用户名: 密码: 验证码:
种传西瓜细菌性果斑病菌快速分子检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由燕麦嗜酸菌西瓜亚种(Acidovorax avenae subsp.citrulli)引起的西瓜细菌性果斑病是西瓜等葫芦科作物的典型种传病害,也是重要的检疫对象之一。由于化学药剂处理无法完全清除该病原,因此,种子检疫成为控制该病的重要手段。由于西瓜种子较大,带菌率偏低,传统方法常导致微量病原的漏检。因此,迫切需要开发简单易行、快速灵敏的检测方法。本文研究了几种分子生物学方法对种传西瓜细菌性果斑病菌的检测,主要结果如下:
     1.采用直接高温裂解释放DNA,进行PCR扩增,无需专门DNA提取,以检测灵敏度、稳定性、时间及成本为指标对Bio-PCR、MF-PCR、IMS-PCR、IC-PCR、Direct-PCR、DAS-ELISA6种方法进行了综合评价的结果表明:IC-PCR和IMS-PCR检测灵敏度和重复性最高,最低检测限分别为4.7×10~2cfu/mL和4.7×10~2~4.7×10~3cfu/mL,0.1%带菌率的种子阳性检出率66.7%,检测时间比Direct-PCR的4h和MF-PCR的5h要长,但仍可控制在12h内。
     2.建立以BX-L1/BX-R5为外侧引物,BX-L1/BX-S-R2为内侧引物的Nested-PCR检测方法,优化50μL反应体系:7.5μL10×PCR buffer(25mM MgCl2)、4μLdNTP(D4030RA,2.5mM)、引物(5μM/L)各3μL,0.25μLTaq DNA酶(DR001B,5U/μL)。该体系下以直接高温裂解释放DNA进行PCR扩增的结果清晰。
     3.采用Nested-PCR方法,以50μL优化体系对Aac菌悬液、模拟带菌种子提取液和不同带菌率的种子洗液进行检测,结果表明:最低检测限2.4×10~1cfu/mL,0.1%带菌率的种子阳性检出率100%。
     4.建立了可视化抗体芯片检测方法。以硝酸纤维素膜为基片,以西瓜细菌性果斑病菌为模式病原,对其特异性捕获抗体以阵列模式点样排布固定制成抗体阵列,并对点样浓度、封闭条件、杂交反应条件、显色时间等主要参数进行优化。
     5.采用可视化抗体芯片检测技术对Aac菌悬液、模拟带菌种子提取液和不同带菌率的种子洗液进行检测的结果表明:最低检测限2.4×10~4~2.4×10~5cfu/mL,以1/25的捕获抗体用量,以及1/8的检测时间便可达到ELISA的同等检测能力,且成本低,操作简便。
Bacterial fruit blotch of watermelon caused by Acidovorax avenae subsp. citrulli (Aac) isone of important national plant quarantine disease in China. Aac mainly infects watermelonsor other melons which belong to Cucurbitaceous crops. It has become the most seriousdiseases threatening the watermelon production and it can incite devastating disease epidemicswith the favorable environmental conditions. Contaminated watermelon seed is the primarysource of the disease spreading. Until now,the most efficient disease-management strategy isto eliminate the infected seeds prior the planting. However, the relatively low proportion ofinfected-seed makes the disease management especially difficult. Other traditional detectionmethods require extra time, labor intensive but also need the knowledge of the pathogeniccharacteristic and the disease symptoms. Therefore, it is necessary to develop accurate, rapidand sensitive methods for detecting Aac invasion and preventing of the spread of disease.
     The objective of this study was to explore and develop molecular detection techniques forAac.The results showed as below:
     1. A series dilution of bacterial suspension and seed extracts suspension were boiled torelease DNA for the Bio-PCR,MF-PCR,IMS-PCR,IC-PCR,Direct-PCR and DAS-ELISAanalysis. Comprehensive comparisons were made based on the sensitivity, stability, time andcost. The data showed that both IC-PCR and IMS-PCR are considerable higher sensitivitymethods, the sensitivity of IC-PCR could reach4.7×10~2cfu/mL and that of IMS could reach4.7×10~2cfu/mL~4.7×10~3cfu/mL. Meanwhile, the true positive detection rate was66.7%in0.1%rate of infected-seed. Although the procedure time was longer than Direct-PCR (4h) andMF-PCR(5h), it finished within12h. The expenses of the detection those two methods wasalso very low. Therefore, our results suggested that IC-PCR and IMS-PCR are sensitive,specific, rapid, reproducible, and economical methods for detecting Aac in watermelon seeds.
     2. The specific primer set BX-L1/BX-R5and BX-L1/BX-S-R2derived from BOXPCRwere selected to develop a nested PCR in single assay of Aac. The optimal PCR reactionsystem was50μL:7.5μL10PCR buffe(r25mM MgCl2),4μL dNTP(D4030RA,2.5mM),3μL primer(5μM/L),0.25μL Taq(DR001B,5U/μL). the direct pyrolysis was used to releaseDNA as template in this system, the amplified result was clear.
     3. The DNA of Aac suspension, mocked seeds, and different carrier rate of seeds wereamplified by50μL system of nested-PCR, it was indicated that the lowest detection limit canreach2.4×10~1cfu/mL, and the positive detection rate was100%in0.1%of infected-seed.
     4. Setting cellulose nitrate film as vector and bacterial fruit blotch of watermelon as amodel pathogen, the specificity of the capture antibody was arrayed as an array pattern samplefor arrangement and fixation; we established an antibody microarray detection method. Themain parameters of sample concentration, incubation condition, hybridization reactionconditions, chromogenic time were optimized, and a visible protein chip was established.
     5. Using the visible antibody microarray detection technology, the suspension of Aac,mocked seeds, and infected-seed with varies infection were analyzed. My results showed that:the lowest detection capability reached2.4×10~4cfu/mL~2.4×10~5cfu/mL. In the proteinchip system, only1/25dosage of the capture antibody and1/8of the detection time couldreach the same detection capability that achieved by ELISA. In addition, the cost of detectionwas low and the procedure was simple and convenient.
引文
安凤秋,吴云锋,顾沛雯.巢式PCR在植原体检测中的应用[J].陕西农业科学,2008,3(1):50-52.
    蔡学清,黄月英,杨建珍等.福建省西瓜细菌性果斑病的病原鉴定[J].福建农林大学学报(自然科学版),2005,34(2):434-437.
    陈春田,李金有,王林等.细菌快速检测与传统培养方法结果比较[J].检验检疫学刊,2009,19(6):12-14.
    陈晓琴,陈强,张世熔等.流沙河流域土壤自生固氮菌数值分类及BOX-PCR研究[J].农业环境科学学报,2006,25(增刊):528-532.
    单志慧,廖伯寿.花生青枯菌潜伏侵染的酶联免疫血清检测技术[J].中国油料,1997,19(2):45-47.
    方中达.植病研究方法[M].中国农业出版社(第三版).北京,1998.
    冯家望,曾宪铭,范怀忠等.应用免疫金探针定位和定量测定稻种中的水稻细菌性条斑病菌[J].植物病理学报,1994,24(1):233-238.
    冯建军,许勇,李健强.免疫凝聚试纸条和TaqMan探针实时荧光PCR检测西瓜细菌性果斑病菌比较研究[J].植物病理学报,2006,36(1):102-108.
    冯建军,金志娟,刘西莉等.一种DNA染料结合PCR检测鉴别植物病原细菌死活细胞[J].高等学校化学学报,2008,29(3):944-948.
    何万兴,江式富,宁红.用美联免疫吸附分析技术检测柑橘溃疡病菌[J].西南农业学报,1993,6(增刊)(5):55-66.
    侯建雄,方雯霞.西瓜细菌性果腐病及其检疫对策[J].中国进出境动植检,1997,1(1):36-37.
    黄荣夫,庄峙厦,鄢庆枇,李景喜,陈石,王小如.蛋白微阵列免疫分析法用于海洋致病菌的定量检测[J].分析化学,2006,10(2):1411-14.
    黄月英.西瓜细菌性果斑病的检测与防治[J].福建农业科技,2008,2(4):62-64.
    回文广.哈密瓜果斑病菌快速检测方法的建立[D].中国农业科学院,硕士论文,2004.
    金岩,张俊杰,吴燕华等.西瓜细菌性果斑病的发生与病原菌鉴定[J].吉林农业大学学报.2004,26(2):263-266.
    粟寒,吴翠萍,李彬.免疫检测试纸条法检测西瓜子中的瓜类果斑病菌[J].植物检疫,2009,23(2):12-13.
    梁英梅,李有忠.植物细菌性病害检疫技术及其应用[J].陕西林业科技,2001,1(1):62-65.
    廖太林,李百胜,叶建仁等.松树脂溃疡病菌的分子检测[J].林业科学,2007,43(2):111-115.
    廖晓兰,朱水芳,赵文军等.水稻白叶枯病菌和水稻细菌性条斑病菌的实时荧光PCR快速检测鉴定[J].微生物学报,2003,43(4):626-634.
    林海云,车建美,刘波等.基于BOX-PCR和REP-PCR技术青枯雷尔氏菌遗传多样性分析[J].农业生物技术学报,2011,19(3):1099-1109
    刘佳妍,金莉莉,王秋雨.细菌基因组重复序列PCR技术及其应用[J].2006,26(2):90-93.
    刘琼光.植物病原细菌的血清学鉴定和分类[J].江西植保,1998,18(1):29-31.
    刘伟,姜毓君,吕琦等.原料乳中沙门氏菌的快速过滤富集及PCR检测[J].中国乳品工业,2007,35(1):42-45.
    刘伟轲.河西走廊制种业可持续发展思路[J].广东农业科学,2008,7(2):168-173.
    刘秀芳,刘芳政,王叶筠.西瓜甜瓜主要病虫害的识别及其防治[M].农业出版社,1993.
    刘学敏,孟玉芹.植物病原细菌检测和细菌病害诊断方法[J].菌物研究,2009,7(3):211-217.
    路浩.蛋白质芯片检测病原微生物与毒素的研究[D].吉林大学,[博士论文],2009,6.
    罗志萍,洪霓.柑橘溃疡病菌免疫荧光检测技术研究[J].西北农林科技大学学报,2006,34(2):143-145.
    马立人,蒋中华.生物芯片[M].北京,化学工业出版社,2002.
    闽现华.番茄溃疡病菌的富集和快速分子生物学检测方法研究[D].兰州大学,硕士论文,2010.
    宁红,陶家凤,江式富.用酶联免疫吸附技术(ELISA)检测水稻细菌性条斑病菌的研究[J].植物检疫,1991,5(3):94-97.
    牛建军,黄建炜,李莉等.免疫捕获PCR法快速检测大肠埃希氏O157∶H7的研究[J].中国人兽共患病杂志,2004,20(2):897-900.
    彭仁.用蛋白质芯片检测功能肽[J].食品科学,2005,26(1):545-546.
    齐玲玲,金涌,邹明强.胶体金免疫层析试纸条快速检测玉米细菌性枯萎病菌[J].检验检疫学刊,2010,20(4):1-4.
    任毓忠,李晖,李国英等.哈密瓜种子带细菌性果斑病菌检测技术的研究[J].植物检疫,2004,18(3):65-68.
    任毓忠,李晖,李国英,王晓东,万刚,方蕾.哈密瓜细菌性果斑病种子带菌的PCR检测[J].新疆农业科学,2004,41(3):329-332.
    宋凯,叶赛,周佳菁等.蛋白质芯片技术用于高通量单克隆抗体制备研究[J].生物工程学报,2007,23(7):1116-1120.
    宋蕤,刘箐,刘雅莉等.西瓜细菌性果斑病菌快速免疫苗PCR检测[J].植物检疫,2009,23(2):4-6.
    宋修庆,高宏雷,王晓艳等.鸡贫血病毒Taq Man探针荧光定量PCR检测方法的建立[J].中国预防兽医学报,2009,31(1):56-59.
    孙艳秋,赵奎华,曹远银等.黄瓜细菌性角斑病免疫胶体金检测试纸条的研制[J].植物病理学报,2011,41(9):131-138.
    王东勇,张松乐.免疫胶体金技术在快速诊断中的应用[J].中国卫生检验杂志,2003,13(1):391-392.
    王丽焕,宁红,沈翼等.酶联免疫技术检测玉米弯孢菌叶斑病的研究[J].植物检疫,2002,16(6):328-331.
    王茂华,胡白石,卢玲等.利用巢式PCR检测玉米细菌性枯萎病菌[J].南京农业大学学报,2005,28(2):37-40.
    王学令,魏亚东,高崇省.应用免疫分离法检测玉米细菌性枯萎病菌的研究[J].天津农林科技,1996,4(1):4-5.
    王政,胡俊,哈密瓜细菌性果斑病种子带菌血清学检测技术的初探[J].内蒙古农业大学学报,2005,26(3):20-23.
    吴琼,陈枝楠,范怀忠等.16S nested-PCR技术检测玉米细菌性枯萎病菌[J].植物病理学报,2005,35(3):420-427.
    向征,马文丽,费嘉等.蛋白质芯片与ELISA在人IgG定量分析中的比较[J].暨南大学学报(自然科学版),2007,28(4):312-316.
    邢红梅,丁平,周晓云等.红掌胶胞炭疽菌的分子检测[J].植物病理学报,2008,38(2):113-119.
    熊亮斌,刘箐,王天昌等.改良DAS-Dot-ELISA检测西瓜细菌性果斑病菌[J].微生物学通报,2010,37(2):1551-1556.
    于恒纯,姚德海,闫明宇.酶联免疫吸附检测法(ELlSA)在马铃薯环腐病检测中的应用[J].中国马铃薯,2003,17(1):44.
    郑继法,丁爱云.植物细菌病害诊断技术[J],植保技术与推广,1993,6(1):14-15.
    张爱红,苗洪芹.几种植物病原细菌的检测和鉴定技术[J].河北农业科学.2008,12(1):30-32.
    张华.水稻白叶枯病菌和细菌性条斑病菌的分子检测技术研究[D].南京农业大学,[硕士论文],2004.6
    张庆峰,高志贤,蛋白微阵列技术及其应用[J].中国生物工程杂志,2004,24(2):66-69.
    张荣意,谭志琼,文衍堂等.西瓜细菌性果斑病症状描述和病原菌鉴定[J].热带作物学报,1998,19(2):70-76.
    张祥林,莫桂花.西瓜上的一种新病害-细菌性果斑病[J].新疆农业科学,1996,4():183-184.
    张祥林,伍永明,王翀等.西瓜细菌性果斑病菌的16S rDNA序列分析及特异性引物的设计[J].植物病理学报,2007,37(1):225-231.
    赵海锋,甘一如.胶体金免疫层析法检测小分子物质[J].农药,2007,46():439-446.
    赵丽涵,王笑,谢关林等.免疫捕捉PCR法检测西瓜细菌性果斑病[J].农业与生物技术学报,2006,14(1):946-951.
    赵廷昌,孙福在,王兵万等.哈密瓜细菌性果斑病病原菌鉴定[J].植物病理学报,2001,31(3):357-364.
    赵延昌,孙福在,王兵万.西瓜细菌性果斑病研究进展[J].植保技术与推广,2001,21(3):37-38.
    赵廷昌,王建荣,孙福在等.哈密瓜细菌性果斑病综合治理指南[J].植保技术与推广,2003,4(2):17-18.
    赵友福,陈红燕,张乐等.菜豆萎蔫病菌的血清检测鉴定技术研究[J].植物检疫,1997,11(1):193-198.
    Ajjappala B S, Kim M S, Kim E Y, et al. Protein chip analysis of pluripotency associatedproteins in NIH3T3fibroblast[J]. Proteomics,2009,9(1):3968-3978.
    Alvarez A M. Integrated approaches for detection of plant pathogenic bacteria and diagnosisof bacterial diseases[J]. Annual Review of Phytopathology,2004,42(2):339-366.
    Angenendt P, Gl kler J. Evaluation of antibodies and microarray coatings as a prerequisiteforthe generation of optimized antibody microarrays[J]. Methods in molecular biology,2004,264(2):123-134.
    Assis S M P, Mariano R L R, Silva-Hanlin D M W, et al. Bacterial fruit blotch caused byAcidovorax avenae subsp. citrulli in melon, in the state of Rio Grande Do Norte[J].Brazil Fitopathol Brasilia1999,24(3):191.
    Bacarese-Hamilton T, Ardizzoni A, Gray J, et al. Protein arrays for sero diagnosis of disease[J]. Methods in Molecular Biology,2004,26(3):271-283.
    Bahar O, Efrat M, Hadar E, et al. New subspecies-specific polymerase chain reaction-basedassat for the detection of Acidovorax avenae subsp. citrulli [J]. Plant Pathology,2008,57(1):754–763.
    Bahar O, Kritzman G, Burdman S. Bacterial fruit blotch of melon: screens for diseasetolerance and role of seed transmission in pathogenicity [J]. Plant Pathology,2009,123(4):71–83.
    Belov L, Mulligan S P, Barber N, et al. Analysis of human leuk aemias and lymphomas usingextensive immunophen otypes from an antibody microarray[J]. British Journal ofHaematology,2006,135(2):184-197.
    Bertone P, Snyder M. Advances in functional protein microarray technology [J]. FEBSJournal,2005,272(6):5400-5411.
    Bostrom J G F. Design and construction of synthetic phage-displayed Fab libraries[J].Antibody Phage display: Methods andProtocols.2009,562(3):17-35.
    Brehm-Stecher B, Young C, Jaykus L A, et al. Sample preparation the forgotton beginning [J].Journal of Food Protection.2009,72(1):1774-1789.
    Brien R G, Martin H L. Bacterial blotch of melons caused by strains of Acidovorax avenaesubsp. citrulli[J]. Australian Journal of Experimental Agriculture,1999,39(2):479-485.
    Buchhop J, Von-Bargen S, Buttner C. Differentiation of Cherry leaf roll virus isolates fromvarious host plants by immunocapture-reverse transcription-polymerase chain reactionrestriction fragment length polymorphism according to phylogenetic relations[J].Virological Methods,2009,157(1):147-154.
    Burdman S, Kots N, Kritzman G, et al. Molecular physiological and hostrange character-ization of Acidovorax avenae subsp.citrulli isolates from watermelon and melon in Irsael[J]. Plant Disease,2005,89(2):1339-1347.
    Cavin M, Stuart L S. Printing proteins as microarrays for high-throughput functiondetermination [J]. Science,2000,289(4):1760-1763.
    Cheng A H, Hsu Y L, Huang T C, et al. Susceptibility of cucurbits to Acidovorax avenaesubsp.citrulli and control of fruit blotch on melon.[J]. Plant Pathology Bulletin,2000,9(1):151-156.
    Crall J M, Schenck N C. Bacterial fruit rot of watermelon in Florida [J]. Plant Disease Report,1969,53(1):74-75.
    Dutta B, Avci U, Hahn M G, et al. Location of Acidovorax citrulli in infested watermelonseeds is influenced by the pathway of bacterial invasion. Phytopathology,2012,102(1):461-468.
    Dutta B, Genzlinger L L, Walcott RR. Localization of Acidovorax avenae subsp.citrulli (Aac),the bacterial fruit blotch pathogen in naturally infested watermelon seed. Phytopathology,2008,98(6S): S49.
    Evans T A, Mulrooney RP. First report of watermelon fruit blotch in Delaware [J]. Plant Dis,1991,75(2):1074.
    Feng J, Schuenzel E L, Li J, et al. Multilocus Sequence Typing Reveals Two EvolutionaryLineages of Acidovorax avenae subsp.citrulli.[J]. Phytopathology,2009,99(5):913-920.
    Fessehaie A, Walcott RR. Biological control to protect watermelon blossoms and seed frominfection by Acidovorax avenae subsp. citrulli [J]. Phytopathology,2005,95(3):413-500.
    Franken A A, van-Vuurde J W L. Problems and new approaches in use of serology for seed-bome bacteria [J]. Seed Science Technology,1990,18(2):415-426.
    Frankle W. Ingress of the watermelon fruit blotch bacterium into fruit [J]. Plant Disease,1993,77(4):1090-92.
    Fuhrman J A, Liang X, Noble R T. Rapid detection of enteroviruses in small volumes ofnatural waters by real-time quantitative reverse transcriptase PCR[J]. App Environa lMicrobiology,2005,71(4):4523-30.
    Garcia B H. Antibody Microarray Analysis of Inflammatory Mediator Release by HumanLeukemia T-Cells and Human Nonmall Cell Lung Cancer Cells[J]. JBT,2007,18(4):245.
    Gehring A G, Albin D M, Reed S A, et al. An antibody microarray, in multiwell plate format,for multiplex screening of foodborne pathogenic bacteria and biomolecules[J].Analytical and Bioanalytical Chemistry.2008,391(2):497-506.
    Gemir G. A new bacterial disease of watermelon in Turkey: Bacterial fruit blotch ofwatermelon [J]. Turk. Phytopathol,1996,25(2):43-49.
    Genersch E, Otten C. The use of repetitive element PCR fingerprinting (rep-PCR) for geneticsubtyping of German field isolates of Paenibacillus larvae subsp. iarvae,[J]. Apidologie,2003,34(1):195-206
    Grow A E, Wood L L, Claycomb J L, et al. New biochip technology for label-free detectionof pathogens and their toxins [J]. Journal of Microbiological Methods,2003,53(1):221-233.
    Gygi S P, Rochon Y, Franza B R, et al. Correlation between protein and mRNA abundance inyeast. Molecular cell biology,1999,19(1):1720-1730.
    Hall D A, Zhu H, Zhu X, et al. Regulation of gene expression by a metabolic enzyme[J].Science.2004,306(4):482-484.
    Han M K, Oh Y H, Kang J, et al. Protein profiling in human sera for identification of potentiallung cancer biomarkers using antibody microarray[J]. Proteomics,2009,9(3):5544-5552.
    Harighi B. Bacterial leaf spot of Christ’ thorn, a new disease caused by Acidovorax avenaesubsp. citrulli in Iran [J]. Journal of Plant Pathology,2007,89(2):283-285.
    Hartmann M, Roeraade J, Stoll D, et al. Protein microarrays for diagnostic assays[J].Analytical Bioanal chemistry.2009,393(1):1407-1416.
    Higuchi R, Fockler C, Dollinger G, et al. Kinetic PCR analysis: real-time monitoring of DNAamplification reactions [J]. BioTechniques,1993,11(1):1026-1030.
    Hopkins D L. Bacterial fruit blotch of watermelon: a new disease in the eastern USA [J]. ProcCucurbitaceae,1989,89(7):775.
    Howell S W, Inerowicz H D, Regnier F E, et al. Patterned protein microarrays for bacterialdetection[J]. Langmuir,2003,19(1):436-439.
    Huelseweh B, Ehricht R, Marschall H J. A simple and rapid protein array based method forthe simultaneous detection of biowarfare agents[J]. Proteomics.2006,6(4):2972-2981.
    Hyun J W, Yun M Y, Noh S J, et al. Physical properties of NiCl coated protein chip plates[J].Current Applied Physics,2006,6(2):275-278.
    Isakeit T, Black M C, Barnes L W, et al. First report of infection of honeydew withAcidovorax avenae subsp.citrulli[J]. Plant Disease,1994,78(1):831.
    Isakeit T, Black M C, Barnes L W, et al. First report of infection of honeydew withAcidovorax avenae subsp. citrulli [J]. Plant Disease,1997,81(1):694.
    Joan MH, French R. The chain reaction and plant disease diagnosis[J]. Annual Review ofPhytopathology,1993,31(1):81-109.
    Karoonuthaisiri N, Charlermroj R, Uawisetwathana U, et al. Development of antibody arrayfor simultaneous detection of foodborne pathogens[J]. Biosensors and Bioslectronics.2009,24(1):1641-1648.
    Khodakov D A, Zakharova N V, Gryadunov D A, et al. An oligonucleotide microarray formultiplex real-time PCR identification of HIV-1, HBVand HCV[J]. Biotechniques,2008,44(3):241-246.
    Kim S W, Kim M G, Jung H A, et al. An application of protein microarray in the screening ofmonoclonal antibodies against the oyster mushroom spherical virus[J]. AnalyticalBiochemistry,2008,374(4):313-317.
    Kim W, Hong Y, Yoo J, et al. Genetic relationships of Bacillus anthracis and closely relatedspecies based on variable-number tandem repeat analysis and BOX-PCR genomicfingerprinting[J]. FEMS Microbiology Letters,2001,207(2):21-27.
    Kucharek T, Perez Y, Hodge C. Transmission of watermelon fruit blotch bacterium frominfested seed to seedlings [J]. Phytopathology,1993,83(1):466.
    Kumble K D. Protein microarrays: new tools for pharmaceutical development[J]. Analyticaland bioanalytical chemistry,2003,377(2):812-819.
    Kuo W P, Whipple M E, Jenssen T K, et al. Microarrays and clinicaldentistry. Journal of theAmerican Dental Association,2003,134(2):456-462.
    LaBaer J, Ramachandran N. Protein microarrays as tools for functional prot eomics[J].Current Opinion in Chemical Biology,2005,9(8):14-19.
    Laere O, Wael L, Mey J. Immuno gold staining (IGS) and immuno gold silver staining(IGSS) for the identification of the plant pathogenic bacterium Erwinia amylovora(Burrill) Winslow et al.[J]. Histochemistry and cell biology.1985,83(8):397-399.
    Langston J D B, Walcott R R, Gitaitis R D, et al. First report of a fruit rot of pumpkin causedby Acidovorax avenae pv. citrulli in Georgia [J]. Plant Disease,1999,83(7):199.
    Latin R X, Rane K K. Bacterial fruit blotch of watermelon in Indiana [J]. Plant Disease,1990,74(3):331.
    Leea J W, Sima S J, Choa S M, et al. Characterization of a self assembled monolayer of thiolon a gold surface and the fabrication of a biosensor chip based on surface pLasmonresonance for detecting anti GAD antibody [J]. Biosens Bioelectron,2005,20(3):1422-1427.
    Lessl J, Fessehaie A, Walcott R. Colonization of female watermelon blossoms by Acidovoraxavenae ssp. citrulli and the relationship between blossom inoculum dosage and seedinfestation [J]. Phytopathology,2007,155(2):114-121.
    Li Z, Guo C, Nie Y et al. Screening and Identification of recombinant anti-Idiotype antibodiesagainst Gastric cancer and colon cancer Monoclonal antibodies by a Phage-displayedSingle-chain Variable Fragment library[J]. Journal of biomolecular screening,2010,15(2):308.
    Liu F, Luo Z, Ding X, et al. Phage-displayed protein chip based on SPR sensing[J]. Sensorsand Actuators.B, Chemical,2009,136(2):133-137.
    Liu S L, Zhang Z, Wang C, et al. Evolutionary Characterization of Human H1N1InfluenzaVirus Hemagglutinin Genes Isolated from1947to2009in China[J]. Intervirology,2011,54(2):233-245.
    Loom F. Staying afloat on the sea of data [J]. Science,1998,282(1):1989-1990.
    Lueking A, Horn M, Eickhoff H, et al. Protein Microarrays for Gene Expression andAntibody Screening[J]. Analytical Biochemistry.1999,270(1):103-111.
    Macbeath G, Schreiber S L. Printing proteins as microarrays for high-throughput functiondetermination[J]. Science,2000,289(3):1760-1763.
    Macbeath G. Protein microarrays and proteomics [J]. Nature Genetics,2003,32(2):526-532.
    Mackay I M, Arden K E, Nitsche A. Survey and summary of real-time PCR in virology[J].Nucleic Acids Research,2002,30(1):1292-1305.
    Madin K, Sawasaki T, Ogasawara T, et al. A highly efficient and robust cell-free proteinsynthesis system prepared from wheat embryos(): plants apparently contain a suicidesystem directed at ribosomes[J]. Proceedings of the National Academy of Sciences,2000,97(5):559-564.
    Marimona J M, Monasterio A, Ercibengoaa M, et al. Antibody microarray typing, a noveltechnique for Streptococcus pneumoniae serotyping[J]. Journal of microbiologicalmethods,2010,80(4):274-280.
    Martin H L, O’Brien R G. First report of Acidovorax avenae subsp. citrulli as a pathogen ofMatsuura. Shirakawa T, Sato T, Inoue M,&Azegami YK. Detection and isolation ofAcidovorax avenae subsp. citrulli from watermelon (Citrullus lanatus) seeds usingmembrane filtration immunostaining[J]. Japanese Journal of Phytopathology,2008,74(1):153-156.
    Meintanis C, Chalkou K I, Kormas K A, et al. Application of rpob sequence similarityanalysis, REP-PCR and BOX-PCR for the differentiation of species within the genusGeobacillus[J]. Letters in AppliedMicrobiology,2008,46(2):395-401.
    Minsavage G V, Hoover R J, Kucharek T A, et al. Detection of the watermelon fruit blotchpathogen on seeds with the polymerase chain reaction[J]. Phytopathology,1995,85(1):1162.
    Mulholland V. Immunocapture-PCR for Plant Virus Detection[M]. Edinburgh, UK: HumanaPress,2009.
    Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro(): thepolymerase chain reaction[J]. Cold Spring Harbor Symmposia on quantitative biology,1986,51(2):263-273.
    Nagl S, Schaeferling M, Wolfbeis O S. Fluorescence analysis in microarray technology[J].Microchim Acta,2005,151(2):1-21.
    Nomura T S. Efficacy of hot water and bactericide treatments of watermelon seeds infesctedby Acidovorax avenae subsp. citrulli [J]. Proceedings of the Kansai Plant ProtectionSociety,2001,43(2):1-6.
    O’Brien R G, Martin H L. Bacterial blotch of melons caused by strains ofAcidovorax avenaesubsp. citrulli [J]. Australian Journal of Experimental Agriculture,1999,39(1):479-85.
    Oya H, Nakagawa H, Saito N, et al. Detection of Acidovorax avenae subsp. citrulli from seedusing LAMP method. Japanese Journal of Phytopathology,2008,74(1):304-310.
    Park W Y. High throughput genotyping for genomic cohort study[J]. Journal of PreventiveMedicine and Public Health,2007,40(2):102-107.
    Peskoller C N, iessner R, Seidel M. Cross flow microfiltration system for rapid enrichment ofbacteria in water[J]. Anal Bioanal Chem,2009,393(3):399-404.
    Puttharugsa C, Wangkam T, Huangkamhang N, et al. Development of surface plasmonresonance imaging for detection of Acidovorax avenae subsp.citrulli(Aac)using specificmonoclonal antibody.[J]. Biosensors and Bioelectronics,2011,26(2):2341-2346.
    Rane K, Latin R. Bacterial fruit blotch of watermelon(): Association of the pathogen withseed [J]. Plant Disease,1992,76(5):509-512.
    Rott M. Microarray immunoassay for the detection of grapevine and tree fruit viruses.[J].Journal of Virological Methods.2009,160(6):90-100.
    Saul B, Nadia K. Molecular, physiological, and Host Range characterization of Acidovoraxavenae subsp.citrulli isolates from watermelon and melon in israel [J]. Plant Disease,2005,89(1):1339-1347.
    Schaad N, Berthier-schaad Y, Knorr D. A high throughput membrane BIO-PCR technique forultra-sensitive detection of Pseudomonas syringae pv. phaseolicola [J]. Plant Pathology,2007,56(1):1-8.
    Schaad N W, Bonde M R. EIO-PCR: A highly sensitive technique for detecting seedbronefungi and bacteria(A) Seed Health Testing: Progress Towards the21st Century(C). UK:CAB International, Wallingford,1997:159-164.
    Schaad N W, Frederick R D, Shaw J, et al. Advances in molecular-based diagnostics inmeeting crop biosecurity and phytosanitary issues [J]. Annual of Review Phytopathology,2003,41(2):305-324.
    Schaad N W, Schaad Y B, Sechler A, et al. Detection of Clavibacter michiganensis subsp.sepedonicus in potato tubers by BIO-PCR and automated real-time fluorescencedetection system.[J]. Plant Disease,1999,83(1):1095-1100.
    Schaad N W, Sowell G J, Goth R W, et al. Pseudomonas pseudoalcaligenes subsp. citrullisubsp. nov.[J]. Systematic Bacteriol,1978,28(1):117-125.
    Schena M. Sed assay for the detection of Acidovorax avenae subsp. citrulli [J]. PlantPathology.2008,57(2):754-63.
    Seurynck-Servoss S L, White A M, Baird C L, et al. Evaluation of surface chemistries forantibody microarrays[J], Analytical biochemistry,2007,371(2):105-115.
    Shirakawa T, Kikuchi S, Kato T, et al. Occurrence of watermelon bacterial fruit blotch inJapan [J]. Japan Journal Plant Pathology,2000,66(4):223-231.
    Shiwaa M, Nishimura Y, Wakatabea R, et al. Rapid discovery and identification of a tissuespecific tumor biomarker from39human cancer cell lines using the SELDI Protein Chipplatform[J]. Biochemical and Biophysical Research Communications,2003,309(4):18-25.
    Soen Y, Chen D S, Kraft D L, et al. Detection and characterization of cellular immuneresponses using peptide-MHC microarrays[J]. PLoS Biology,2003,1(3):65.
    Somodi G C, Jones J B, Hopkins D L, et al. Occurrence of a bacterial watermelon fruit blotchin Florida[J]. Plant Disease,1991,75(2):1053-1056.
    Song Q L R. Rapid detection of seed borne Acidovorax avenae subsp. citrulli by “Pathogenimmuno-con-centration”PCR[J]. Plant Pathology,2008,90(2):600.
    Song W, Kim H, Hwang C et al. Detection of Acidovorax avenae ssp. avenae in Rice SeedsUsing BIO-PCR[J]. Phytopathology,2004,152(4):667-676.
    Sowell G J, Schaad N W. Pseudomonas pseudoalcaligenes subsp. citrulli on watermelon:seed transmission and resistance of plant introductions [J]. Plant Disease Reports,1979,63(4):437-441.
    Spiess B, Seifarth W, Hummel M, et al. DNA microarray-based detection and identificationof fungal pathogens in clinical samples from eutropenic patients[J]. Journal of ClinicalMicrobiology,2007,45(3):3743-3753.
    Spisák S, Galamb B, Wichmann B, et al. Tissue microarrayvalidated progression markers incolorectal cancer using antibody microarrays[J]. Orvosihetilap,2009,150(1):1607.
    Stoevesandt O, Elbs M, K hler K, et al. Peptide microarrays for the detection of molecularinteractions in cellular signal transduction[J]. Proteomics,2005,5(1):2010-2017.
    Stoevesandt O, Taussig M J, He M Y. Protein microarrays: high throughput tools forprotemics[J]. Expert Review of Proteomics.2009,6(1):145-157.
    Templin M F, Stoll D, Schrenk M, et al. Protein microarray technology[J]. Mechanisms ofAgeing and Development,2007,128(2):161-167.
    Thiele A. Peptide microarrays for determination of cross-reactivity[J]. Methods in MolecularBiology,2009,524(2):225-234.
    Tikoo A, Tripathi A K, Verma S C, et al. Application of PCR fingerprinting techniques foridentification and discrimination of Salmonella isolates[J]. Current Science,2001,80(7):1049-1052.
    Tudos A J, Lucas E R, Stigter E C A. Rapid surface plasmon resonance-based inhibition assayof deoxynivalenol[J]. Journal of Agriculture and Food Chemistry,2003,(8):5843-5848.
    Urbanowska T, Mangialaio S, Zickler C, et al. Protein microarray platform for the multiplexanalysis of biomarkers in human sera[J]. Immunological Methods,2006,316(4):1-7.
    Vander W J M, Schoen C D. Bacterial Pathogens: Detection and Identification Methods[M].NewYork: Marcel Dekker,2004.1-4.
    Van-Vuurde J W L. New approach in detecting phytopathogenic bacteria by combinedimmunoisolation and immunoidentification assays[J]. EPPO Bulletin,1997,17(1):139-148.
    Walcott R R, Gitaitis R D. Detection of Acidovorax avenae subsp.citrulli in watermelon seedusing immunomagnetic separation and the polymerase chain reaction [J]. Plant Disease,2000,84(2):470-474.
    Walcott R R, Fessehaie A, Castro A C. Differences in pathogenicity between two geneticallydist inct groups of Acidovorax avenae subsp.citrulli on cucurbit hosts.[J].Phytopathology,2004,152(2):277-285.
    Walcott R R, Langston D B, Sanders F H, et al. Investigating intraspecific variation ofAcidovorax avenae subsp. citrulli using DNA fingerprinting and whole cell fatty acidanalysis.[J]. Phytopathology.2000,90(4):191-196.
    Wall G, Vm S. A new bacterial disease on watermelons in the mariana islands[J].Phytophthology,1988,78(5):1605.
    Wall G C. Control of watermelon fruit blotch by seed heat-treatments.[J]. Phytopathology,1989,79(2):1191.
    Walter G, Büssow K, Cahill D, et al. Protein arrays for gene expression and molecularinteraction screening[J]. Current Opinion in Microbiology,2000,3(1):298-302.
    Willems A, Goor M, Thielemans S, et al. Transfer of several phytopathogenic Pseudomonasspecies to Acidovorax as Acidovorax avenae subsp.citrulli.Cattleyae and Acidovoraxkonjaci[J]. International Journal of Systematic Bacteriology,1992,42(2):107-109.
    Wingren C, Borrebaeck C A. Antibody microarray analysis of directly labeled complexproteomes[J]. Current Opinion in Biotechnology,2008,19(1):55-61.
    Yatsushiro S, Yamamura S, Yamaguchi Y, et al. Rapid and highly sensitive detection ofmalaria infected erythrocytes using a cell microarray chip[J]. Plos. one.2010,5: e13179.
    Zangar R C, Daly D S, White A M. ELISA microarray technology as a high throughputsystem for cancer biomarker validation[J]. Expert Review of Proteomics,2006,3(2):37-44.
    Zhao T, Feng J, Sechler A, et al. An improved assay for detection of Acidovorax avenaesubsp.citrulli in watermelon and melon seed[J]. SST,2009,37(1):337-349.
    Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteomechips[J]. Science,2001,293(1):2101-2105.
    Zhu H M. Snyder. Protein chip technology[J]. Current Opinion in Chemical Biology,2003,7(2):55-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700