lai R, Reicosky DC, Hanson JD. Evolution of the plow over10,000years and the rationale for no-till farming[J].Soil Tillage Res.2007,93,1-12.
    [5]刘淑霞,赵兰坡,刘景双,等.不同耕作方式下黑土有机无机复合体变化及有机碳分布特征[J].水土保持学报,2007,21(06):105-108.
    [6]Vieira FCB, Bayer C, Zanatta JA., et al. Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems [J]. Soil Till. Res,2007,96,195-204.
    [7]Kong AYY, Six J.Tracing cover crop root versus residue carbon into soils from conventional, low-input, and organic cropping systems[J]. Soil Science Society of America Journal2010,74,1201-1210.
    [8]Poudel D D, Horwath W R, Mitchell J P,,et al. Impacts of cropping systems on soil nitrogen storage and loss[J]. Agricultural Systems,2001,68,253-268.
    [9]Mrabet R, Saber N, El-Brahli A,et al. Total particulate organic matter and structural stability and a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco [J]. Soil Tillage Res.2001,57,225-235.
    [10]Rice CW. Introduction to special section on greenhouse gases and carbon sequestration in agriculture and forestry[J].J. Environ. Qual,2006,35,1338-1340.
    [11]Wang Y, Tu C, Cheng L.et al. Long-term impact of farming pratices on soil organic carbon and nitrogen pools and microbial biomass and activity[J]. Soil Tillage Res,2011,117:8-16.
    [12]张亚丽,沈其荣,段英华.不同氮素营养对水稻的生理效应[J].南京农业大学学报,2004,27(2):130-135.
    [13]胡立峰,胡春胜,安忠民.不同土壤耕作法对作物产量及土壤硝态氮损失的影响[J],水土保持学 报,2005,19(6):186-189
    [14]江晓东,迟淑筠,宁堂原,等.少免耕模式对土壤呼吸的影响[J].水土保持学报,2009,23(2):253-256.
    [15]常旭虹,赵广才,张雯,等.保护性耕作及氮肥运筹对玉米生长的影响[J].植物营养与肥料学报,2006,12(2):273-275.
    [16]梁天锋,徐世宏,刘开强,等栽培方式对水稻氮素吸收利用与分配特性影响的研究[J].植物营养与肥料学报,2010,16(1):20-26.
    [17]高亚军,李云,李生秀,等.旱地小麦不同栽培条件对土壤硝态氮残留的影响[J].生态学报,2005,25(11):2901-2909.
    [18]王激清,韩宝文,刘社平.施氮量和耕作方式对春玉米产量和土体硝态氮累积的影响[J].2011,29(2):129-135.
    [19]郑圣先,刘德林,聂军,等.控释氮肥在淹水稻田土壤上的去向及利用率[J].植物营养与肥料学报,2004,10(2):137-142.
    [20]时秀焕,张晓平,梁爱珍,等.短期免耕对东北黑土硝态氮损失的影响[J].农业系统科学与综合研究,2010,2(3)344-348
    [21]李隆,李晓林,张福锁,等.小麦大豆间作条件下作物养分吸收利用对间作优势的贡献[J].植物营养与肥料学报,2000,6(2):140-146
    [22]褚贵新,沈其荣,李奕林,等.用15N叶片标记法研究旱作水稻/花生间作系统中氮素的双向转移[J].生态学报,2004,24(2):278-284.
    [23]孙景玲,马忠明,杨蕊菊,等.河西地区间作小麦土壤硝态氮含量时空动态变化分析[J].土壤通报,2010,41(4):882-885.
    [24]周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏Ⅱ.夏玉米[J].生态学报,2002,22(1):48-53.
    [25]李秋祝,余常兵,胡汉升,等.不同竞争强度间作体系氮素利用和土壤剖面无机氮分布差异[J].植物营养与肥料学报,2010,16(4):777-785
    [26]叶优良,李隆,索东让.小麦/玉米和蚕豆/玉米间作对土壤硝态氮累积和氮素利用效率的影响[J].生态环境,2008,17(1):377-383.
    [27]吉艳芝,刘辰琛,巨晓棠,等.根层调控对填闲作物消减设施蔬菜土壤累积硝态氮的影响[J].中国农业科学,2010,43(24):5063-5072.
    [28]张丽娟,巨晓棠,吉艳芝,等.夏季休闲与种植对华北潮土剖面残留硝态氮分布的影响[J].植物营养 与肥料学报,2010,16(2):312-320.
    [29]张宏,周建斌,王春阳,等.不同栽培模式及施氮对玉米-小麦轮作体系土壤肥力及硝态氮累积的影响[Jl,中国生态农业学报,2010,18(4):693-697.
    [30]左海军,张奇,马履一,等.不同种植方式下农田渗漏水硝态氮含量的动态变化特征研究[J].水土保持学报,2010,24(5):174-179.
    [31]梁丽娜,杨合法,徐智,等.不同种植模式对温室菜地土壤硝态氮累积的影响.土壤通报2010,4(3):711-715
    [32]代快,蔡典雄,王燕,等.不同耕作措施对旱作春玉米农田土壤呼吸影响的研究-土壤温度对土壤呼吸速率的影响[J].中国土壤与肥料,2010,6:64-69.
    [33]车升国,郭胜利,张芳,等.黄土区夏闲期土壤呼吸变化特征及其影响因素[J].土壤学报,2010,47(6):1159-1169.
    [34]White P, Rice CW. Tillage effects on microbial and carbon dynamics during plant residue decomposition[J]. Soil Biol. Biochem,2009,73,138-145.
    [35]孙小花,张仁陟,蔡立群,等.不同耕作措施对黄土高原旱地土壤呼吸的影响[J].应用生态学报,2009,20(9):2173-2180
    [36]官情,王俊,宋淑亚,等.黄土旱塬区不同覆盖措施对冬小麦农田土壤呼吸的影响[J].应用生态学报,2011,22(6):1471-1476.
    [37]刘爽,严昌荣,何文清.不同耕作措施下旱地农田土壤呼吸及其影响因素[J].生态学报2010,30(11):2919-2924
    [38]张红星,王效科,冯宗炜,等.黄土高原小麦田土壤呼吸对强降雨的响应[J].生态学报,2008,28(12):6189-6196
    [39]马骏,唐海萍.内蒙古农牧交错区不同土地利用方式下土壤呼吸速率及其温度敏感性变化[J].植物生态学报,2011,35(2):167-175.
    [40]周洪华,李卫红,杨余辉,等.干旱区不同土地利用方式下土壤呼吸日变化差异及影响因素[J].地理科学,2011,31(2):190-196.
    [41]杨庆朋,徐明,刘洪升,等.土壤呼吸温度敏感性的影响因素和不确定性.生态学报,2011,31(8):2301-2311.
    [42]王传华,陈芳清,王愿,等.鄂东南低丘马尾松林和枫香林土壤异养呼吸及温湿度敏感性[J].应用生态学报,2011,22(3):600-606.
    [43]Zhang HX, Wang XK, Feng ZW, et al. Soil temperature and moisture sensitivities of soil CO2efflux before and after tillage in a wheat field of Loess Plateau, China[J].Journal of Environmental Sciences,2011,23(1):79-86.
    [44]王小国,朱波,王艳强,等.不同土地利用方式下土壤呼吸及其温度敏感性[J].生态学报,2007,27(5):1960-1965.
    [45]李琳,李素娟,张海林,等.保护性耕作下土壤碳库管理指数的研究[J].水土保持学报,2006,20(3):106-109.
    [46]张洁,姚宇卿,金轲,等.保护性耕作对坡耕地土壤微生物量碳、氮的影响[J].水土保持学报,2007,21(4):126-129.
    [47]Alvarez R,Russo M E, Prystupa P,et al. Soil carbon pools under conventional and no-tillage systems in the argentine rolling pampa[J]. Agron. J,1998,90(2):138-143.
    [48]孔凡磊,张海林,孙国峰,等.轮耕措施对小麦玉米两熟制农田土壤碳库特性的影响[J].水土保持学报,2010,24(2):150-154,183.
    [49]Unger PW. Aggregate and organic carbon interrelationships of a Torrertic Paleustoll[J]. Soil and Tillage Research,1997,42(1):95-113
    [50]何莹莹,张海林,孙国锋,等.耕作措施对双季稻田土壤碳及有机碳储量的影响[J].农业环境科学学报,2010,29(1):200-204.
    [51]吕贻忠,廉晓娟,赵红,等.保护性耕作模式对黑土有机碳含量和密度的影响[J].农业工程学报,2010,26(11):163-169.
    [52]区惠平,何明菊,黄景,等.稻田免耕和稻草还田对土壤腐殖质和微生物活性的影响[J].生态学报2010,30(24):6812-6820
    [53]谢驾阳,王朝辉,李生秀.地表覆草和覆膜对西北旱地土壤有机碳氮和生物活性的影响[J].生态学报2010,30(24):6781-6786.
    [54]石彦琴,高旺盛,陈源泉,等.耕层厚度对华北高产灌溉农田土壤有机碳储量的影响[J].农业工程学报,2010,26,(11):85-90
    [55]戴珏,胡君利,林先贵,等.免耕对潮土不同粒级团聚体有机碳含量及微生物碳代谢活性的影响[J].土壤学报,2010,47(5):923-930
    [56]梁爱珍,杨学明,张晓平,等.免耕对东北黑土水稳性团聚体中有机碳分配的短期效应[J].中国农业科学,2009,42(8):2801-2808.
    [57]刘立晶,高焕文,李洪文.玉米—小麦一年两熟保护性耕作体系试验研究[J].农业工程学报,2004,20(3):70-72.
    [58]孟毅,蔡焕杰,王健,等.麦秆覆盖对夏玉米的生长及水分利用的影响[J].西北农林科技大学学报(自然科学版),2005,33(6):132-135.
    [59]员学锋,吴普特,汪有科,等.免耕条件下秸秆覆盖保墒灌溉的土壤水、热及作物效应研究[J].农业工程学报,2006,22(7):22-26.
    [60]张伟,汪,梁远,等.残茬覆盖对寒地旱作区土壤温度的影响[J].农业工程学报,2006,22(5):70-73.
    [61]陈丽楠,张伟,翟瑞常.不同耕作方式对北方寒地土壤温度的影响[J].农机化研究,2008,(1):145-147.
    [62]郭晓霞,刘景辉,张星杰,等.不同耕作方式对土壤水热变化的影响[J].中国土壤与肥料,2010(5):11-15,70.
    [63]秦红灵,高旺盛,马月存,等.两年免耕后深松对土壤水分的影响[J].中国农业科学,2008,41(1):78-85
    [64]王应,袁建国.秸秆还田对培肥土壤的作用与效益研究[J].山西农业科学,2007,35(11):71-74.
    [65]陈素英,张喜英,胡春胜,等.秸秆覆盖对夏玉米生长过程及水分利用的影响[J].干旱地区农业研究,2002,20(4):55-57,66.
    [66]刘建忠,师江澜,雷金银,等.毛乌素沙地南缘不同免耕农田土壤理化性质及玉米产量差异分析[J].干旱地区农业研究,2006,24(6):29-34.
    [67]闫立伟,刘景辉,李立军,等.不同植被土壤有机碳、微生物及土壤呼吸的变化特征[J].内蒙古农业科技2009(3):22-23
    [68]闫静静,杨兰芳,庞静.大豆和棉花生长对土壤呼吸的影响[J].作物学报,2010,36(9):1559-1567.
    [69]孟磊,丁维新,何秋香,等.长期施肥对冬小麦/夏玉米轮作下土壤呼吸及其组分的影响[J].土壤,2008,40(5):725-731
    [70]牛灵安,郝晋珉,张宝忠,等.长期施肥对华北平原农田土壤呼吸及碳平衡的影响[J].生态环境学报,2009,18(3):1054-1060.
    [71]李建敏,丁维新,蔡祖聪,等.氮肥对玉米生长季土壤呼吸的影响[J].应用生态学报,2010,21(8):2025-2030
    [72]王同朝,卫丽,田原,等.冬小麦-夏玉米一体化垄作覆盖下农田土壤呼吸变化研究[J].农业环境科学学报,2009,28(9):1970-1974
    [73]胡立峰,王宝芝,李洪文,等.土壤呼吸、农田C02排放及NEE的比较研究[J].生态环境学报,2009,18(2):578-581.
    [74]张雪松,申双和,谢轶嵩,等.华北平原冬麦田根呼吸对土壤总呼吸的贡献[J].中国农业气象,2009,30(3):289-296.
    [75]韩广轩,周广胜,许振柱.玉米农田生态系统土壤呼吸作用季节动态与碳收支初步估算[J].中国生态农业学报,2009,17(5):874-879.
    [76]王淑华,赵兰坡,王洪斌.高产玉米田土壤呼吸强度及其与碳、氮营养的关系[J].吉林农业大学学报,2010,32(1):62-67.
    [77]陈书涛,朱大威,牛传坡,等.管理措施对农田生态系统土壤呼吸的影响[J].环境科学,2009,30(10):2858-2865.
    [78]张宇,张海林,陈继康,等.耕作方式对冬小麦田土壤呼吸及各组分贡献的影响[J].中国农业科学,2009,42(9):3354-3360.
    [79]石兆勇,张晓锋,王发园,等.菌根真菌对土壤呼吸的影响生态环境学报[J].2010,19(1):233-238.
    [80]丁金枝,来利明,赵学春,等.荒漠化对毛乌素沙地土壤呼吸及生态系统碳固持的影响[J].生态学报,2011,31(6):1594-1603.
    [81]Kong AY, Scow KM, Cordova-Kreylos AL,et al. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems[J].Soil Biology&Biochemistry,2011,43(1):20-30.
    [82]Arevalo C, Bhatti J,Chang S, et al.Land use change effects on ecosystem carbon balance:From agricultural to hybrid poplar plantation[J].Agriculture, Ecosystems and Environment,2011,141(3-4);342-349.
    [83]寇太记,徐晓峰,朱建国,等.C02浓度升高和施氮条件下小麦根际呼吸对土壤呼吸的贡献[J].应用生态学报,2011,22(10):2533-2538.
    [84]Fontaine S, Henault C, Aamor A, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology&Biochemistry,2011,43(1):86-96.
    [85]Geisseler D, Horwath WR,Scow KM. Soil moisture and plant residue addition interact in their effect on extracellular enzyme ativity[J].Pedobiologia,2011,54(2):71-78.
    [86]Carbonell-Bojollo R., Gonzalez-Sanchez E.J., Veroz-Gonzalez O.Soil management systems and short term CO2emissions in a clayey soil in southern spain[J].science of the total environment,2011, 409(15):2929-2935.
    [87]袁俊吉,彭思利,蒋先军,等.谢德体稻田垄作免耕对土壤团聚体和有机质的影响[J].农业工程学报,2010,26,12:153-160
    [88]李小涵,王朝辉,郝明德,等.黄土高原旱地不同种植模式土壤碳特征评价[J].农业工程学报,2010,26(2):325-330.
    [89]Fabrizzi, K P, Garc'la, F O, Costa, J L, et al. Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems inthe southern Pampas of Argentina[J].Soil and Tillage Research.2005,81(1):57-69.
    [90]Govaerts B, Fuentes M,Mezzalama M, et al. Infiltration, soil moisture, roots rot and nematode populations after12years of different tillage, residue and crop rotation managements [J]. Soil and Tillage Research,2007,94(1):209-219.
    [91]Dam R F, Mehdi B B, Burgess M S E, et al. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue praTices in a sandy loam soil in central Canada [J]. Soil and Tillage Research,2005,84(1):41-53.
    [92]Monneveux P, Quille'rou E, Sanchez C, et al. Effect of zero tillage and residues conservation on continuous maize cropping in a subtropical environment (Mexico)[J].Plant and Soil,2006,279(1-2):95-105.
    [93]田秀萍,向春阳.耕作、培肥措施对玉米产量的影响[J].杂粮作物,2000,20(5):23-26.
    [94]何奇镜,佟培生.吉林省中部地区玉米少耕法研究报告Ⅰ不同土壤玉米少耕法试验报告[J].吉林农业科学,1998,(4):9-13,21.
    [95]颜丽,宋杨,贺靖,等.玉米秸秆还田时间和还田方式对土壤肥力和作物产量的影响[J].土壤通报,2004,35(2):143-148.
    [96]陶继哲,崔玉巍,关淑梅.少(免)耕保护性耕作机理及应用[J].农机化研究,2004,(5):59-60.
    [97]许迪,Schmid R Mermoud A耕作方式对土壤水动态变化及夏玉米产量的影响[J].农业工程学报,1999,15(3):106-106.
    [98]李洪杰,宁堂原,邵国庆,等.不同耕作方式与施氮量对麦玉两熟产量的影响[J].山东农业科学,2009,3:8-11.
    [99]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.147-159.
    [100]吕殿青,Emteryd O,同延安,等.农用氮肥的损失途径与环境污染[J].土壤学报,2002,39(增 刊):77-89.
    [101]刘青林,张恩和,王琦,王田涛,刘朝巍,尹辉,俞华林.灌溉与施氮对留茬免耕春小麦氮素吸收和氮肥损失的影响[J].水土保持学报,2011,25(4):104-109.
    [102]李玉梅,冯浩,吴淑芳,等.秸秆粉碎氨化还田对土壤养分淋溶损失的影响[J].水土保持学报,2011,25(4):104-109.
    [103]叶灵,巨晓棠,刘楠,等.华北平原不同农田类型土壤硝态氮累积及其对地下水的影响[J].水土保持学报,2010,24(2):165-168,178.
    [104]叶优良,孙建好,李隆,等.小麦/玉米间作根系相互作用对氮素吸收和土壤硝态氮含量的影响[J].农业工程学报,2005,21(11):33-37.
    [105]刘巽浩,高旺盛,朱文姗.秸秆还田机理与技术模式[M].北京:中国农业出版社,2001:14-15.
    [106]Malhi S S, Lemke R, Wang Z H, et al. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions [J]. Soil and Tillage Research,2006,90:171-183.
    [107]Matthews A M, Armstrong A C, Leeds-Harrison P B. Development and testing of a model for predicting tillage effects on nitrate leaching from cracked clay soils [J]. Soil and Tillage Research,2000,53:245-254.
    [108]Hansen E M, Munkholm L J, Melande B, et al. Can non-inversion tillage and straw retainment reduce N leaching in cereal-based crop rotations?[J].Soil and Tillage Research,2010,109,:1-8.
    [109]Tan C S, Drury C F, Soultani M, et al. Effect of controlled drainage and tillage on soil structure and tile drainage nitrate loss at the field scale[J]. Water Science and Technology,1998,35(3/5):103-110.
    [110]齐志勇,王宏燕,王江丽,等.陆地生态系统土壤呼吸的研究进展[J].农业系统科学与综合研究,2003,19(2):116-119.
    [111]Buchmann N. Biotic and abiotic faTors controlling soil respiration rates in Picea abies stands[J]. Soil Biology&Biochemistry,2000,32(11):1625-1635.
    [112]Dias, A T C, Ruijven JV, Berendse F. Plant species richness regulates soil respiration through changes in productivity[J].Oecologia,2010,163(3):805-813.
    [113]李贵桐,张宝贵,李保国.秸秆预处理对土壤微生物量及呼吸活性的影响应用生态学报2003,14(12):2225-2228.
    [114]张庆忠,吴文,王明新,等.秸秆还田和施氮对农田土壤呼吸的影响[J].生态学报,2005,25(11):2883-2887.
    [115]邹建文,黄耀,宗良纲,等.稻田C02、CH4和N20排放及其影响因素[J].环境科学学报,2003,23(6):758-764.
    [116]崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展[J].生态学报,2001,21(2):316-325.
    [117]莫兴国,陈丹,林忠辉,等.不同水分条件麦田能量与C02通量变化特征研究[J].中国生态农业学报,2003,11(4):77-81.
    [118]Kleber M. Carbon exchange in humid grassland soils:[D.S. thesis]. Stuttgart, Germany: University Hohenheim,1997.
    [119]Kuzyakov Y. Separating microbial respiration of exudates from root respiration in non-sterile soils:a comparison of four methods [J]. Soil Biology and Biochemistry,2002,34(11):1621-1631.
    [120]Navarro-Garcia F,Casermeiro M A, Schimel J P. When structure means conservation:Effect of aggregate structure in controlling microbial responses to rewetting events [J]. Soil Biology&Biochemistry.2012,(44):1-8.
    [121]Kononova MM. Humus of virgin and cultivated soils[M]. In:Gieseking JE, editor. Soil components, Ⅰ. Nueva York:Springer-Verlag;1975. p.475-526.
    [122]卢妍,宋长春,王毅勇,等.2008.三江平原毛苔草沼泽C02排放通量日变化研究[J].湿地科学,6(1):69-74
    [123]Zheng Z M,Yu G R, Wang Y S,et al.2009. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content:A trans-China based case study [J].Soil Biology and Biochemistry,41(7):1531-1540.
    [124]Jacobs A., Rauber R., Ludwig B. Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after40years [J]. Soil Till. Res,2009,102,158-164.
    [125]马春梅,纪春武,唐远征,等.保护性耕作土壤肥力动态变化的研究—秸秆覆盖对土壤温度的影响[J].农机化研究,2006,(4):137-139.
    [126]闫海丽,张淑香,严凯兵,等.冷凉地区不同耕作措施对土壤环境和作物生长发育的影响[J].中国土壤与肥料,2006,(4):16-19.
    [127]李文凤,张晓平,梁爱珍,等.不同耕作方式下黑土的渗透特性和优先流特征[J].应用生态学报,2008,19(7):1506-1510.
    [128]王先华,金慧.旱耕地培肥技术研究[Jl.贵州农业科学,1998,26(2):27-29.
    [129]杨泽龙,高洪涛,巴彦.杭锦旗南部饲草免耕种植及其优化配置初探[J].内蒙古气象,2007,(5):23-26.
    [130]赵建明,张锐,王海景.旱地玉米秸秆覆盖对土壤肥力与玉米产量的影响[J].山西农业科学,2007,35(7):42-44.
    [131]赵满全,郝建国,赵士杰,等.免耕播种机械化技术效益分析与研究[J].内蒙古农业大学学报,2004,25(4):71-74.
    [132]张雯,侯立白,张斌,王国骄,蒋文春,贾燕.辽西易旱区不同耕作方式对土壤物理性能的影响.干旱区资源与环境,2006,20(3):149-153.
    [133]谭国波,边少锋,刘武仁,等.浅析玉米宽窄行耕作栽培技术[J].玉米科学,2002,10(2):80-83.
    [134]马忠明,徐生明.甘肃河西绿洲灌区玉米秸秆覆盖效应的研究[J].甘肃农业科技,1998,(3):14-15.
    [135]马忠明,孙景玲,杨蕊菊,等.不同施氮情况下小麦玉米间作土壤硝态氮的动态变化[J].核农学报2010,24(5):1056-1061.
    [136]秦嘉海,免耕留茬秸秆覆盖对河西走廊荒漠化土壤改土培肥效应的研究[J].土壤,2005,37(4):447-450.
    [137]李洪勋,吴伯志.不同耕作措施对夏玉米土壤结构和养分的影响[J].玉米科学,2005,13(3):91-93.
    [138]冯福学,黄高宝,于爱忠,等.不同保护性耕作措施对武威绿洲灌区冬小麦水分利用的影响[J].应用生态学报,2009,20(5):1060-1065.
    [139]陈乐梅,马林,刘建喜,等.免耕覆盖对春小麦灌浆期干物质积累特性及最终产量的影响[J].干旱地区农业研究,2006,24(6):21-24.
    [140]李玲玲,黄高宝,秦舒浩,等.保护性耕作对绿洲灌区冬小麦产量形成的影响[J].作物学报,2011,37(3):514-520.
    [141]Su ZY, Zhang JS, Wu WL.Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China[J]. Agricultural water management,2007,(87):307-314.
    [142]Bhattacharyya R, Kundu S, Pandey SC. Tillage and irrigation effects on crop yields and soil properties under the rice-wheat system in the Indian Himalayas[J].agricultural water management,2008,95(9):993-1002.
    [143]Vita P De, Paolo E Di, Fecondo G, et al.No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy [J].Soil&Tillage Research,2007,92(1-2)69-78.
    [144]Lu M,Zhou X H, Luo Y Q, et al.Minor stimulation of soil carbon storage by nitrogen addition:A meta-analysis [J].Agriculture, Ecosystems and Environment.2011,140(1-2):234-244.
    [145]Caride C, Pineiro G, Paruelo JM, et al, How does agricultural management modify ecosystem services in the argentine Pampas? The effects on soil C dynamics[J].Agric. Ecosyst. Environ,2012,152:23-33.
    [146]Phillips C, Nickerson N, Risk D,et al. Interpreting diel hysteresis between soil respiration and temperature[J].Global Change Biology.2011,17(1):515-527.
    [147]Riveros-Iregui D, Hu J, Burns S,et al. An interannual assessment of the relationship between the stable carbon isotopic composi-tion of ecosystem respiration and climate in a high elevation subalpine forest[J]. J. Geophys. Res,2011,116,1-15.
    [148]罗彩云,沈禹颖,南志标,等.水土保持耕作下陇东玉米-小麦-大豆轮作系统产量、土壤易氧化有机碳动态[Jl.水土保持学报,2005,19(4):84-88.
    [149]王栋,李辉信,李小红,等.覆草旱作对稻田土壤活性有机碳的影响[J].中国农业科学,2011,44(1):75-83.
    [150]蔡艳,丁维新,蔡祖聪.土壤-玉米系统中土壤呼吸强度及各组分贡献[J].生态学报,2006,26(12):4273-4280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700