用户名: 密码: 验证码:
杨农间作系统对土壤不同形态氮素损失效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究杨农间作系统中土壤氮素随地表径流和淋溶流失的过程及特点,探讨了不同施肥量对间作系统氮素循环及土壤氮累积量的影响,分析农林间作系统氮素损失的主要影响因素和作用机理。研究结果为减轻农业面源污染,营建合理的杨农间作模式,提高氮肥利用率,改善太湖流域水环境具有一定的理论和实践意义。主要结论如下:
     (1)单作农田氮素的淋溶水量与降雨量呈显著正相关关系。间作系统中杨树在生长季能有效减少土壤淋溶水量。氮素的迁移和淋失以NO_3~--N形式为主,间作系统内各样点淋溶水的氮素浓度均低于单作农田,各样点氮素淋失量受林分密度、与杨树种植行的距离影响,但差异不显著。
     (2)地表径流量和氮素流失量随降雨强度的增加而增加。间作系统能显著减少径流量和泥沙侵蚀量,并与林分密度成呈负相关关系。地表径流中TN和NO_3~--N的浓度在产流前期较高,且随着降雨时间的延长,趋于稳定或减小,后期则又有所上升;NH_4~+-N浓度在产流初期即达最大值,后逐步下降。
     (3)杨麦间作系统能有效改善表层土壤(0~20cm)养分状况,20~80cm土层中NO_3~--N和NH_4~+-N含量均小于对应层次小麦单作农田的含量。间作系统中土壤NO_3~--N含量具有明显的垂直和水平分布差异性,距杨树种植行越近,NO_3~--N在不同土层中变异程度越大。
     (4)土壤硝态氮含量在冬小麦各个生育时期表现出一定的规律性变化。0~40cm土层硝态氮含量孕穗期最高,而后缓慢下降;40~80cm土层硝态氮含量在孕穗期之前保持较低水平,之后深层土壤的硝态氮含量有增加的趋势。
     (5)冬小麦根系的根长密度和根干重均随土壤深度的增加而递减,密集分布区为0~20cm土层,并随生育期呈先升高后降低的趋势,最大值出现在灌浆期。间作系统中,冬小麦根长密度和根干重均小于单作农田,越靠近林带小麦根长密度和根干重越小。杨树根长密度随土壤深度增加呈下降趋势,越靠近林带根长密度和根干重越大。杨麦间作系统中杨树和小麦根系存在一定程度的生态位重叠。
     (6)~(15)N微区试验表明,苋菜吸收尿素氮的比例随着施氮量的增加而减少,间作系统内肥料的利用率得到显著提高。间作系统内土壤各土层残留~(15)N含量均小于对照农田;土壤中残留肥料~(15)N以NO_3~--N形式存在的数量随施氮量的降低而降低。间作系统肥料~(15)N的损失量和损失率明显低于对照农田。
The process and characteristics of nitrogen loss along with the runoff and leaching flowwere investigated in poplar-crop intercropping systems. Effects of different levels of fertilizingtreatment were also studied on the nitrogen cycling and soil nitrogen accumulation inintercropping systems. Some main factors and action machenisms were identified affectingtheir nitrogen loss process. Research results could be a reference for practices in the alleviationof agricultural non-point pulltion, the increase of nitrogen use efficiency, the improvement ofwater environment in Taihu Lake area and the establishment of poplar-crop intercroppingsystems. The main conclusions were described as follows:
     (1)The results indicated that there existed a positive correlation between the quantity ofleachate water and precipitation. In intercropping ecosystem poplar trees could reduce thequantity of eluviated solution by canopy interception. The intercropping ecosystem couldreduce N leaching effectively and avoid N further moving into shallow groundwater. Thenitrogen leaching had spatial heterogeneity in intercropping ecosystem and changed with thedifferent stand density and different distance to the poplar row.
     (2)Surface runoff and sediment increased with the increase of rainfall intensity.Compared with the monoculture land of wheat, intercropping systems could decrease amountsof total nitrogen loss and sediment carried away by runoff. Some specifical patterns of TN lossand nitrate concentration were discovered with time. In early runoff stage the concentration washigher, and the reduced or kept stabile in middle stage, and in the end the concentrationreascended. The ammonium nitrogen concentration decreased with the time increasing.
     (3)The intercropping ecosystem could definitely improve soil nutrient status in the depthof0~20cm. Compared with monoculture land of wheat, intercropping ecosystem decreased thecontent of NO_3--N and NH_4~+-N in the depth of20~80cm. The results showed there existed bothhorizontal and vertical variances of the content of soil nitrate in intercropping ecosystem. Thenearer the the distance of plot to the poplar row is, the more variation extent there existed.
     (4)Some specifical patterns of NO_3--N content changes appeared in the wholedevelopment stage of wheat. The content of nitrate in0~40cm soil layer came to the peak valueat the earring stage, and then decreased with increasing time. Before the heading stage, thecontent of nitrate was relatively lower in40~80cm soil layer, and then the content reascended.
     (5)Both root length density and biomass of wheat decreased with the increase of soildepth. The roots mainly distributed in the upper soil layer of0~20cm. The root length densityand biomass of wheat changed with different wheat development stages, the total dry weight ofroot in0~80cm soil layer reached its peak value at the filling stage. In monoculture system of wheat, the root length and dry weight in0~80cm soil layer were greater than those of theintercropping ecosystem in every development stage. In poplar-wheat intercropping system, thenearer the distance of the wheat root system to the poplar row is, the less the root system will be.The fine root length density and biomass of poplaer trees decreased with the increase of soillayer depth. The nearer the distance to the tree row was, the greater they were. There existed aniche overlapping are between poplar tree and wheat in such intercropping system.
     (6)In~~(15)N micro-plot experiment, the utilization rate of nitrogen fertilizer by theamaranth decreased with the increase of N application level. The N use efficiency ofintercropping system significantly increased. Applying N fertilizer increased the nitrate contentsin0~80cm soil layer.Intercropping ecosystems could significantly decrease the~(15)N losses andloss rate of N fertilizer compared with pure crop land.
引文
[1] Abdul Gafur, Jens Rauns Jensen, Ole K Borgagaard. Runoff and losses of soil and nutrients from smallwatersheds under shifting cultivation in the Chittagong Hill Tract of Bangladed. Journal of Hydrology,2003,279:293-309.
    [2] Akinnifesi F K, et al. Structure root form and fine root distribution of some woody species evaluated foragroforestry systems [J]. Agroforestry Systems,1999,42:121-138.
    [3] Allen S C, Jose S, Nair P K R, et al. Safety-net role of tree roots: evidence from a pecan (Caryaillinoensis K. Koch)–cotton (Gossypium hirsutum L.) alley cropping system in the southern UnitedStates[J]. Forest Ecology and Management,2004,192:395-407.
    [4] Andraski T W, Bundy L G. Relationships between phosphorus levels in soil and in runoff from cornproduction systems [J].Journal of Environmental Quality,2003,32:310-316.
    [5] Asseng S, Richter C, Wessolek G. Modeling root grow t h of wheat as t he linkage between crop and soilPlan t and Soil,1997,190:267-277.
    [6] Asseng S, Ritchie J T, Smucker AJ M, Robertson M J Root growth and water uptake during water deficitand recovering in wheat. Plant and Soil,1998,201:265-273.
    [7] Ball Coelho B R, Roy R C, Swanton C J. Tillage alters corn root distribution in coarse–textured soil [J].Soil Tillage Res,1998,45:237-249.
    [8] Basso B, Ritchie J T. Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield fora6-yearmaize-alfalfa rotation in Michigan. Agriculture Ecosystems and Environment[J],2005,108:329-341.
    [9] Bugress P J. Root distribution and water use in a four-year old silvoarable system[J].AgroforestryForum,1997,8(3):15-18.
    [10] Buresh R J, Tian G. Soil improvement by trees in sub-Saharan Africa[J]. Agroforestry Systems,1997,38(1-3),51-76.
    [11] Campbell CA, Read D W L, Biederbeck V O, et al. The first12years of a long-term crop rotation studyin southwestern Saskatchewan–Nitrate–N distribution in soil and N uptake by the plant[J]. Can. J. SoilSci.,1983,63:563-578.
    [12] Carasella D Nance, Lance R Gibson, Douglas L Karlen. Soil profile nitrate response to nitrogenfertilization of winter triticale[J].Soil Science Society of America,2007,71(4):1343-1351.
    [13] Ceccon P, Dallacosta L, Dellevedove G, et al. N in drainage water as influenced by soil depth and Nfertilizer: A study in lysimeters [J]. European Journal of Agronomy,1995,4(3):289-298.
    [14] Celia M A, Bouloutas E T, Zarba R L. A generalmass–conservative numerical solution for theunsaturated flow equation [J]. Water Resources Research,1990,26(7):1483-1496.
    [15] Changsheng Li, Neda Farahbakhshazad, Dan B Jaynes, et al. Modeling nitrate leaching with abiogeochemical model modified based on observations in a row–crop field in Iowa[J]. EcologicalModeling,2006,196:116-130.
    [16] Choi W J, Ro H M, Chang S C. Recovery of fertilizer-derived inorganic-15N in a vegetable field soil asaffected by application of an organic amendment [J]. Plant and Soil,2004,263:191-201.
    [17] Christian Baresel, Georgia Destouni. Estimating subsurface nitrogen accumulation depletion incatchments by input-output flow analysis [J].Physics and Chemistry of the Earth,2006,31:1030-1037.
    [18] Cookson W R, Rowarth J S, Cameron K C. The effect of autumn applied15N-labelled fertilizer onnitrate leaching in a cultivated soil during winter. Nutrient Cycling in Agroecosystems,2000,56:99-107.
    [19] Dabney S M, Meyer L D, Harmon C V. Depositional patterns of sediment trapped by grass hedgus.Trans Soc of Agr Engineers,1996,38(6):1719-1729.
    [20] Dalal R C, Strong W M, Cooper J E, et al. Prediction of grain protein in wheat and barley in subtropicalenvironment from available water and nitrogen in Vertisols at sowing[J]. Australian Journal ofExperimental Agriculture,1997,37:351-357.
    [21] Davies D B, et al.The contribution of fertilizer nitrogen to leachebale nitrogen in the UK,J. Sci. FoddAgri.,1995,(68):339-406.
    [22] Di H J, Camer on K C. Nitrate Leaching in Temperate Agroecosystems-Sources, Factors and MitigatingStrategies[J]. Nutrient Cycling in Agroecosystems,2002,46:237-256.
    [23] Dowdell R J, Webster C P. A Lysimeter Study of the Fate of Fertilizer Nitrogen in Spring Barley CropsGrown on a Shallow Soil Overlying Chalk: Denitrification Losses and the Nitrogen Balance[J]. Journalof Soil Science,1984,35:183-190.
    [24] Eastham J, Rose CW, Cameron D M, et al. Tree/pasture interactions at a range of tree densities in anagroforestry experiment(Ⅱ): Water uptake in relation to rooting patterns[J]. Australian Journal ofAgricultural Research,1990,41:697-707.
    [25] Edwards D R, Daniel T C, Moore P A. Solids transport and erodibility of poultry litter surface-appliedto fescue. Trans of ASAE,1994,37(3):771-776.
    [26] Francis D D, Schepers J S, and Vigil M F. Post-anthesis nitrogen loss from corn[J]. Agron. J.,1993,85:659-663.
    [27] Fusseder B. The longevity and activity of plant root of maize[J]. Plant and Soil,1987,101:257-265.
    [28] Gabet E J, Reichman O J, Seabloom E W. The effects of bioturbation on soil processes and sedimenttransport. Annual Review of Earth and Planetary Sciences,2003,31(31):249-273.
    [29] Gajri P R, Prihar S S, Cheema H S, Kapoor A. Irrigation and tillage effects on root development, wateruse and yield of wheat on coarse textured softs. Irrigation Science,1991,12:161-168.
    [30] Goss M J, Ehlers W. The role of lysimeters in the development of our understanding of soil water andnutrient dynamics in ecosystems [J]. Soil Use and Management,2009,25:213-223.
    [31] Guenzi W D, Hutchinson G L, Beard W E. Nitric and nitrous oxide emission and soil nitratedistribution in a center pivot-irrigated cornfield [J]. Journal of Environmental Quality,1994,(23):483-487.
    [32] Gurnell A M, Gregory K J. Interaction between semi-natural vegetation and hydrogeo-morphologicalprocesses [J]. Geomorphology,1995,13:49-69.
    [33] Gyssels G, Poesen J, Nachtergaele J, Govers G. The impact of sowing density of small grains on rill andephemeral gully erosion in concentrated flow zones. Soil and Tillage Research,2002,64(3/4):189-201.
    [34] Hagedorn F, Bucher J B, Schleppi P. Contrasting dynamics of dissolved inorganic and organic nitrogenin soil and surface waters of forested catchments with Gleysols [J]. Geoderma,2001,100(1&2):173-192.
    [35] Halitligil M B, Akin A, Ylbeyi A. Nitrogen balance of nitrogen-15applied as ammonium sulphate toirrigated potatoes in sandy textured soils[J]. Biol Fertil Soils,2002,35:369-378.
    [36] Hamsen E M, Djurhus J. Nitrate leaching as affected by long-term N fertilization on a coarse sand. SoilUse and Management,1996,12:199-204.
    [37] Hartemink A E, Buresh R J, Jama B,et al. Soil nitrate and water dynamics in sesbania fallows,weedfallows and maize[J]. Soil Sci Soc Am J,1996,60:568-574.
    [38] Hassan M M, Gregory P J. Water transmission properties as affected by cropping and tillage systems[J].Pak J Soil Sci,1999,16,29-38.
    [39] Havis R N, Alberts E E. Nutrient leaching from field-decomposed corn and soybean residue undersimulated rainfall. Soil Science Society of America Journal,1993,6:211-218.
    [40] Henning H J, Bea N, Stig M T. Productivity and quality, competition and facilitation of chicory inryegrass/legume-based pastures under various nitrogen supply levels[J]. European Journal of Agronomy,2006,24(3):247-256.
    [41] Isfan D, Zizka J, D Avignon A, Deschenes M. Relationships between nitrogen rate nitrogenconcentration, yield and residual soil nitrate-nitrogen in silage corn[J]. Commun. Soil Sci. Plant Anal.,1995,26:2531-2557.
    [42] Jackson L E, Stivers L J, Warden B, et al. Crop nitrogen utilization and soil nitrate loss in a lettucefield[J].1994,37:93-105.
    [43] Johannes, Lehmann, Diris Weigl, et al. Nutrient interaction of alley cropped sorghum bicolor and acaciasoligna in a runoff irrigation system in northern Kenya[J]. Plant and soil,1999,210:249-262.
    [44] Johnes P J, Heathwaite A L. A procedure for the simultaneous determination of Total N and Total P infreshwaters using persulphate microwave digestion. Water Research,1992,26(10):1281-1285.
    [45] Johnson G V, Raun W R. Nitrate leaching in continuous winter wheat:use of a soil-plant bufferingconcept to account for fertilizer nitrogen[J]. J. Prod. Agric.1995,8(4):486-491.
    [46] Jose S. Agroforestry for ecosystem services and environmental benefits: an overview[J]. AgroforestrySystem,2009,76:1-10.
    [47] Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management inintensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of theUnited States of America,2009,106(9):3041-3046.
    [48] Karunatilake U, van Es H M, Schindelbeck R R. Soil and maize response to plow and no-tillage afteralfalfa-to-maize conversion on a clay loam soil in New York[J].Soil Tillage Res,2000,55:31-42.
    [49] Kindu M ekonn en, Roland J Buresh and Bashir Jama. Root and inorganic nitrogen distributions insesbania fallow, natural f al low and maize fields[J]. Plant and Soil,1997,188:319-327.
    [50] Kristensen H L, Thorup-Kristensne K. Uptake of15N labeled nitrate by root systems of sweet corn,carrot and white cabbage from0.2~2.5meters depth[J]. Plant and Soil,2004,265:93-100.
    [51] Kyllmar K, Martensson K, Johnsson H. Model-based coefficient method for calculation of N leachingfrom agricultural fields applied to small catchments and the effects of leaching reducing measures [J].Journal of Hydrology,2005,304:343-354.
    [52] Lars B, Holger K. Leaching and crop uptake of nitrogen from nitrogen-15-labeled green manures andammonium nitrate[J]. Journal of environmental quality,2004,33(5):1786-1792.
    [53] Lee K H, Isenhart T M, Schultz R C. Sediment and nutrient removal in an established multi-speciesriparian buffer [J]. J Soil Water Conserv.2003,58:1-8.
    [54] Lisiewska Z, Kmiecik W. Effect of level of nitrogen fertilizer, processing conditions and period ofshortage of frozen broccoli and cauliflower on vitamin C retention[J]. Food Chemistry,1996,57(2):267-27.
    [55] Livesley S J, Gregory P J, Buresh R J. Competition in tree row agroforestry systems2. Distribution,dynamics and uptake of soil inorganic N[J]. Plant Soil,2002,247:177-187.
    [56] Makumba W, Janssen B, Oenema O, et al. The long-term effects of a gliricidia-maize intercroppingsystem in Southern Malawj on gliricidia and maize yields, and soil properties. Agriculture Ecosystemsand Environment,2006,116:85-92.
    [57] Mander U, Ain K, Valdo K, et al. Nutrient runoff dynamics in a rural catchment: influence of landusechanges, climatic fluctuations and ecotechnological measures[J].Ecological Engineering,2000,14:405-417.
    [58] Martino DL, Shaykewich C F. Root penetration profiles of wheat and barley as affected by soilpenetration resistance in field conditions[J]. Can J Soil Sci,1994,74:193-200.
    [59] Michael J. Ottman, Nancey V. Pope. Nitrogen fertilizer movement in the soil as influenced by nitrogenrate and timing in irrigated wheat[J].Soil Science Society of America,2000,64(5):1883-1892.
    [60] Monteith J L, Ong C K, Corlett J E. Microclimatic interactions in agroforestry systems[J]. ForestEcology and Management,1991,45(1):31-44.
    [61] Nair P K R, Kang B T, Kass D C L. Nutrient cycling and soil erosion control in agroforestry systems. In:Agriculture and Environment: Bridging Food Production and Environmental Protection. ASA SpecialPubl.60. ASA Madison,1995.117-138.
    [62] Narayan D. Root growth and productivity of wheat cultivals under different soil moisture condition [J].International Journal of Ecology and Environmental Sciences,1991,17(1):19-26.
    [63] Ong C K, Corlett J E, Singh R P. Above and below ground interaction in agroforestry systems[J]. ForestEcology and Management,1991,45(1):45-57.
    [64] Perakis S S, Hedin L Q. Fluxes and fates of nitrogen in soil of an unpolluted old growth temperateforest [J]. Ecology,2001,82(8):2245-2260.
    [65] Perakis S S, Hedin L Q. Nitrogen loss from unpolluted South American forests mainly via dissolvedorganic compounds[J]. Nature,2002,415(6870):416-419.
    [66] Petry J, Soulsby C, Malcolm I A, et al, Hydrological controls on nutrient concentrations and fluxes inagricultural catchments[J]. Sci Total Environ,2002,294:95-110.
    [67] Qualls R G, Haines B L. Geochemistry of dissolved organic nutrients in water percolating through aforest ecosystem [J]. Soil Sci. Soc. Am J,1991,55(4):1112-1123.
    [68] Ramos C, Agut A, Lidón A L. Nitrate leaching in important crops of the Valencian Community region(Spain)[J]. Environmental Pollution,2002,118:215-223.
    [69] Raun W. R., Johnson G V. Soil-plant buffering of inorganic nitrogen in continuous winter wheat[J].J.Agron.,1995,87(5):827-834.
    [70] Read J J, Reddy K R, Jenkins JN. Yield and fiber quality of Upland cotton as influenced by nitrogenand potassium nutrition[J]. European Journal of Agronomy,2006,24(3):282-290.
    [71] Robert L, Westerman, Randal K, Boman, William R, Raun, et al. Ammonium and nitrate nitrogen inprofiles of long-term winter wheat fertilization experiments[J].Agronomy,1994,86(1):94-99.
    [72] Rowe E C, K Hairiah, K E Giller, et al. Testing the safety-net role of hedgerow tree roots by15Nplacement at different soil depths [J].Agroforestry Systems,1997,43:79-81.
    [73] Rowe E C, Noordwijk M V, Suprayogo D, et al. Root distributions partially explain15N uptake patternsin Gliricidia and peltophorum hedgerow intercropping systems [J].Plant and Soil,2001,235:167-179.
    [74] Sallade Y E,Sims J T. Nitrate leaching in anAtlantic coastal-plain soil amended with poultry manure orurea ammonium-nitrate-influence of thiosulfate[J]. Water, Air and Soil Pollution,1994,78:307-316.
    [75] Schultz R C. Agroforestry opportunities for the United States of America[J]. Agroforestry Systems,1995,31:117-132.
    [76] Shoshany M, Kelman E. Assessing mutuality of change in soil and vegetation patch patterncharacteristics by means of Cellular Automata simulation[J]. Geomorphology,2006,77(1-2):35-46.
    [77] Smith D M, Roberts J M. Hydraulic conductivities of competing root systems of Grevillea robusta andmaize in agroforestry[J]. Plant and Soil,2003,251:343-349.
    [78] Smith K A, Chalmers AG, Chambers B J, et al. Organic manure phosphorus accumulation, mobility andmanagement [J]. Soil Use and Management (Supplement),1998,14:168-174.
    [79] Sommer S G, Jensen C. Ammonia volatilization from urea and ammoniacal fertilizers surface applied towinter wheat and grassland[J]. Fertilizer Research,1994,37(2):85-92.
    [80] Steingrobe B, Schmid H, Gutser R, Claassen N. Root production and root mortality of winter wheatgrown on sandy and loamy soils in different farming systems. Biology Fertility Soils,2001,33:331-339.
    [81] Stenberg M, Aronsson H, Linden B, et al. Soil mineral nitrogen and nitrate leaching losses in soil tillagesystems combined with a catch crop[J]. Soil and Tillage Research,1999,50:115-125.
    [82] Stigter C J, Ahmed E M. Agroforestry solutions to some African wind problems[J]. Journal of WindEngineering and Industrial Aerodynamics,2002,90:1101-1114.
    [83] Sun B, Chen D, Li Y, Wang X. Nitrogen leaching in an upland cropping system on an acid soil insubtropical China: lysimeter measurements and simulation [J]. Nutrient Cycling in Agroecosystems,2008,81(3):291-303.
    [84] Swinton, S. M. et al, Farm-level evalution of alternatives policy approaches to reduce nitrate leachingfrom Midwest Agri., Agricultural and resource Economics Review,1994,23(l):66-74.
    [85] Thomas S J, Peter J, Kleinman A. Managing agricultural phosphorus for environmental protection [J].USA Phosphorus: Agriculture and the Environment, Agronomy Monograph,2005,1021-1068.
    [86] Torstensson G, Aronsson H. Nitroge leaching and crop availability in minored catch crop system inSweden. Nutrient Cycling in Agroecosystems,2000,56:139-152.
    [87] Turmer B L, Haygarth P M. Practical and innovative measures for the control of agriculturalphosphorus losses t o water [M]. Northern Ireland: Green mount college of agriculture and horticulture,1998,152-153.
    [88] Van Cleve K, White R. Forest-floor nitrogen dynamics in a60–year–old paper birch ecosystem ininterior Alaska [J]. Plant Soil,1980,54(3):359-381.
    [89] Vander Molen D F, Breeuwsma A, Boers P C M. Agricultural nutrient losses t o surface water in theNetherlands: impact, strategies, and perspectives [J]. Journal of Environmental Quality,1998,27:4-11.
    [90] Vinten A J A, Davies R, Castle K, et al. Control of nitrate leaching from a nitrate vulnerable zone usingpaper mill waste [J]. Soil Use and Management,1998,14(1):44-51.
    [91] Weier K L. Nitrogen use and losses in agriculture in subtropical Australia[J]. Fertilizer Research,1994,39(3):245-257.
    [92] Wienhold B J, Trooien T P, Reichman G A. Yield and nitrogen use efficiency of irrigated corn in thenorthern great plains[J]. Agronomy Journal,1995,87:842-846.
    [93] Wiesler F, Horst W J. Root growth and nitrate utilization of maize cultivars under field conditions[J].Plant and Soil,1994,163(2):267-277.
    [94] Williams P H, Tregurtha R J, Francis G S. Fate of urea applied to winter spinach in New Zealand [J].Nutrient Cycling in Agroecosystems,2003,67:245-254.
    [95] Xue Q, Zhu Z, Mu sick JT, Stew art B A, Dusek D A. Root growth and water uptake in winter wheatunder deficit irrigation. Plan t and Soil.2003,257:151-161.
    [96] Young E O, Briggs R D. Shallow ground water nitrate-N and ammonium–N in cropland and riparianbuffers [J]. Agr Ecost Envir,2005,109(3-4):297-309.
    [97] Zamora D S, Jose S, Napolitano K. Competition for15N labeled nitrogen in a loblolly pine–cotton alleycropping system in the southeastern United States[J]. Agriculture, Ecosystems and Environment,2009,131:40-50.
    [98] Zhang M K, Jiang H, Liu X M. Phosphorus concentration and forms in surface and subsurface drainagewater from wetland rice fields in the Shaoxing plain [J]. Pedosphere,2003,13:239-248.
    [99] Zhang Y, Liu B Y, Zhang Q C, Xie Y. Effect of different vegetation types on soil erosion by water. ActaBotanica Sinica,2003,45(10):1204-1209.
    [100] Zhu Bo, Wang Tao, et al. Nutrient release from weathering of purple rock in the Sichuan Basin [J].China, Pedosphere,2008,18(2):257-264.
    [101] Zhu J G, Liu G, Han Y, et al. Nitrate distribution and denitrification in the saturated zone of paddy fieldunder rice/wheat rotation[J]. Chemosphere,2003,50:725-732.
    [102] Zhu Z L, Chen D L. Nitrogen fertilizer use in China–Contributions to food production, impacts on theenvironment and best management strategies [J]. Nutrient Cycling in Agroecosystems,2002,63:117-127.
    [103] Zuo Q, Jie F, Zhang R and Meng L. A generalized function of wheat root length density distributions[J]. Published in Vadose Zone Journal,2004,3:271-277.
    [104]蔡崇法,王峰,丁树文,等.间作及农林复合系统中植物组分间养分竞争机理分析[J].水土保持研究,2000,7(3):219-221,252.
    [105]曹兵,贺发云,徐秋明,等.南京郊区番茄地中氮肥的效应与去向[J].应用生态学报,2006,17(10):1839-1844.
    [106]陈金林,潘根兴,张爱国,等.林带对太湖地区农业非点源污染的控制[J].南京林业大学学报,2002,26(6):17-20.
    [107]陈同斌,陈世庆,徐鸿涛,等.中国农用化肥氮磷钾需求比例的研究[J].地理学报,1998,53(1):32-41.
    [108]陈新平,张福锁.小麦—玉米轮作体系养分资源综合管理理论与实践[M].北京:中国农业大学出版社,2006.
    [109]陈振华,陈利军,武志节,等.辽河下游平原不同水分条件下稻田氨挥发[J].应用生态学报,2007,18(12):2771-2776.
    [110]成杰民,潘根兴,仓龙,等.模拟酸雨对太湖地区主要水稻土土壤pH及植物生长的影响[J].南京农业大学学报,2000,23(2):116-118.
    [111]邓红兵,王青春,王庆礼.河岸植被缓冲带与河岸带管理[J].应用生态学报,2001,12(12):951-954.
    [112]杜会英,冀宏杰,徐爱国,等.应用15N示踪研究设施蔬菜对氮肥的当季利用[J].土壤通报,2011,42(6),1446-1450
    [113]杜军,杨培岭,李云开,等.基于水量平衡下灌区农田系统中氮素迁移及平衡的分析[J].生态学报,2011,31(16):4549-4559.
    [114]范亚宁,李世清,李生秀.半湿润地区农田夏玉米氮肥利用率及土壤硝态氮动态变化[J].应用生态学报,2008,19(4):799-806.
    [115]高超,张桃林,吴蔚东.太湖地区农田土壤养分动态及其启示[J].地理科学,2001,21(5):428-432.
    [116]葛道阔,曹洪鑫等.苏北农田林网对水稻小气候及水稻光合作用和产量的影响[J].江苏农业学报,2009,25(5):945-951.
    [117]谷海红,刘宏斌,王叔会,等.应用15N示踪研究不同来源氮素在烤烟体内的累积和分配[J].中国农业科学,2008,41(9):2693-2702.
    [118]胡亚林,汪思龙,颜绍馗,等.杉木人工林取代天然次生阔叶林对土壤微生物活性的影响[J].应用生态学报,2005,16(8):1411-1416.
    [119]黄东风,王果,李卫华,等.不同施肥模式对蔬菜生长、氮肥利用及菜地氮流失的影响[J].应用生态学报,2009,20(3):631-638.
    [120]黄国勤,王兴祥,钱海燕,等.施用化肥对农业生态环境的负面影响及对策[J].生态环境,2004,13(4):656-660.
    [121]黄满湘,章申,张国梁,等.北京地区农田氮素养分随地表径流流失机理[J].地理学报,2003,58(1):147-154.
    [122]吉艳芝,巨晓棠,刘新宇,等.不同施氮量对冬小麦田氮去向和气态损失的影响[J].水土保持学报2010,24(3):113-118.
    [123]冀宏杰,张认连,武淑霞,等.太湖流域农田肥料投入与养分平衡状况分析[J].中国土壤与肥料,2008,5:70-75.
    [124]姜慧敏,张建峰,杨俊诚,等.施氮模式对番茄氮素吸收利用及土壤硝态氮累积的影响[J].农业环境科学学报,2009,28(12):2623-2630.
    [125]蒋跃林,严平,宛志沪等.林麦间作的光照状况及对小麦产量的影响[J].安徽农学通报,1999,5(4):26-28.
    [126]金翔,韩晓增,蔡贵信.黑土—春小麦中3种化学氮肥的去向[J].土壤学报,1999,36(4):448-453.
    [127]巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作中NO3-N在土壤剖面的累积及移动[J].土壤学报,2003,40(4):538-546.
    [128]巨晓棠,刘学军,张福锁.冬小麦与夏玉米轮作体系中氮肥效应及氮素平衡研究[J].中国农业科学,2002,35(11):1361-1368.
    [129]巨晓棠,刘学军,邹国元,等.冬小麦/夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学,2002,35(12):14931499.
    [130]黎华寿,骆世明.高州市典型坡地不同利用方式对土壤理化性状的影响[J].华南农业大学学报,2001,22(2):1-4.
    [131]李春平,关文彬,范志平等.农田防护林生态系统结构研究进展[J].应用生态学报,2003,14(11):2037-2043.
    [132]李恒鹏,金洋,李燕.模拟降雨条件下农田地表径流与壤中流氮素流失比较[J].水土保持学报,2008,22(2):6-9.
    [133]李辉桃,周建斌,郑险峰,等.旱地红富士果园土壤营养诊断和施肥[J].干旱地区农业研究,1996,14(2):45-50.
    [134]李慧琳,韩勇,蔡祖聪.运用Jayaweera-Mikkelsen模型对太湖地区水稻田稻季氨挥发的模拟[J].环境科学,2008,29(4):1045-1052.
    [135]李俊祥,宛志沪.淮北平原杨-麦间作系统的小气候效应与土壤水分变化研究[J].应用生态学报,2002,13(4):390-394.
    [136]李巧珍,郝卫平,龚道枝,等.不同灌溉方式对苹果园土壤水分动态、耗水量和产量的影响[J].干旱地区农业研究,2007,25(2):128-133.
    [137]李世娟,周殿玺,兰林旺.不同水分和氮肥水平对冬小麦吸收肥料氮的影响[J].核农学报,2002,16(5):315-319-
    [138]李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报,2000,11(2):25-30.
    [139]李文华,赖世登.中国农林复合经营[M].北京:科学出版社,1994.
    [140]李晓欣,胡春胜,张玉铭,等.华北地区小麦—玉米种植制度下硝态氮淋失量研究[J].干旱地区农业研究,2006,24(6):7-10.
    [141]李鑫,巨晓棠,张丽娟,等.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J].应用生态学报,2008,19(1):99-104.
    [142]李秀斌.优化施氮下冬小麦/夏玉米轮作农田氮素循环与平衡研究.中国农业科学研究院博士学位论文,2009.
    [143]李志博,王起超,陈静.农业生态系统的氮素循环研究进展[J].土壤与环境,2002,11(4):417-421.
    [144]李志宏,刘宏斌,张树兰,等.小麦-玉米轮作下土壤-作物系统对氮肥的缓冲能力[J].中国农业科学,2001,34(6):637-643.
    [145]连纲,王德建,林静慧,等.太湖地区稻田土壤养分淋洗特征[J].应用生态学报,2003,14(11):1879-1883.
    [146]连纲,王德建.太湖地区麦季氮素淋失特征[J].土壤通报,2004,35(2):163-165.
    [147]梁新强,陈英旭,李华等.雨强及施肥降雨间隔对油菜田氮素径流流失的影响[J].水土保持学报2006,20(6):14-17.
    [148]林超文,涂仕华,黄晶晶,等.植物篱对紫色土区坡地耕地水土流失及土壤肥力的影响[J].生态学报,2007,27(6):2191-2198.
    [149]林文棣.中国海岸带林业[M].北京:海洋出版社,1993.
    [150]刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报,2003,17(3):34-38.
    [151]刘光栋,吴文良.桓台县高产农田土壤硝态氮淋失动态研究[J].中国生态农业学报,2002,10(4):71-74.
    [152]刘宏斌,李志宏,张云贵,等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J].土壤学报,2006,43(3):405-413.
    [153]刘学军,巨晓棠,潘家荣,等.冬小麦-夏玉米轮作中的氮素平衡与损失途径[J].土壤学报,2002,39(增刊):228-237.
    [154]刘学军,赵紫娟,巨晓棠,等.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J].生态学报,2002,33(7):1122-1128.
    [155]刘洋,李春阳,龙翼.岷江源头区农林复合景观变化对土壤侵蚀强度的影响[J].农业工程学报,2005,5(7):232-236.
    [156]罗利芳,张科利,李双才.撂荒后黄土高原坡耕地土壤透水性和抗冲性的变化[J].地理科学,2003,23(6):728-733.
    [157]毛瑢,孟广涛,周跃.植物根系对土壤侵蚀控制机理的研究[J].水土保持研究,2006,13(2):241-243.
    [158]闵炬,施卫明.不同施氮量对太湖地区大棚蔬菜产量氮肥利用率及品质的影响[J].植物营养与肥料学报,2009,15(1):151-157.
    [159]裴保华,袁玉欣,王颍.模拟林木遮光对小麦生育和产量的影响[J].河北农业大学学报,1998,21(1):1-5.
    [160]彭晓邦,蔡靖,姜在民,等.渭北黄土区农林复合系统中大豆辣椒的光合生理特性[J].生态学报,2009,29(6):3173-3180.
    [161]彭晓邦,仲崇高,沈平等.玉米大豆对农林复合系统小气候的光合响应[J].生态学报,2010,30(3):710-716.
    [162]丘秀灵,成铁龙,罗微,等.海南胶园土壤NO3-N淋洗风险评估及影响因素分析[J].热带作物学报,2009,30(4):420-424.
    [163]任丽萍,宋玉芳,许华夏,等.旱田养分淋溶规律及对地下水影响的研究[J].农业环境保护,2001,20(3):133-136.
    [164]沈晶玉,周心澄,张伟华,等.祁连山南麓植物根系改善土壤抗冲性研究[J].中国水土保持科学,2004,2(4):87-91.
    [165]石玉,于振文.施氮量及底追比例对小麦产量、土壤硝态氮含量和氮平衡的影响[J].生态学报,2006,26(11):3661-3669.
    [166]史冬梅,陈晏.紫色丘陵去农林混作模式的土壤抗冲性影响因素[J].中国农业科学,2008,41(5):1400-1409.
    [167]宋勇生,范晓晖,林德喜,等.太湖地区稻田氨挥发及影响因素的研究[J].土壤学报,2004,41(2):265-269.
    [168]苏成国,尹斌,朱兆良,等.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降[J].应用生态学报,2003,14(11):1884-1888.
    [169]苏成国.太湖地区稻麦轮作下农田的氨挥发损失与大气氮湿沉降的研究[D].南京农业大学硕士论文.
    [170]孙辉,唐亚,陈克明,等.固氮植物篱防治坡耕地土壤侵蚀效果研究[J].水土保持通报,1999,19(6):1-5.
    [171]孙辉,谢嘉穗,唐亚.坡耕地等高固氮植物篱复合经营系统根系分布格局研究[J].林业科学,2005,41(2):8-15.
    [172]孙尚伟,尹伟伦,夏新莉.修枝对复合农林系统内小气候及作物生长的影响[J].北京林业大学学报,2009,31(1):25-30.
    [173]谭德水,江丽华,张骞,等.不同施肥模式调控沿湖农田无机氮流失的原位研究—以南四湖过水区良田为例[J].生态学报,2011,31(12):3488-3496.
    [174]唐政洪,蔡强国,许峰,等.半干旱区植物篱侵蚀及养分控制过程的试验研究[J].地理研究,2001,20(5):593-600.
    [175]田光明,蔡祖聪,曹金留,等.镇江丘陵区稻田化肥氮的氨挥发及其影响因素[J].土壤学报,2001,38(3):324-332.
    [176]田玉华,贺发云,尹斌,等.太湖地区氮磷肥施用对稻田氨挥发的影响[J].土壤学报,2007,44(5):893-900.
    [177]同金霞,李新岗,窦春蕊,等.枣粮间作的生态影响及效益分析[J].西北林学院学报,2003,18(1):89-91.
    [178]万福绪,陈平,王严星.苏北林粮间作地土壤理化性质分析[J].南京林业大学学报,2003,27(6):27-30.
    [179]汪涛,朱波,祝福虹,等.有机-无机肥配施对紫色土坡耕地氮素淋失的影响[J].环境科学学报,2010,30(4):781-788.
    [180]王葆芳,赵英铭,王志刚等.干旱区人工绿洲不同农田防护林模式防护效应及相关性[J].2008,21(5):707-712.
    [181]王朝辉,宗志强,李生秀,陈宝明.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学,2002,23(3):79-83.
    [182]王德建,林静慧,夏立忠.太湖地区稻麦轮作农田氮素淋洗特点[J].中国生态农业学报,2001,9(1):16-18.
    [183]王东,于振文,于文明,等.施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响[J].应用生态学报,2006,l7(9):1593-1598.
    [184]王辉,王全九,邵明安.降水条件下黄土坡地氮素淋溶特征的研究[J].水土保持学报,2005,19(5):61-64.
    [185]王继永,王文全,武惠肖.林药间作系统光照效应及其对药用植物高生长的影响.浙江林学院学报[J],2003,20(1):17-22.
    [186]王静,郭熙盛,王允青,唐杉.稳定氮同位素示踪技术在农业面源污染研究中的应用[J].安徽农业科学2012,40(4):2213-2215
    [187]王珏,巨晓棠,张丽娟,等.华北平原小麦季氮肥氨挥发损失及影响因素研究[J].河北农业大学学报,2009,32(3):5-11.
    [188]王立刚,何俊龙,于福义,等.农田林网树种选择与合理配置[J].林业科技,2002,27(1):21-22.
    [189]王庆成,于丽红,姚琴,等.河岸带对陆地水体氮素输入的截流转化作用[J].应用生态学报,2007,18(11):2611-2617.
    [190]王荣萍,黄建国,袁玲,等.重庆市主要土壤类型硝态氮淋失及其影响因素[J].水土保持学报,2004,18(5):35-38.
    [191]王晓英,贺明荣,刘永环,等.水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响[J].生态学报,2008,28(2):687-694.
    [192]王兴祥,张桃林,张斌等.低丘红壤花生南酸枣间作系统研究II.氮素竞争[J].土壤,2003,1(l):66-68.
    [193]吴家森,姜培坤,谢秉楼,等.不同施肥处理对雷竹林土壤氮、磷渗漏流失的影响[J].南京林业大学学报,2009,33(3):60-64.
    [194]吴永成,周顺利,王志敏,等.华北地区夏玉米土壤硝态氮的时空动态与残留[J].生态学报,2005,25(7):1620-1625.
    [195]习金根,周建斌,赵满兴,等.滴灌施肥条件下不同种类氮肥在土壤中迁移转化特性的研究[J].植物营养与肥料学报,2004,10(4):337–342.
    [196]夏青,何丙辉,谢洲,等.紫色土农林复合经营土壤理化性状研究[J].水土保持学报.2006,20(2):86-89.
    [197]夏青.紫色土区农林复合生态系统效益研究[D].西南大学硕士论文.
    [198]肖参明,柯玉诗,黄继茂,等.犁底层容重对水稻生长的影响研究[J].广东农业科学,1996(2):25-28.
    [199]肖时运,刘强,荣湘民,等.不同施氮水平对葛首产量、品质及氮肥利用率的影响[J].植物营养与肥料学报,2006,12(6):913-917.
    [200]谢迎新.人为影响下稻田生态系统环境来源氮解析[D].中科院博士论文.
    [201]许峰,蔡国强,吴淑安,等.三峡库区坡地生态工程控制土壤养分流失研究—以等高植物篱为例[J].地理研究,2000,19(3):303-310.
    [202]许峰,蔡强国,吴淑安,等.坡地等高植物篱带间距对表土养分流失的影响[J].水土保持学报,1999,5(2):23-29.
    [203]许峰,藤元新.坡地农林复合系统土壤养分时间过程初步研究.水土保持学报,2000,14(3):46-51.
    [204]许露生,林忠成,吴福观,等.不同处理条件下水稻-土壤体系氮素去向[J[.江苏农业科学,2011,39(6):114-116.
    [205]许朋柱,秦伯强,Horst Behrendt,等.太湖上游流域农业土地的氮剩余及其对湖泊富营养化的影响[J].湖泊科学,2006,18(4):395-400.
    [206]薛建辉,阮宏华,刘金根,等.太湖流域水岸生态防护林体系建设技术与对策[J].南京林业大学学报,2008,32(5):13-18.
    [207]闫德仁,刘永军,冯立岭,等.农林复合经营土壤养分的变化.东北林业大学学报,2001,29(1):53-56.
    [208]闫德智.太湖地区稻田氮肥吸收利用的研究[J].江苏农业科学,2011,39(6):119-121.
    [209]杨莉琳,胡春胜.施肥对华北高产区土壤NO3-N淋失与作物NO3-N含量及产量的影响[J].应用与环境生物学报,2003,9(5):501–505.
    [210]杨丽霞,杨桂山,苑韶峰,等.影响土壤氮素径流流失的因素探析[J].中国生态农业学报,2007,15(6):190-194.
    [211]杨曾平,张杨珠,曾希柏,等.不合理施肥引起高产稻田土壤退化研究[J].湖南农业大学学报,2007,33(2):225-231.
    [212]姚桂枝,刘章勇.丹江口库区坡耕地不同植物篱对径流及养分流失的影响初探[J].安徽农业科学,2010,38(6):3015-3016.
    [213]易时来,石孝均,温明霞等.小麦生长季氮素在紫色土中的迁移和临时[J].水土保持学报,2004,18(4):46-49.
    [214]尹飞,毛任钊,付博杰,等.枣粮间作生态系统土壤氮空间分布特性[J].生态学报,2009,29(1):325-331.
    [215]尹晓芳,同延安,张树兰,等.关中地区小麦/玉米轮作农田硝态氮淋溶特点[J].应用生态学报,2010,21(3):640-646.
    [216]袁正科,袁穗波,姚敏,等.板栗复合经营的水土流失规律[J].中国水土保持科学,2005,3(4):115-118.
    [217]翟丙年,孙春梅,王俊儒,等.氮素亏缺对冬小麦根系生长发育的影响[J].作物学报,2003,29:913-918.
    [218]张斌,张桃林.低丘红壤区农林间作系统的水分生态特征及生产力[J].生态学杂志,1997,16(4):1-5.
    [219]张国梁,章申,农田氮素淋失研究进展[J].土壤,1998,3(6):291-297.
    [220]张国印,孙世友,王丽英,等.氮肥施用量对土壤硝态氮含量和分布的影响[J].河北农业科学,2003,7(4):7-12.
    [221]张继祥,魏钦平,刘克长,等.枣麦间作系统中光能在作物群体内分布的数值模拟[J].应用生态学报,2003,14(6):945-948.
    [222]张金池,胡海波.水土保持与防护林学[M].北京:中国林业出版社,1996:169-213.
    [223]张劲松,孟平,尹昌君.果农复合系统果树根系空间分布特征[J].林业科学,2002,38(4):30-33.
    [224]张鹏,张旭东,黄玲玲,等.不同宽度硬头黄竹林河岸缓冲带对地表径流的拦截效应[J].水土保持学报,2009,23(6):23-27.
    [225]张晴雯,张惠,易军,等.青铜峡灌区水稻田化肥氮去向研究[J].环境科学学报,2010,30(8):1707-1714.
    [226]张树兰,同延安,梁东丽,等.氮肥用量及施用时间对土体中硝态氮移动的影响[J].土壤学报,2004,41(1):270-277.
    [227]张霞,罗延庆,张胜全,等.限水条件下氮肥用量及施氮时期对冬小麦产量、土壤硝态氮含量的影响[J].华北农学报,2007,22(3):163-167.
    [228]张小全,吴可红,Dieter Murach.树木细根生产与周转研究方法评述[J].生态学报,2000,20(5):875-883.
    [229]张学军,罗建航,陈晓裙,等.不同施氮措施对土壤—芹菜体系中无机氮动态变化与平衡的影响[J].河北农业大学学报,2007,30(3):52-56/72.
    [230]张学军,赵营,陈晓群,等.氮肥施用量对设施番茄氮素利用及土壤NO3-N累积的影响[J].生态学报,2007,27(9):3761-3768.
    [231]张杨珠,吴岳轩,刘学军,等.新辟红壤性稻田不同施肥模式的效应[J].湖南农学院学报,1994,20(2):106-113.
    [232]张宇清,朱清科,齐实,等.梯田生物埂几种灌木根系的垂直分布特征[J].北京林业大学学报,2006,28(2):34-38.
    [233]张玉铭,张佳宝,胡春胜,等.华北太行山前平原农田土壤水分动态与氮素的淋溶损失[J].土壤学报,2006,43(1):17-25.
    [234]张志民,胡海波,鲁小珍等.蚌埠市农田防护林体系构建技术[J].林业科技开发,2010,24(4):123-125.
    [235]章铁,刘秀清,孙晓莉.栗茶间作模式对土壤酶活性和土壤养分的影响[J].中国农学通报,2008,24(4):265-268.
    [236]赵长盛.武汉城郊菜地土壤氮素的转化与淋失研究[D].华中农业大学博士学位论文2009.
    [237]赵俊晔,于振文,李延奇,等.施氮量对土壤无机氮分布和微生物量氮含量及小麦产量的影响[J].植物营养与肥料学报,2006,12(4):466-472,494.
    [238]赵克昌.农田防护林更新树种选择及配置模式研究[J].防护林科技,2002(3):14-17.
    [239]赵林,姜远茂,鹏福田,等.苹果园春季施尿素的利用及其在土壤中的累积[J].园艺学报,2009,36(12):1805-1809.
    [240]赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报,2006,26(6):1792-1801.
    [241]赵允格,邵明安.不同施肥条件下农田硝态氮迁移的试验研究[J].农业工程学报,2002,18(4):37-40.
    [242]郑圣先,刘德林,聂军,戴平安,肖剑.控释氮肥在淹水稻田土壤上的去向及利用率[J].植物营养与肥料学报,2004,10(2):137-142.
    [243]周静,崔健,王国强等.春秋季红壤旱地氨挥发对氮施用量、气象因子的响应[J].土壤学报,2007,44(3):499-507.
    [244]周维,张建辉,李勇,葛方龙,罗英,范建容.金沙江干暖河谷不同土地利用条件下土壤抗冲性研究[J].水土保持通报,2006,26(5):26-42.
    [245]朱教君,姜风岐,范志平.林带空间配置与布局优化研究[J].应用生态学报,2003,14(8):1205-1212.
    [246]朱新开,盛海军.稻麦轮作田氮素径流流失特征初步研究[J].生态与农村环境学报,2006,22(1):38-41.
    [247]朱远达,蔡国强,张光远,等.植物篱对土壤养分流失的控制机理研究[J].长江流域资源与环境,2003,12(4):345-351.
    [248]朱兆良,范晓晖,孙永红,等.太湖地区水稻土上稻季氮素循环及其环境效应[J].作物研究,2004,(4):187-191.
    [249]朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992:213-249.
    [250]朱兆良.范晓晖.孙永红.等.太湖地区水稻土稻季氮素循环及其环境效应[J].作物研究,2004,(4):187-191.
    [251]朱兆良.太湖地区水稻土上稻季氮素循环及其环境效应[J].作物研究,2004,4:187-191.
    [252]朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):778-783.
    [253]朱兆良.中国土壤的氮素肥力与农业中的氮素管理[M].北京:中国农业出版社,1998,160-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700