用户名: 密码: 验证码:
棉花黄萎病菌诱导陆地棉和野生棉差异表达分析及抗病相关基因克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄萎病是棉花的主要病害,严重影响棉花产量和品质。抗病育种无疑是防治黄萎病最经济、最环保和最有效的手段,但由于对棉花抗病机理认识不清,加上现有栽培品种中抗源缺乏,棉花抗黄萎病育种一直难以突破。深入研究棉花抗黄萎病机理、克隆抗病基因仍是目前努力的方向。本研究从接菌诱导入手,采用SSH技术从转录组水平探讨了陆地棉基因的差异表达;采用2-DE技术从蛋白质组水平探讨了栽培棉近缘野生种瑟伯氏棉的蛋白差异表达,并以此为基础克隆了7个抗病相关基因。
     (1)以中等致病性棉花黄萎病菌W菌系接种诱导我国棉花抗黄萎病标准品种豫棉21号,构建了正反两个SSH文库,富集筛选到抗病相关的早期诱导表达Unigene169个,其中上调表达68个,下调表达91个。提交到NCBI的Nr和Nt核酸数据库、Swissprot蛋白数据库比对注释,并通过GO、COG和KEGG数据库进行组份、功能和代谢路径聚类分析,共解析了152个基因;另外16个基因为未能注释,可能代表了新发现基因。结果表明:①这些基因分属18种生物学过程、8种细胞组份和5种分子功能,集中于19种生物学功能和53个代谢路径,说明陆地棉响应黄萎病菌胁迫,是多种类型不同功能基因通过多种代谢和过程,通过上调和下调表达协同作用,以达到抗耐目的;②差异表达基因主要参与代谢、细胞过程、对刺激的反应和生物过程调控,分别占基因总数的26.9%、24.7%、14%和12.9%,最少的是生长和免疫过程,均只有0.37%;从细胞组份看,涉及细胞或细胞结构最多占65.4%,其次是细胞器和细胞器结构占28.0%,然后是大分子复合体及内膜内壁,分别占3.9%和1.9%;从分子功能看,最多的是催化活性和结合活性,分别占50%、42.5%,其它如分子转导、运输和受体活性占7.5%。从生物学功能看,除了通用功能预测占13.2%外,信号转导、翻译和翻译后修饰与蛋白折叠互作最多,各占11.4%。从参与的代谢路径看,这些基因主要参与基础代谢和次生物质代谢,分别占注释基因的33.33%和27.03%;其它代谢均在10%以下。③发现有三个上调基因FH11(calmodulin-related protein), FH42(elongation factor Tu), FH67(heat shock protein90)参与植物与病原菌的互作。这一结果提示钙信号介导诱导结构抗性、乙烯信号介导抗病和未知R介导抗病是陆地棉21号抗黄萎病的三条可能的途径。
     (2)接菌诱导,采用双向电泳(2-DE)和串联飞行质谱(MALDI-TOF-MS)联用技术,鉴定到瑟伯氏棉57个上调表达差异蛋白点,代表了51个已知同源蛋白,占总蛋白点的11%。这些蛋白参与抗病抗逆、转录调控、蛋白质加工与降解、光合作用、产能和基础代谢等过程,表明瑟伯氏棉抗病性是多种基因协同作用的综合效应;同时,5个TIR-NBS-LRR抗病蛋白类似物集中上调表达,提示R基因在瑟伯氏棉抗黄萎病中可能起主导作用。
     (3)克隆了两个陆地棉结构抗性基因GhDIR和GhSUMO。前者cDNA全长为768bp,开放读框525bp,编码175个氨基酸的蛋白,含有典型的dirigent-like结构域;系统进化分析表明,该基因与海岛棉的同源序列表现了最高的相似性;后者编码区全长为393bp,编码130个氨基酸的小蛋白,蛋白序列分析表明,该蛋白具有保守泛素结构域和C端双Gly的断裂/连接位点,以及保守的疏水表面和Ulp1-Smt3互作位点。系统进化分析表明,该蛋白与蓖麻的同源序列表现了最高的相似性。两基因均无内含子,均受黄萎病菌诱导表达。两个基因的克隆,为进一步研究陆地棉的诱导结构抗性机理奠定了基础。
     (4)克隆了瑟伯氏棉根的GPIP基因,全长1165pb,开放阅读框1095pb,编码364个氨基酸残基。分析表明,该蛋白属LRR蛋白超家族,有一个信号肽和跨膜区,应属分泌型受体蛋白。基因组PCR表明,该基因无内含子。系统分析表明,该蛋白与高丽参(Panax ginseng)进化关系近而与陆地棉和海岛棉较远。定量结果显示,该基因在瑟伯氏棉根中接菌20小时,可诱导表达。
     (5)克隆了瑟伯氏棉根的四个TIR-NBS-LRR类抗病基因类似物的cDNA全长,分别命名为ThTNLR1、ThTNLR2、ThTNLR3和ThTNLR4,长度分别为3149bp、2011bp、1379bp和4683bp。序列分析表明,均含有抗病相关的TIR、P-loop、Kinase-2和LRR等结构域。与已知同类抗病基因构建系统树,发现四者与烟草抗病毒基因N关系最接近,而与拟南芥的RPP系列基因和CS1基因较远。定量分析表明,四者在瑟伯氏棉根中,均受黄萎病菌诱导表达,其中前两个基因20小时诱导上调表达,而后两个基因则刚好相反。这四个基因的克隆,为进一步研究其互作和抗病功能奠定了基础。
Verticillium wilt is one of the major cotton diseases and has significantly affected both the yield and quality of cotton. Because of the lack of understanding of the mechanism of cotton disease resistance, the lack of existing cultivars to serve as sources of resistance, the breeding of Verticillium wilt resistant cottons has been unsuccessful. To reveal the mechanism of disease resistance in uplandcotton and wild cotton and identify key genes related to resistance, SSH、2-DE and MALDI-TOF-MS were employed to identify the differential expressed ESTs/proteins related to the disease resistance in cotton inoculated with Verticillium dahliae. Seven full-length cDNAs of genes related to the disease resistance were cloned.
     (1) To analyze the differential gene expressions related to Verticillium wilt resistance, forward and reverse subtractive cDNA libraries were constructed by suppression subtractive hybridization (SSH). The Yumian21, designated as standard cultivar resistant to Verticillium wilt in China, was used as material, in which the cDNA from roots inoculated with medium pathogenicity W strain of Verticillium dahliae was used as tester and drive, and roots without inoculation as corresponding driver and tester. A total of169unigenes of early induced expression related to disease-resistance were enriched, including68up-regulated genes and91down-regulated genes. By means of Blast and cluster analysis in the six databases of Nr, Nt, Swissprot, GO,COG&KEGG,152genes were annotated successfully, and the other16unclear genes couldn't be annotated, which may represent the new genes. Results were as follows,(i) These genes which play19biological functions were divided into18biological processes and53metabolic pathways, and the coding proteins of which were the subunits of eight different cellular components. The results indicated that the response to Verticillium dahliae in upland cotton is complex.(ii) These gene expressions mainly involved in metabolic process, cellular process, response to stimulus, biological regulation and regulation of biological process. The percentages of the genes were26.9%,24.7%,14%and12.9%, respectively. The genes involved in growth and immune system process were only3.7%equally. From the perspective of cellular components, the genes involved in the cells or cell structures accounted for65.4%, and followed by organelles and organelle parts, accounting for28.0%.The percentages of the genes involved in Macrocomplexes and membrane-enclosed lumens were the least, accounting for3.9%and1.9%, respectively.For the molecular functions, the genes involved in catalytic activity and binding activity accounted for50%and42.5%, respectively. Others involved in molecular transduction, transport and receptor activity accounted for7.5%. For the biological functions, in addition to the genes involved in general function prediction accounting for13.2%, the genes involved in signal transduction and translation, post-translational modification and protein folding interactions occupied up to 11.4%equally. For the metabolic pathways, these genes mainly acted in basal metabolism and biosynthesis of secondary metabolites, accounting for33.33%and27.03%, respectively. The other genes were less than10%.(iii) Three up-regulated genes, including FH11(calmodulin-related protein), FH42(Elongation factor Tu), FH67(heat shock protein90) were involved in the plant-pathogen interaction. The result suggested that induced structural resistance manipulated by calcium signal, the disease-resistance pathway mediated by ethylene signal and the unknown R-mediated disease-resistance are likely to the three important pathways in upland cotton.
     (2) Fifty-seven spotes of differentially expressed protein were identified in Gossipium thurberi. They represented51known proteins in protein database,which cover11%of the total protein spots in the2-DE gel. These proteins involved in disease and stress resistance, transcriptional regulation, protein processing and degradation, photosynthesis, energy production and basic metabolic processes. The results showed that resistance to Verticillium wilt in G. thurberi was the expression of multiple proteins combined effect of synergy. More importantly, expression of five disease resistance proteins were all up-regulated, suggesting that TIR-NBS-LRR like R-genes in Gossipium thurberi may play a leading role in resistance to Verticillium wilt.
     (3) Using an EST of a dirigent-like gene from the SSH as the query probe to blast cotton EST database, a full-length768bp cDNA sequence of the dirigent-like gene, named GhDIR,was obtained and cloned by PCR. Sequence analysis indicated that it contained a complete open reading fragment (ORF), from70bp to594bp, encoding175amino acids, and had no intron. Sequence comparison and phylogenetic analysis showed the GhDIR cDNA was highly identical with its ortholog from Sea Island cotton, and the next most similar orthologs coming from other dicotyledons, but sharing low homology with monocotyledons. With the above technics, a SUMO gene, named GhSUMO,with a complete open reading fragment (ORF)396bp encoding a protein of95amino acids, was successfully cloned from Yumian21(uplandcotton). The GhSUMO was verified by PCR amplifications using the cDNA and DNA templates from the cotton root, and sequencing results showed that GhSUMO gene had not intron. Amino acid sequence analysis showed that the protein had a conserved ubiqitin domain, the C-terminal double Gly fracture/Connection site, a conservative hydrophobic surface and an Ulpl-Smt3interaction site. Sequence comparison and phylogenetic analysis showed the GhSUMO protein was highly identical with its ortholog from Castor (Ricinus communis), and the next most similar orthologs coming from other dicotyledons. Quantitative RT-PCR analysis showed that GhDIR and GhSUMO were activated in roots of Upland cotton inoculated with Verticillium dahliae. It meant that the two genes may play a role in V. wilt resistance.
     (4) The PGIP gene of G.thurberi, named ThPGIP was cloned. Its full lenth was1165pb, ORF1095pb, encoding364amino acids. Sequence analysis showed that the PGIP belonged to a LRR super-family and shared a singal peptide and a transmembrane region. It should belong to the secretory protein. This gene had no intron. Sequence comparison and phylogenetic analysis showed the ThPGIP protein was highly identical with its ortholog from Panax ginseng, but sharing low homology with upland cotton and sea island cotton. Quantitative RT-PCR analysis showed that the ThPGIP was induced in roots inoculated with Verticillium dahliae post of20h in G.thurberi.
     (5) The four full-length cDNA of TIR-NBS-LRR gene analogs, respectively named ThTNLRl, ThTNLR2, ThTNLR3, and ThTNLR4, were cloned from roots of G.Thurberi. The length of cDNAs were3149bp、2011bp、1379bp and4683bp respectively. The analysis of those sequences showed that they all had the conserved domains related to disease resistance, such as TIR, P-loop, Kinase-2, and LRR et al. The phylogenetic tree with others known resistance genes (R genes) suggested that there was the nearest distance with the N gene of tobacco, and there were further distance with the RPP series genes and CS1gene of Arabidopsis thaliana. The results of quantitative RT-PCR showed that their expressions were indused by V. dahliae in roots of G.Thurberi. The uprelated expressions of the two former genes were the observed at20h after inoculation with V. dahliae, however, the two latters were exactly the opposite. The cloning of the four genes established the foundation for researching the interaction of the genes and their function related to disease resistance further.
引文
程红梅,简桂良,倪万潮等.转几丁质酶和p-1,3-葡聚糖酶基因提高棉花对枯萎病和黄萎病的抗性.中国农业科学,2005,38(6):1160-1166
    陈泉,施蕴渝.小泛素相关修饰物SUMO研究进展,生命科学,200416(]):1-6.
    陈捷胤.海岛棉LRR-TM类抗病基因GbaVdl和GbaVd2的克隆与功能研究.中国农业科学院硕士学位论文(2010),北京.
    柴友荣.植物抗大丽轮枝菌受体类蛋白基因及甘露糖结合型凝集素基因的克隆与表达.西南农业大学博士学位论文(2003),重庆.
    房卫平,季道藩.棉花分子标记研究进展,河南农业科学发表时间:2000(2):9-12
    房卫平,王家典,孙玉堂等.高抗黄萎病棉花新品种豫棉21号的选育.河南农业科学,2000(5):12-13
    高玉千,聂以春,张献龙.棉花抗黄萎病基因的QTL定位,棉花学报发表时间:2003,15(2):73-78
    胡昌华,鲍朗.抑制消减杂交技术研究进展.国外医学(生理、病理科学与临床分册.2001,21(1):4-6
    蒋豪,汤浩茹.植物pgip基因特性及表达调控研究进展中国农学通报2008,8(24):63-68
    简桂良,邹亚飞,马存.棉花黄萎病连年流行的原闪及对策,中国棉花,2003,30(3):13-14
    乐锦华,祝建波,崔百明等.利用目的基因转化技术培育棉花抗病新品种.石河子大学学报(自然科学版).2002,6(3):173-178
    邹亚飞,简桂良,李华荣等.棉花黄萎病菌分子生物学研究新进展,棉花学报,2001,13(4):254-256
    陆秋恒,罗志勇.抑制消减杂交(SSH)技术及在克隆基因方面的最新进展.国外医学(分子生物学分册).2001,23(6):380-383
    马存.棉花枯萎病和黄萎病的研究.2007,北京,中国农业出版社
    马峙英,王省芬,张桂寅等.不同来源海岛棉品种黄萎病抗性遗传研究,作物学报,2000,26(3):315-321
    潘家驹.棉花育种学1998年,北京,中国农业出版社.
    潘家驹,张天真,蒯本科等.棉花黄萎病抗性遗传研究,南京农业大学学报1994,17(3):8—18.
    史仁玖,殷玥,王忠等.野生茄子(Solanum torvum)抗黄萎病相关基因StoVel的克隆与分析.植物生理学通讯.2006,42(4):638-642
    沈其益.棉花病害-基础研究与防治.1992年北京,科学出版社
    宋国立,崔荣霞,王坤波等.改良CTAB法快速提取棉花基因组DNA,棉花学报,1998,10(5):215-217)
    田海燕.黄萎病菌诱导下棉花抗病品种冀种20 SSH文库的构建.河北农业大学硕士学位论文(2006)
    涂礼莉,张献龙,朱龙付等.海岛棉NBS类抗病基因类似物的遗传多样性及进化,遗传学报,2003,30(11):1071-1077
    吴家和,张献龙,罗晓丽等.转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性,遗传学报,2004,31(2):183-188)
    王红梅,张献龙,李运海等.陆地棉黄萎病抗性遗传分析.棉花学报,2004,16(2):84-88
    王转,臧庆伟,郭志爱等.小麦幼苗期水分胁迫所诱导基因表达谱的初步分析.遗传学报2004,31(8):842-849
    叶兴国,程红梅,徐惠君等.转几丁质酶和p-1,3-葡聚糖酶双价基因小麦的获得和鉴定.作物学报,2005,31(5):583-586
    张天真,周兆华,闵留芳等.棉花对黄萎病的抗性遗传模式及抗(耐)病品种的选育技术.作物学报,2000,26(6):673-680
    张立荣,杨文香,刘大群.小麦NBS-LRR类抗病基因同源cDNA序列的分离与鉴定.植物遗传资源学报,2011,12(3):431-436.
    章如意.江苏省棉花黄萎病菌致病力分化和分子检测,扬州大学硕十论文(2010)
    张映霞,杨郁文,倪万潮等.陆地棉黄萎病菌诱导抑制消减杂交cDNA文库的构建与分析.江苏农业学报,2008,24(1):17-21
    朱龙付,涂礼莉,张献龙等.黄萎病菌诱导的海岛棉抗病反应的SSH文库构建及分析.遗传学报,2005,32(5):528-532
    Anderson PA, Lawrence GJ, Morrish BC, et al. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell.1997 Apr;9(4):641-51.
    Alvarez S, Zhu M, Chen S. Proteomics of Arabidopsis redox proteins in response to methyl jasmonate 2009J Proteome Res.;73 (1):30-40.
    Alfenas-Zerbini P, Maia IG, Favaro RD et al, (2009) Genome-wide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus. Mol Plant Microbe Interact. 22,352-361.
    Brandt J, Thordal-Christensen H, Vad K, et al. A pathogen-inducedgene of barley encodes a protein showing high similarity to a protein kinase regulator. Plant J.1992 Sep;2(5):815-20.
    Birker DHK, Takahara H, Naru saka M, et al. A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J., 2009,60:602-613.
    Bent AF, Kunkel BN, Dahlbeck D et al. RPS2 of Arabidopsis thaliana:a leucine-rich repeat class of plant diseaseresistance genes. Science.1994 Sep 23;265(5180):1856-60.
    Benito EP, Prins T, van Kan JA. Application of differential display RT-PCR to the analysis of gene expression in a plant-fungus interaction. Plant Mol Biol.1996Dec;32(5):947-57.
    Bahn SC, Bae MS, Park YB, et al. Molecular cloning and characterization of a novel low temperature-induced gene, blti2, from barley (Hordeum vulgare L.). Biochim Biophys Acta.2001 Dec 3;1522(2):134-7.
    Brogue K, Chet I, Holliday M, et al. Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani. Science.1991 Nov 22;254(5035):1194-1197
    Bent A F, Plant disease resistance genes:fuction meets structure. The Plant Cell.1996,8:1757-1771
    Brandwagt BF, Mesbah LA, Takken FL et al. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc Natl Acad Sci USA 2000,97:4961-4966.
    Bell AA:Verticillium wilt. In Cotton Diseases Edited by:Hillocks RJ. C.A.B.International, Wallingford, U.K.; 1992:87-126.
    Bridges, Moorhead G.B.14-3-3 proteins:a number of functions for a numbered protein, Sci. (2005)STKE 10.
    Bradford, M.M. A dye binding assay for protein. Anal. Biochem. (1976) 72:248-254.
    Bruggemann N, Schnitzler JP. Relationship of isopentenyl diphosphate (IDP) isomerase activity to isoprene emission of oak leaves. Tree Physiol, (2002) 14,1011-1018.
    Chitteti BR, Tan F, Mujahid H et al. Comparative analysis of proteome differential regulation during cell dedifferentiation in Arabidopsis. Proteomics.2008;8(20):4303-16.
    Chua L, Shan X, Wang J et al.. Proteomics study of CO11-regulated proteins in Arabidopsis flower. J Integr Plant Biol 2010,52(4):410-9.
    Collins NC, Thordal-Christensen H, Lipka V et al. SNARE-protein-mediated disease resistance at the plant cell wall Nature.2003,425(6961):973-7.
    Coumans JV, Poljak A, Raftery MJ et al. Analysis of cotton (Gossypium hirsutum) root proteomes during a compatible interaction with the black root rot fungus Thielaviopsis basicola.Proteomics. (2009) 9335,9349.
    Corrado G, Bovi PD, Ciliento R et al. Inducible expression of a phytolacca heterotepala ribosome-Inactivating protein leads to enhanced resistance against major fungal pathogens in tobacco Phytopathology. (2005)95,206-215.
    Castillo A.G., Kong L.J., Hanley-bowdoin L et al, Interaction between a geminivirus replication protein and the plant sumoylation system, J. Virol.2004,78(6):2758-2769
    De Young BJ, Innes RW Plant NBS-LRR proteins in pathogen sensing and host defense. Nature Immunology, (2006) 7:1243-1249.
    Dubery IA, Smit F. Phenylalanine ammonia-lyase from cotton(Gossypium hirsutum) hypocotyls:properties of the enzyme induced by a Verticillium dahliae phytotoxin.Biochim Biophys Acta.1994 Jul 20;1207(1):24-30.
    Deutscher MP. Ribonuclease multiplicity, diversity, and complexity. J Biol Chem.1993 Jun 25;268(18):13011-4.
    Dixon MS, Jones DA, Keddie JS et al. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell.1996 Feb 9;84(3):451-9.
    Diatchenko L, Lau YF, Campbell AP et al.Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A.1996 Jun 11;93(12):6025-30.
    Deslandes L, Olivier J, Theulieres F et al. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA,2002,99:2404-2409.
    Dinesh-Kumar S P, Tham W Hand Baker B J. Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc. Natl. Acad. Sci. USA.2000,97:14789-14794.
    De Lorenzo G,D'Ovidio R,Cervone F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi.Annual Review of Phytopathology,2001,39:313-335.
    Daher Z, Recorbet G, Valot B et al. Proteomic analysis of medicago truncatula root plastids Proteomics, (2010)11,2123-2137.
    Dai S, Chen T, Chong K et al. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growthreveals characteristics of germinated Oryza saliva pollen.Mol Cell Proteomics (2007) 6:207-230.
    Deng Z, Zhang X, Tang Wet al. A proteomics study of brassinosteroid response in Arabidopsis.. Mol Cell Proteomics.2007;6(12):2058-71.
    Deslandes L,Peeters N, Feng DX et al. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type Ⅲ effector targeted to the plant nucleus. Proc Natl Acad Sci U S A. (2003)100,8024-8029.
    Dong N, Liu X, Lu Y et al. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokinian. Funct Integr Genomics, (2010) 10,215-226
    Davin LB, Wang HB, Anastasia L et al. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent-like) protein without an active center [J].Science.1997;17:275-362
    Dixon RA, Lamb CJ, Masoud S et al. Metabolic engineering:prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses--a review. Gene.1996 Nov 7;179(1):61-71.
    Davin, L.B., Lewis, N.G. Dirigent-like proteins and dirigent-like sites explain the mystery of specificity of radical precursor coupling in lignin and lignin biosynthesis [J]. Plant Physiol.2000; 123:453-462
    Fujimoto SY, Ohta M, Usui A et al. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell.2000 Mar;12(3):393-404.
    Feuillet C, Schachermayr G, Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J.1997 Jan;11(1):45-52.
    Farinati S, DalCorso G, Bona E et al. Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics.2009;9(21):4837-50.
    Franco O L, Pereira JL, Costa PH et al. Methodological evaluation of 2-DE to study root proteomics during nematode infection in cotton and coffee plants. Prep Biochem Biotechnol, (2010) 40,52-163.
    Francesca DV, Toufik E, Roberto C, et al. Morphological and ultrastructural aspects of dehydration and rehydration in leaves of Sporobolus stapfianus [J].Plant Growth Regul 1998; 24:219-28
    Franceschi, V.R., Krokene, P., Krekling, T et al. Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark-beetle attack in Norway spruce (Pinaceae) [J] Am. J. Bot.2000; 87:314-326
    Grant MR, Godiard L, Straube E et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science.1995 Aug 11;269(5225):843-6.
    Gao F, Zhou Y, Zhu W et al. Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves.. Planta.2009;230 (5):1033-46.
    Glinka EM, Protsenko MA, Bulantseva EA et al. Effect of proteinaceous polygalacturonase inhibitors from apple seed tissue on an enzyme isolated from phytopathogenic fungi. Prikl Biokhim Mikrobiol, (2001)37,607-611.
    Girbes T, Ferreras JM, Iglesias R et al. Recent advances in the uses and applications of ribosome-inactivating proteins from plants.Cell Mol Biol (1996)42,461-471.
    Gao Y., Guo W., Wang L et al. Isolation and characterization of resistance and defense gene analogs in cotton(Gossypium barbadense L.), Sci. in China(Life Sci.).2006,49(6):530-42
    Gurlebeck D., Thieme F., and Bonas U. Type Ⅲ effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant, J. Plant Physiol.2006,163(3):233-255
    Hill MK, Lyon KJ, Lyon BR. Identification of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae. Plant Mol Biol.1999 May;40(2):289-96.
    Hardie D. Plant protein serine/threonine kinase:classification and functions. Annu. Rev. Plant Mol. Biol. 1999,50:97-131
    Hajduch M, Hearne LB, Miernyk JA, et al. Systems analysis of seed filling in Arabidopsis:using general linear modeling to assess concordance of transcript and protein expression. Plant Physiol.2010;152 (4):2078-87.
    Hampton RE, Wullschleger SD, Oosterhuis DM. Impact of Verticillium wilt on net photosynthesis, respiration and photorespiration in field-grown cotton (Gossypium hirsutum L.). Physiological and Molecular Plant Pathology 1990,37:271-280.
    Hahn MG. Microbial elicitors and their receptors in plants.Annu Rev Phytopathol.1996,34: 387-412.
    Hao L., Wang H., Sunter G et al. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase, The Plant Cell, (2003) 15,1034-1048
    Holmes-Davis R, Tanaka CK, Vensel WH et al. Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics, (2005)5,4864-48
    Hall, S.C., Lewis, N.G. Secondary and quaternary structures of the (+)-pinoresinol-forming dirigent-like protein [J]. Biochemistry 2002;41:9455-9461
    Hanania U., Furman-matarasso N., Ron M. et al.1999, Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death, Plant J.,19(5),533-541
    Hotson A., Chosed R., Shu H et al. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta, Mol. Microbiol.,2003,50(2):377-389
    Huber, D.P.W., Ralph, S. and Bohlmann. Genomic hardwiring and phenotypic plasticity of terpenoid-based defenses in conifers [J] J. Chem. Ecol.2004; 30:2399-2418
    Hulbert SH, Webb CA, Smith SM et al. Resistance gene complexes:evolution and utilization. Annu. Rev. Phytopathol. (2001)39:285-312.
    Inohara N, Nunez G:NODs. Intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol.2003,5:371-832
    Islam MA, Sturrock RN, Ekramoddoullah AK. A proteomics approach to identify proteins differentially expressed in Douglas-fir seedlings infected by Phellinus sulphur ascens. J Proteomics. (2008) 71,425-38.
    Jones DA, Jones JDG. The role of leucine-rich repeat protein in plant defense. Theor. Appl. Genet., (1997)103:406-414.
    Jones DA, Thomas CM, Hammond-Kosack KE et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science.1994 Nov 4;266(5186):789-93.
    Jones JD, Dangl JL. The plant immune ystem. Nature, (2006)444:323-329.
    Justin M Scheer and Clarence A Ryan et al. The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc. Natl. Acad. Sci. USA 2000,99:9585-9590
    Jiang Y, Yang B, Harris NS et al. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot.2007;58(13):3591-607.
    Ji XL, Gai YP, Zheng CC et al. Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.).Proteomics, (2009) 9,5328-5339.
    Jin J.B., Jin Y.H., Lee J et al. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure, Plant J. 2007,53(3):530-540
    Johal GS, Briggs SP. Reductase activity encoded by the HM1 disease resistance gene in maize. Science. 1992 Nov 6;258(5084):985-7.
    Kidou S, Umeda M, Kato A et al. Isolation and characterization of a rice cDNA similar to the bovine brain-specific 14-3-3 protein gene. Plant Mol Biol.1993 Jan;21(1):191-4.
    Kim JY, Park SC, Hwang I et al. Protease inhibitors from plants with antimicrobial activity.Int J Mol Sci. 2009; 10,2860-2872
    Korthout HA, de Boer AH. A fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs. Plant Cell.1994 Nov;6(11):1681-92.
    Kawchuk LM, Hachey J, Lynch DR et al. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA 2001,98:6511-6515.
    Kim JG, Li XY, Roden JA el al. Xanthomonas T3S Effector XopN Suppresses PAMP-Triggered Immunity and Interacts with a Tomato Atypical Receptor-Like Kinase and TFT1. Plant Cell, (2009)21,1305-1323.
    Kline KG, Barrett-Wilt GA, Sussman MRI. A planta changes in protein phosphorylation induced by the plant hormone abscisic acid Proc Natl Acad Sci U S A.2010 Sep 7; 107(36):15986-91.
    Kryvych S, Kleessen S, Ebert B et al. Proteomics-The key to understanding systems biology of Arabidopsis trichomes (Phytochemistry).2010 Oct 15. [Epub ahead of print]
    Kurepa J, Walker J.M., Smalle J el al. The small ubiquitinlike modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and-2 conjugates is increased by stress, J. Biol. Chem.,2003,278(9):6862-6872
    Kobe B,Kajava AY. The leucine-rich repeat as a protein recognition motif.Current Opinion in structural Biology,2001,11:725-732.
    Lee SW, Nazar RN, Powell DA et al. Reduced PAL gene suppression in Verticillium-infected resistant tomatoes. Plant Mol Biol.1992 Jan;18(2):345-52.
    Liu JL, Liu XL, Dai LY et al. (2007). Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. Journal of genetics and genomics,34(9):765-776.
    Luo P, Wang YH, Wang GD et al. Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J.2001 Oct;28(1):95-104.
    Lawrence GJ, Finnegan EJ, Ayliffe MA et al. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell.] 995 Aug;7(8):1195-206.
    Leister RT, Ausubel FM, Katagiri F. Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1. Proc Natl Acad Sci U S A.1996 Dec 24;93(26):15497-502.
    Leister D, Ballvora A, Salamini F et al. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet.1996 Dec;14(4):421-9.
    Lochmanova G, Zdrahal Z, Konecna H et al. Cytokinin-induced photomorphogenesis in dark-grown Arabidopsis:a proteomic analysis. J Exp Bot.2008; 59(13):3705-19.
    Lin L, Wang X, Wang Y. cDNA clone, fusion expression and purification of the novel gene related to ascorbate peroxidase from Chinese wild Vitis pseudoreticulata in E. coli. Mol Biol Rep, (2006),33,197-206.
    Leckie F,Mattei B,Capodicasa C et al. The specificity of polygalacturonase-inhibiting protein (PGIP):a single amino acid substitution inthe solvent-exposed beta-strand/beta-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability.EuropeanMolecular Biology Organization Journal,1999,18:2352-2363.
    Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays.Nature, (2000)405,827-836
    Lee J., Nam J., Park H.C et al. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase, Plant J.2007,49(l):79-90
    Marra M, Fullone MR, Fogliano V et al. The 30-kilodalton protein present in purified fusicoccin receptor preparations is a 14-3-3-like protein. Plant Physiol.1994 Dec; 106(4):1497-501.
    Martin GB, Brommonschenkel SH, Chunwongse J et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science.1993 Nov 26;262(5138):1432-6.
    Mindrinos M, Katagiri F, Yu GL et al. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell.1994 Sep 23;78(6):1089-99.
    Mestre P, Baulcombe DC. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell, (2006)18:491-501.
    Meyers BC, Dickeman AW, Sivaramakrishnan S et al. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J.1999,20: 317-332
    Meyers BC, Kozik A, Griego A et al. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 2003,15:809-834
    Mauch-Mani, B. and Mauch, F. The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol. (2005),8,1-6.
    Miao Weiguo, Wang Xiben, Li Ming et al. Transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism BMC Plant Biology 2010,10:67
    Mohr, P.G., Cahill, D.M. Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct. Plant Biol. (2003),30,461-469.
    Montero-Barrientos M, Hermosa R, Cardoza, RE et al. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol, (2010)167,659-665
    Mukherjee AK, Carp MJ, Zuchman R et al. Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola.J Proteomics, (2010) 73,709-720.
    Muslin AJ, Tanner JW, Allen PM et al. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine, Cell, (1996)84,889-897.
    Miura K., Jin J.B., Lee J et al.SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis, Plant Cell,2007b,19(4):1403-1414
    Muller S., Hoege C., Pyrowolakis G et al. SUMO, ubiquitin's mysterious cousin, Nat. Rev. Mol. Cell. Biol. 2001,2(3):202-210.
    Murtas G., Reeves P.H., Fu Y.F et al. A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of small ubiquitin related modifier conjugates, Plant Cell,2003, 15(10):2308-2319.
    Narusaka MSK, Noutoshi Y, Kubo Y et al. RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens. Plant J. (2009),218-226.
    Ohme-Takagi M, Suzuki K, Shinshi H. Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol.2000 Nov;41(11):1187-92.
    Orth K. Function of the Yersinia effector YopJ, Curr. Opin. Microbiol.2002,5(1):38-43
    Orth K., Xu Z., Mudgett M.B et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease, Science,2000,290(5946):1594-1597
    Parker JE, Coleman MJ, Szabo V et al. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the tolland interleukin-1 receptors with N and L6.Plant Cell.1997 Jun;9(6):879-94.
    Pang CY, Wang H, Pang Y et al. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics. 2010;9(9):2019-33
    Pang Q, Chen S, Dai S et al. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res.2010;9(5):2584-99.
    Paplomatas EJ, Bassett DM, Broome JC et al. Incidence of Verticillium wilt and yield losses of cotton cultivars (Gossypium hirsutum) based on soil inoculum density of Verticillium dahliae. Phytopathology 1992,82:1417-1420.
    Peter N. Dodds, Gregoty J et al. Six Amino Acid Changes Confined to the Leucine-Rich Repeat (3-Strand/β-Turn Motif Determine the Difference between the P and P2 Rust Resistance Specificities in Flax. Plant Cell.2001,13:163-178
    Polge C, Jaquinod M, Holzer F et al. Evidence for the Existence in Arabidopsis thaliana of the Proteasome Proteolytic Pathway:ACTIVATION IN RESPONSE TO CADMIUM.. J Biol Chem.2009;284 (51):35412-24.
    Pre M, Atallah M, Champion A et al. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol, (2008) 147,1347-1357
    Powell A L,van Kan J,ten Have A et al.Transgenic expression of pear PGIP in tomato limits fungal colonization. Molecular Plant Microbelnteract,2000,(13):942-950
    Punja ZK. Genetic engineering of plants to enhance resistance to fungal pathogens:a review of progress and future prospects. Canadian Journal of Plant Pathology 2001,23:216-235.
    Qu ZL, Wang HY, Xia GX. GhHb1:a nonsymbiotic hemoglobin gene of cotton responsive to infection by Verticillium dahliae. Biochim Biophys Acta., (2005) 17,30103-30113.
    Rebrikov DV, Britanova OV, Gurskaya NG et al. A.Mirror orientation selection (MOS):a method for eliminating false positive clones from libraries generated by suppression subtractive hybridization. Nucleic Acids Res.2000 Oct 15;28(20)
    Roby D, Broglie K, Gaynor J et al. Regulation of a Chitinase Gene Promoter by Ethylene and Elicitors in Bean Protoplasts. Plant Physiol.1991 Sep;97(1):433-439.
    Richly, E., Kurth, J., and Leister, D. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol. Biol. Evol.2002,19,76-84.
    Reumann S, Babujee L, Ma C et al. Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell.2007;19(10):3170-93
    Robison MM, Shah S, Tamot B et al. Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol Plant Pathol.2001; 2(3):135-45.
    Raffa, K.F. and Berryman, A.A. Accumulation of Monoterpenes associated with volatilesfollowing inoculation of grand fir with a fungus transmitted by the fir engraver, Scolytusventralis (Coleoptera.Scolytidae) [J].Can.Entom.1982; 114:797-810
    Sheoran IS, Ross AR, Olson DJ et al. Proteomic analysis of tomato (Lycopersicon esculentum) pollen. J Exp Bot, (2007) 58,3525-3535
    Saitoh H., and Hinchey J.,2000, Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3, J. Biol. Chem.,275(9):6252-6258
    Saracco S.A., Miller M.J., Kurepa J et al. Genetic analysis of SUMOylation in Arabidopsis:conjugation of SUMO1 and SUMO2 to nuclear proteins is essential, Plant Physiol.2007,145(1):119-134
    Steven Ralph. Dirigent-like proteins in conifer defense:gene discovery, phylogeny,and differential wound-and insect-induced expression of a family of DIR and DIR-like genes in spruce [J]. Plant Molecular Biology 2006;60:21-40
    Steven G. Ralph. Dirigent-like proteins in conifer defense Ⅱ:Extended genediscovery, phylogeny,and constitutive and stress-induced gene expression in spruce [J]. Phytochemistry 2007; 68:1975-1991
    Shang HH. A cytology study of drought tolerance mechanisms of the resurrection plant Boea hygrometrica (Bunge) R. Br. Master Dissertation, Southwest University; 2006
    Simons G, van der Lee T, Diergaarde P et al. AFLP-based fine mapping of the Mlo gene to a 30-kb DNA segment of the barley genome. Genomics.1997 Aug 15;44(1):61-70.
    Sinapidou E, Williams K, Nott L et al. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J. (2004) 38:898-909
    Shirasu K, Schulze-Lefert P. Complex formation, promiscuity and multi-functionality:protein interactions in disease-resistance pathways. Trends Plant Sci,(2003)8:252-258.
    Salmeron JM, Oldroyd GE, Rommens CM et al. Tomato Prfis a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster.Cell.1996 Jul 12;86(1):123-33.
    Song WY, Wang GL, Chen LL et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science.1995 Dec 15;270(5243):1804-6.
    Tan XP, Meyers BC, Kozik A et al. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biology, (2007) 7:56.
    Timothy K. Eitasl and Jeffery L et al. NB-LRR proteins:Pairs, pieces, perception, partners and pathways. Curr. Opin. Plant Biol. (2010)13(4):472-477.
    Traut TW. The function and consensus motifs of nine types of peptide segments that form different types of nucleiotide-binding sites. Eur. J.Biochem, (1994)222:9-19.
    Thomas CM, Jones DA, Parniske M et al. Characterization of the tomato Cf-4 gene for resistance to Cladosporiumfulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell.1997 Dec;9(12):2209-24.
    Tohidfar M, Mohammadi M, Ghareyazie B. A grobacterium-mediated transformation of cotton(Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tissue and Organ Culture 2005, 83:83-96.
    Vicre M, Olivier L, Farrant J et al. Composition and desiccation-induced alterations of the cell wall in the resurrection plant Craterostigma wilmsii[J].Physiol Plant 2004; 120:229-239
    Vincent Burlat. Dirigent-like proteins and dirigent-like sites in lignifying tissues [J]. Phytochemistry,2001; 57:883-897
    Von Stein OD, Thies WG, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res.1997 Jul l;25(13):2598-602.
    Wang JY, Cai Y, Gou JY et al. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl Environ Microbiol.2004 Aug;70(8):4989-95.
    Whitham S, Dinesh-Kumar SP, Choi D et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell.1994 Sep 23;78(6):1101-15.
    Warren R F, Henk A, Mowery P et al. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. The Plant Cell,1998,10:1439-1452
    Wang D., Weaver, N.D., Kesarwani, M. et al. Induction of Protein Secretory Pathway Is Required for Systemic Acquired Resistance, Science, vol.308 (2005),1036-1040.
    Wang W, Bianchi L, Scali M et al. Proteomic analysis of (3-1,3-glucanase in grape berry tissues. Acta Physiologiae Plantarum, (2009)31:597-604
    Wang W, Vignani R, Scali M et al. Post-translational modifications of a-tubulin in Zea mays are highly tissue specific.Planta, (2004)218,460-465
    Wang YQ, Chen DJ, Wang DM et al. Over-expression of Gastrodia anti-fungal protein enhances Verticillium wilt resistance in coloured cotton. Plant Breeding 2004,123:454-459.
    Wenqiang Tang, Tae-Wuk Kim, Juan A Oses-Prieto et al. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, (2008) 321,557-560.
    Wenqiang Tang, Zhiping Deng, Juan A Oses-Prieto et al. Proteomic studies of brassinosteroid signal transduction using prefractionation and 2-D DIGE Molecular Cellular Proteomics (2008) 7,728-738
    Widjaja I, Lassowskat I, Bethke G et al. A protein phosphatase 2C, responsive to the bacterial effector AvrRpm1 but not to the AvrB effector, regulates defense responses in Arabidopsis.. Plant J.2010 61(2):249-58
    Wu RH, Wang LL, Wang Z. Cloning and expression analysis of a dirigent-like protein gene from the resurrection plant Boea hygrometrica [J]. Progress in Natural Science,2009; 19:347-352
    Yang YJ, Zuo ZC, Zhao XY et al. Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression. Mol Plant.2008; 1(1):167-77
    Yi M, Chi MH, Khang CH et al. (2009)The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae. Plant Cell,21,681-695.
    Yoshimura S, Yamanouchi U, Katayose Y et al. Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci U S A.1998 Feb 17;95(4):1663-8.
    Zhang M, Kadota Y, Prodromou C et al. (2010). Structural basis for assembly of Hsp90-Sgtl-CHORD protein complexes:implications for chaperoning of NLR innate immunity receptors. Mol. Cell, 39:269-281.
    Zhao PM, Wang LL, Han LB, et al. Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J Proteome Res, (2010) 9, 1076-1087.
    Zhao Z, Stanley BA, Zhang W, et al. ABA-regulated G protein signaling in Arabidopsis guard cells:a proteomic perspective.2010 J Proteome Res 5;9 (4):1637-47.
    Zhang Z, Xu J, Xu Q, et al. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. Theor Appl Genet.2004 Jul;109(2):433-9.
    Zhou T, Y. Wang, J-Q.Chen, et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Molecular Genetics and Genomics. 2004,271:402-415.
    Zhu M, Dai S, McClung S, et al. Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics.2009 8(4):752-66.
    Zhu LF, Tu LL, Zhang XL et al. Construction and analysis of SSH library of Gossypium barbadense upon infection with Verticillium dahlia. Yi Chuan Xue Bao. (2005) 32:528-532..
    Zhu, L., Zhang,X., Tu,L. et al, Isolation and characterization Of two novel dirigent-like-like genes highly induced in cotton(Gossypiumbarbadense And G.hirsutum) after infection by Verticillium dahliae [J]. PlantPathol 2007;89:41-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700