用户名: 密码: 验证码:
自走式双轨道果园运输机驱动轮对特性分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在7YGD-35型自走式单轨运输机、7YGS-45型自走式双轨运输机、7YGDQ-50型牵引式单轨运输机和7YGWQ-50型牵引式无轨运输机等四种机型中,自走式双轨运输机的工作条件更复杂,对运输机本身的性能要求更高,因此在运输机的运行稳定性和平稳性,驱动部件的驱动特性和磨损机理等方面的问题深入开展研究,以实现运输机的安全高效运行,具有实际意义。为解决自走式双轨运输机运输机的运行参数和结构参数的优化问题难以进行测试和分析的问题,构建了试验平台,可用于分析运输机的不同轮对结构参数在载重、预紧力、运行速度和坡度角度等运行参数不同情况下,主轴扭矩、转速、驱动轮槽磨损率、钢丝绳打滑率等指标的变化情况,以及运输机的运行速度和振动情况。该平台还可用于测试其他小型轨道运输机整体性能参数,为运输机运行性能的优化提供试验条件和理论分析依据。具体进行了如下研究工作:
     (1)根据实际需要搭建了运输机自动控制试验平台,试验平台主要由机架部分、自动控制系统部分和测试系统部分等组成。通过选择合适的变频电机、变频器、PLC等关键硬件,完成电路设计;采用模糊PI控制器,在西门子Step-7编写环境编译中完成系统的PLC程序设计;在Eviews编辑软件EV500中完成界面设计。经过不断调整,在紧急停止、紧急起动、速度瞬时改变、货物偏置、货物随机滚动等多种条件的变化条件下,该系统均能稳定的运行,速度均匀,试验平台振动很小,运输车本身的振动也很小,完全能满足测试试验要求。
     (2)测试系统主要包括果园运输车、转矩转速传感器、电涡流传感器、旋转编码器、加速度传感器和位移传感器等测试元件,以及数据采集仪器、计算机和测试软件等。在不破坏原车体结构或尽可能少的增加部件的原则下,在运输机上加装多种测试部件,对主动轴的转矩和转速、被动轴的转矩和转速、导向轮转速、主动轴驱动轮对轮槽磨损量、被动轴驱动轮对轮槽磨损量、整车振动加速度等多种物理量进行测量,分别用不同的传感器转换为电信号并用数模转换器转换为计算机所能处理的信号,由接在PC机外的A/D数据采集卡及相应的数据采集软件组成采集系统获取信号,最后由PC机处理后显示出来,同时对测量数据的进行可追溯的存储,采集与处理软件保证了数据采集可以以多种方便、实用的方法进行,同时可以实时或者历史的保存数据文件以及离线处理数据。
     (3)针对自走式双轨道果园运输机中用于驱动的钢丝绳和驱动轮对为对象,通过分析钢丝绳与驱动轮对轮槽接触面的附加摩擦力,求解影响主动轴扭矩的最佳运行参数。分析了运输机的驱动轮对槽的个数、中心距α、驱动轮半径r和包角αh、预紧力F等主要参数对主轴扭矩的影响,建立了各参数和主轴扭矩的函数关系,并利用遗传算法进行寻优,找出最优结构参数组合为预紧力为130N,槽个数为4个,中心距0.3058m,驱动轮半径0.0995m,主轴扭矩390N·m,包角α1=131.237。。进行了运行参数对主轴扭矩影响的试验研究,测试了电机速度、负载、坡度、预紧力等参数对主轴扭矩影响的数据,分别采用单一变量法,在分析每个因素对主轴的影响时,分别将另外三个因素设为常值。试验结果表明:电机频率在15Hz或30Hz时主轴扭矩较平稳,且能保证足够的扭矩;负载增加时主轴扭矩也会逐渐增加,但是当负载增加到一定程度时主轴扭矩变化已不明显,当负载不能无限增加,否则主轴扭矩不会增加,轮对出现打滑;当坡度从5°到45°时,主轴扭矩呈上升趋势;预紧力对主轴扭矩影响不显著。
     (4)通过对钢丝绳传动的紧边松边拉力和应变的关系分析,建立驱动轮对打滑率的数学模型,得出打滑率与驱动轮半径、预紧力、中心距等参数之间的关系,并对打滑率变化情况进行仿真分析。我们认为打滑率主要是由钢丝绳的形变使得轮对之间产生速度差引起的,而影响钢丝绳形变的因素主要有包角α、预紧力F0、钢丝绳的弹性模量E、钢丝绳与驱动轮的接触弧长度L、钢丝绳的截面积A、驱动轮半径r1、驱动轮中心距L0、钢丝绳直径d,对上述因素综合分析建立了其与打滑率ε%间的函数关系,利用matlab编程得到不同条件下打滑率的变化,得到如下结论:驱动轮的半径和打滑率呈非线性关系,随着半径增加,轮对打滑率逐渐下降;预紧力与打滑率呈线性关系,说明预紧力越大,钢丝绳形变量越大;中心距与打滑率呈非线性关系,即中心距越大,由于包角增大,打滑率下降,与实际情况相符;在r1一定时,L0增加,ε%增加;在L0一定时,r1增加,ε%减小。在对驱动轮对打滑率进行试验研究时,通过方差分析我们发现,负载对电机与驱动轮之间的打滑率的影响最为显著,其他三个因素虽然对打滑率也有所影响,但作用不明显:负载和坡度对驱动轮和从动轮之间的打滑率的影响较大,其余两个对打滑率没有显著影响;负载和坡度对从动轮与导向轮之间的打滑率的影响较大,另外两个因素对打滑率的影响较小。
     (5)分别利用电涡流传感器和激光位移传感器测量位移来确定磨损的情况,试验表明两种方法测量的数据都呈现相相同的规律,随着试验次数的增多,磨损量特征参数值增大,符合磨合阶段、稳定磨损阶段以及剧烈磨损阶段的三个磨损阶段特征。在前3年中,驱动轮对基本处于磨合阶段,驱动轮对与钢丝绳正在互相适应,磨损量变化大。第4-7年间,磨损量变化缓慢,即驱动轮对逐渐进入稳定磨损阶段,驱动轮对的磨损都属于正常磨损。说明驱动轮对的磨损比较小,寿命比较长。
     (6)利用MTC钢丝绳电脑探伤仪进行钢丝绳磨损检测试验,第一根钢丝绳经过3组试验,严重破坏,导致运输机不能运行;第二根钢丝绳经过4组试验后,严重破坏,导致运输机不能运行,估算钢丝绳循环使用约为500—800来回,相当于一根钢丝绳大约可以使使用3—4年。从钢丝绳的LF和LMA数据和曲线看出,随着磨损试验的进行,总断丝数、最大断丝数、捻距内累计最大断丝数都呈现良好的规律性和增加的渐变性,并且逐步加剧,断丝位置比较集中,捻距内最大断丝数达到14,达到了报废标准,与实际情况相符。伴随着钢丝绳断丝情况的出现,钢丝绳的内部和外部磨损也同时发生,钢丝绳的金属横截面积损失率也呈现逐步加剧的趋势,最大截面积损失达到16.46%。
In the four models, developed by our group, which including7YGD-35self-propelled monorail transports,7YGS-45-type self-propelled two-track transports,7YGDQ-50towed monorail transport aircraft and7YGWQ-50traction trackless transport aircraft, the working conditions of self-propelled two-track transports is most complex, and the requirements on the performance of the transport aircraft itself is highest, therefore, in order to achieve safe and efficient operation of transport aircraft, we need to seriously study the running stability and smooth of the transport plane, the driving characteristics of the drive components and the wear mechanism, which has practical significance. In order to solve the problems about test and analysis for the optimization problem of the mountain orchards transport aircraft's operating parameters and structural parameters, we build a test platform. The test platform can be used to analyze the changes of the spindle torque, speed, wear rate of the driving wheel slot, wire rope slip rate and other indicators, as well as the running speed and vibration of the transport plane in different operating parameters of the load, preload, speed and slope. The platform can also be used for the overall performance parameters test of other small-scale track transports, which provides the experimental conditions and theoretical basis for the optimization of transport aircraft operating performance. Specifically, we have done the following research
     (1) According to actual needs, we build a transport aircraft automatic control test platform which mainly composed of the rack, the automatic control system and the testing system. Complete the circuit design by selecting the appropriate frequency conversion motor, frequency converter, PLC, and other critical hardware; Complete the PLC program design by using fuzzy PI controller in Siemens's Step-7authoring environment; Complete interface design in the Eviews editing software EV500. After the continuous adjustment, the system can run stably and uniformly in various conditions such as stop in an emergency, an emergency starter, speed change, instantaneous change of goods bias, cargo rolling random changes. Experimental platform vibration is very small, and the vibration of the truck itself is also very small, so it can meet the test requirements enough.
     (2) The test system consists mainly of the orchard truck, torque and speed sensors, eddy current sensors, rotary encoders, accelerometers and displacement sensors, as well as data acquisition equipment, computers and testing software. Under the principle of not changing the body structure or as little as possible of not changing additional components, install a variety of testing components in the transport aircraft, then measure the driving shaft torque and rotational speed, the driven shaft torque and rotational speed, the guide wheel speed, the amount of wear of the driving shaft's driving wheel on the wheel groove, the amount of wear of the driven shaft's driving wheel on the wheel groove,the vehicle vibration acceleration and other physical quantities.Convert physical signals into electrical signals with different sensors, and then convert the electrical signals into signals the computer can handle. The acquisition system consists of A/D data acquisition card connected to the PC and the corresponding data acquisition software obtains the signal. In the final, it is displayed after the treatment of the PC. Measurement data can be stored traced back. The acquisition and processing software ensures data acquisition being a variety of convenient and practical method, at the same time saving the data files in real time or historically and processing data offline.
     (3) Put the rope which used to drive and the driving wheel in self-propelled two-track orchard transport aircraft as the research object, through analyzing the additional friction of the rope and the driving wheel on the contact surface of the wheel groove, to solve the optimum operating parameters of the driving shaft torque. Analyze the effect on the spindle torque from the number of driving wheel grooves, center distance a, driving wheel radius r and wrap angle α h, the preload force F. Establish a functional relationship between the parameters and spindle torque. Use genetic algorithm optimization, found the optimal combination of structural parameters:preload of130N, the slot number4, center distance of0.3058, the driving wheel radius of0.0995, spindle torque390, wrap angle al of131.237degrees. Do the experimental study on effect of operating parameters on the spindle torque. Test the effect of operating parameters including motor speed, load, gradient, preload on the spindle torque.Use the single variable method to analyzing the impact of each factor on the spindle, and set the other three factors constant. The results showed that:when the motor frequency is15Hz or30Hz,the spindle torque is very smooth, and ensure sufficient torque; Spindle torque will gradually increase in the increase of the load, however, when the load is increased to a certain extent, spindle torque do not change significantly. Load cannot increase infinitely, or wheels will slip, because spindle torque will not increase. When the gradient changes from5°to45°, the spindle torque shows an upward trend; Preload had no significant impact on the shaft torque.
     (4) Through the tensile stress and strain analysis on the tight and slack side of the rope, establish a mathematical model of the driving wheel and the slip rate. Get the relationship between the slip rate and the driving wheel radius, preload, the center distance, and do simulation analysis on the change of the slip rate. It's believed that the slip rate mainly is caused by the speed difference between the wheels caused by deformation of the wire rope. Factors which affecting the rope deformation, includes wrap angle α, preload Fo, the elastic modulus of the wire rope E, contact arc length of the rope and the driving wheel L, cross-sectional area of the wire rope A, driving wheel radius r1, driving wheel center distance L0, rope diameter d. Through comprehensive analysis of the factors mentioned above, a functional relationship between the slip rate and them is established, and get the slipping rate changes under different conditions by using matlab programming. It's concluded that:the relationship between the driving wheel radius and slip rate is nonlinear, wheels slip rate gradually decreases as the radius increases; the relationship between preload and slip rate is linear, because the wrap angle becomes larger as the center distance increases, the slip rate decreases. If r, is kept constant, ε%increases as Lo increases; If L0is kept constant, ε%decreases as r, increases. In the experimental study on the driving wheels slip rate, it's found that by analysis of variance the affect from the load on the slip rate between the motor and drive wheel is the most significant, and the role of the other three factors is not obvious; the affect from the load and gradient on the slip rate between the driving wheel and driven wheel is large, and other two factors have no significant influence on the slip rate; the affect from the load and gradient on the slip rate between the driven wheel and guide wheel is large, and other two factors have a small impact influence on the slip rate.
     (5) Use the eddy current sensor and laser displacement sensor respectively to determine the amount of wear by measuring the displacement. The test shows that the data measured by the two methods presents the same rules, and the parameter value of the wear increases as the number of tests increases, which conforms the characteristics of these three stages including the breaking-in stage, stable wear stage and severe wear stage. During the previous three years, driving wheels are basically at the breaking-in stage, and driving wheel pairs and the wire rope are adapted to each other, so wear volume changes largely. From the fourth to the seventh year, wear volume changes slowly, and driving wheels enter the stable wear stage gradually, so wear at this time belongs to the normal wear. Wear of the driving wheel is relatively small, and life is relatively long.
     (6) Use the MTC wire rope computer flaw detector to do the wire rope wear detecting test, after three groups of testing,the first wire rope is damaged seriously, which leads the transport plane cannot run. After four groups of test, the second wire rope is damaged seriously, which leads the transport plane cannot run; The second wire rope can be recycled approximately500-800round-trip, which is equivalent to a rope can be used for about3-4years. Rope LF and LMA data and curves show the total number of broken wires, the maximum number of broken wires; the cumulative maximum number of broken wires away from twist are showing good regularity and increase the gradient, and intensify gradually; The location of the broken wire is relatively concentrated; the maximum number of broken wires away from twist is up to14, and the rope reaches the criteria for scrapping, which is consistent with the actual situation. Along with the emergence of broken wire, the internal and external wear of the rope occurs simultaneously; the wire rope metallic cross-sectional area loss rate also shows a gradual increasing trend, and the maximum cross-sectional area loss rate can reach16.46%.
引文
1.鲍跃全.结构健康监测的数据压缩采样与损伤识别融合方法[D],哈尔滨工业大学博十论文,2009
    2.蔡自兴.智能控制原理与应用.北京:清华大学出版社,007
    3.曹国华.矿井提升钢丝绳装载冲击动力学行为研究[D].徐州:中国矿业大学博士学位论文,2009.
    4.陈长亮.基于PLC与FPC变频调速系统的研究[D],武汉理工大学硕十论文,2009
    5.陈洁.案例解说PLC、触摸屏及变频器综合应用.北京:中国电力出版社,2009
    6.党建武.模糊控制技术.北京:中国铁道出版社,2007
    7.葛世荣,朱华.摩擦学复杂系统及其问题的量化研究方法[J].摩擦学学报,2002,22(5):405-408
    8.龚宪生,谢志江,杨雪华.矿井提升机多层缠绕钢丝绳振动控制[J].振动工程学报,1999,12(4):460-467
    9.黄华.神经网络在数据挖掘中的应用研究[D],长春理工大学硕十论文,2002
    10.李敬亚.山地果园单轨运输机的研制[D],华中农业大学硕士论文,2011
    11.李善军,邢军军,张衍林等.7YGS-45型果园运输机自动控制测试平台构建[J].2011年农业工程学会学术年会(CSAE 2011)
    12.李善军,邢军军,张衍林等.7YGS-45型自走式双轨道山地果同运输机[J].农业机械学报,2011,42(8):85-88
    13.李艳杰.S7-200PLC原理与实用开发指南.北京:机械工业出版社,2009
    14.李云雁.胡传荣.试验设计与数据处理.北京:化学工业出版社,2008.10,124-158
    15.李钟慎,洪健.基于改进型Buttworth传递函数的高阶低通滤波器的有源设计[J].电子测量与仪器学报,2008(2):14-18
    16.廖常初.S7-300/400 PLC应用技术.北京:机械工业出版社,2008
    17.廖红卫.钢丝绳的疲劳行为特征与损伤机理研究[D].武汉:武汉理工大学博士学位论文,2006.
    18.林钢.模糊控制及其在家用电器中的应用.北京:机械工业出版社,2006
    19.林渭勋.现代电力电子技术.北京:机械工业出版社,2006
    20.刘豹,唐万生.现代控制理论.北京:机械工业出版社,2006
    21.刘瑞琪.智能PID参数整定方法的研究[D],中南大学硕士论文,2009
    22.吕英臣.滑轮绳槽直径与钢丝绳直径匹配关系的探讨[J].金属制品,2003,29(6):49-51
    23.倪忠进.钢丝绳力学特性及失效机理研究[D].昆明:昆明理工大学硕十学位论文,2008.
    24.齐长祥,周国强.绳轮材料对钢丝绳磨损的影响[J].石油机械,1993,21(8):23-26
    25.屈晓斌,陈建敏,周惠娣等.材料的磨损失效及其预防研究现状与发展趋势[J].摩擦学学报,1999,19(2):187-192
    26.任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究[J].农业机械学报,2003, 34(2):86-88
    27.邵杰.基于PLC的模糊控制变频调速系统[D],曲阜师范大学硕士论文,2006
    28.沈世平.动臂起重机臂架拉索钢绳内部磨损及其检测[J].建筑安全,2007,9:34-36
    29.唐平.泵类产品智能测试系统的设计研究[D],江苏大学硕十论文,2002
    30.汪晓银.周保平.数学建模与数学试验.北京:科学出版社,2010,
    31.王积伟,吴振顺.控制工程基础[M].北京:高等教育出版社,2001
    32.王奎生.钢丝绳生产工艺与设备[M].天津:冶金工业出版社,1993
    33.王树才,程友联.机械设计[M].北京:高等教育出版社,2011
    34.王伟,徐国华.多媒体定时器在工业控制中的应用[J].微型机与应用,2001(12):82
    35.王致杰,王耀才,李冬.基于小波网络的矿井提升机运行故障趋势预测研究[J].中国矿业大学学报,2005,34(4):528-532
    36.温诗铸,黄平.摩擦学原理[M].第3版.北京:清华大学出版社,2008.
    37.邬述晖.钢丝绳金属截面积损失检测系统研究[D],武汉理工大学硕士论文,2004
    38.西门子(中国)有限公司自动化驱动集团.深入浅出:西门子S7-200PLC.北京航空航天[9]大学出版社,2007
    39.邢军军,李善军,张衍林.7YGS-45型自走式双轨道果园运输机设计与试验[J].2011年农业工程学会学术年会(CSAE 2011)
    40.徐文娟,陈洪玉,李广录等.斜井提升钢丝绳磨损机理分析[J].黑龙江科技学院学报,2008,18(6):407-410
    41.许福,舒志,张威Visual C++程序设计技巧与实例[M].北京:中国铁道出版社
    42.严新平,谢友柏,萧汉梁.摩擦学故障种类诊断的D-S信息融合研究[J].摩擦学学报,1999,19(2):145-150
    43.曾光奇,胡均安,王东.模糊控制理论与工程应用.武汉:华中科技大学出版社,2006
    44.张德丰.小波分析.北京:机械工业出版社,2009.01
    45.张德坤,葛世荣,朱真才.评定钢丝的微动摩擦磨损参数研究[J].中国矿业大学学报,2004,33(1):33-36
    46.张德坤,葛世荣,朱真才.提升钢丝绳的钢丝微动摩擦磨损特性研究[J].中国矿业大学学报,2002,31(5):367-370
    47.张俊峰,李敬亚,张衍林,李善军等.山地果园遥控单轨运输机设计[J].农业机械学报,2012,43(2):90-95
    48.张守茁,席镇,贾园等.摩擦过程中相对运动速度对声发射能量信号的影响[J].润滑与密封,2008,33(5):10-14
    49.张扬.S7-200 PLC原理与应用系统设计.北京:机械工业出版社,2007
    50.张有忱,马萍,张美麟等.带传动弹性滑动率研究[J].北京化工大学学报(自然科学版),2000,27:42-45
    51.张有忱,马萍.V带传动中附加摩擦力的研究[J].北京化工大学学报(自然科学版),1999,26:37-40
    52.张祖明.机械零件磨损的工程计算方法[J].机械设计与制造,1992,4:6-9
    53.赵源,高万振,李健等.磨损研究及其方向[J].材料保护,2004,37(7):18-32
    54.周郁明.基于磁阻传感器的钢丝绳断丝信号的提取及处理[D],华中科技大学硕十论文,2004
    55. A.I.Volokitin, and B.N.J.Persson.19 Theory of Noncontact Friction [J].393-438
    56. AndrewW.Batchelor, Gwidon W.Stachowiak.TRIBOLOGY IN MATERIALS PROCESSING[J]. Journal of Materials Processing Technology,1995,48:503-515
    57. C.Allen, C.X.Li, T.Bell, etc.The effect of fretting on the fatigue behaviour of plasma nitrided stainless steels [J].Wear,2003,254:1106-1112
    58. C.H.H.Ratsimba, I.R.McColl, E.J.Williams, etc.Measurement,analysis and prediction of fretting wear damage in a representative aeroengine spline coupling [J].Wear,2004,257:1193-1206
    59. C.M.Leech.The modelling of friction in polymer bre ropes [J].International Journal of Mechanical Sciences,2004,44:621-643
    60. Carlo Mapelli, Silvia Barella.Failure analysis of a cableway rope[J].Engineering Failure Analysis,2009,16:1666-1673
    61. Chang Q.Sun.Thermo-mechanical behavior of low-dimensional systems:The local bond average approach [J].Progress in Materials Science,2009,54:179-307
    62. Changle Li, Ste phane Panier, Sad Hariri.Application of a simplified method to evaluate the inelastic state due to fretting fatigue [J].Tribology International,2006,39:1092-1099
    63. D.Elata, R.Eshkenazy, M.P.Weiss.The mechanical behavior of a wire rope with an independent wire rope core [J].International Journal of Solids and Structures,2004,41:1157-1172
    64. D.K. Zhang, S.R. Ge, Y.H. Qiang.esearch on the fatigue and fracture behavior due to the fretting wear of steel wire in hoisting rope[J].Wear,2003,255:1233-1237
    65. Debdas Roy, Bikramjit Basu, Amitava Basu Mallick.Tribological properties of Ti-aluminide reinforced Al-based in situ metal matrix composite [J].Intermetallics,2005,13:733-740
    66. G.Piskoty, M.Zgraggen, B.Weisse, etc.Structural failures of rope-based systems [J].Engineering Failure Analysis,2009,16:1929-1939
    67. Gaetan Kerschen, Keith Worden, Alexander F.Vakakis, etc.Past,present and future of nonlinear system identification in structural dynamics [J].Mechanical Systems and Signal Processing, 2006,20:505-592
    68. Henry Henke, Dietrich Adam, Andreas K, etc.Development and testing of HVOF-sprayed tungsten carbide coatings applied to moulds for concrete roof tiles [J].Wear,2004,256:81-87
    69. I.F.Brown, C.J.Burgoyne.The friction and wear of Kevlar 49 sliding against aluminium at low velocity under high contact pressures [J].Wear.1999.236:315-327
    70. I.M.L. Ridge, C.R. Chaplin, J. Zheng.Effect of degradation and impaired quality on wire rope bending over sheave fatigue endurance[J].Engineering Failure Analysis,2001,8:173-187
    71. I.M.L.Ridge.Tension-torsion fatigue behaviour of wire ropes in offshore moorings [J].Ocean Engineering,2009,36:650-660
    72. I.R.McCall, R.B.Waterhouse, S.J.Harris,etc.Lubricated fretting wear of a high-strength eutectoid steel rope wire [J].Wear,1995,185:203-212
    73. J.A.Hawk, R.D.Wilson, J.H.Tylczak,etc.Laboratory abrasive wear tests:investigation of test methods and alloy correlation [J].Wear,1999,225-229:1031-1042
    74. J.Bijwe, J.Indumathi, A.K.Ghosh.Role of fabric reinforcement on the low amplitude oscillating wear of polyetherimide composites [J].Wear,2004,256:27-37
    75. J.M.M.Out, B.J.von Morgen.Slippage of helical reinforcing on a bent cylinder [J].Engineering Structures,1997,19(6):507-515
    76. J.O.Bello, R.J.K.Wood.Wireline wear resistance of filled and unfilled polymeric coatings for downhole applications [J].Wear,2009 267:661-668
    77. J.Xu, Z.R.Zhou,C.H.Zhang, etc.An investigation of fretting wear behaviors of bonded solid lubricant coatings [J].Journal of Materials Processing Technology,2000,182:146-151
    78. Jiang Jinghua, Jiang Jianqing, Ma Aibin, etc.Application of Low Temperature Liquid Sulfurization Catalyzed with Rare Earth on Cr12 Impacting Die [J].JOURNAL OF RARE EARTHS,2007,25: 220-226
    79. Junjun Xing, Shanjun Li, Yanlin Zhang. Main Parameters Calculation and Performance Test of 7YGS-45 Type Self-propelled Dual-track Orchard Transport [J].2011 International Conference on Opto-Electronics Engineering and Information Science.2011,23-25:3025-3029
    80. Kenta Inagaki, Johan Ekh, Said Zahrai.Mechanical analysis of second order helical structure in electrical cable [J].International Journal of Solids and Structures,2007,44:1657-1679
    81. M.Cheikh, S.Quilici, G.Cailletaud.Presentation of KI-COF,a phenomenological model of variable friction in fretting contact [J].Wear,2007,262:914-924
    82. M.D.Kuruppu, A.Tytko, T.S.Golosinski.Loss of metallic area in winder ropes subject to external wear [J].Engineering Failure Analysis,2000,7:199-207
    83. M.Giglio, A.Manes.Life prediction of a wire rope subjected to axial and bending loads [J].Engineering Failure Analysi,2005,12:549-568
    84. M.Shima, H.Suetake, I.R.McColl, etc.On the behaviour of an oil lubricated fretting contact [J].wear,1997,210:304-310
    85. Marcello Filgueira, Daltro Garcia Pinatti.In situ diamond wires:diameter determination of the external cutting rope [J].International Journal of Refractory Metals&Hard Materials,2005,23: 85-90
    86. Muharrem Yilmaz, H.Metin Ertunc.The prediction of mechanical behavior for steel wires and cord materials using neural networks [J].Materials and Design,2007,28:599-608
    87. National Coal Board.The ropeman's handbook[M].Hezell Watson And Viney LTD,1966.
    88. Parikshit Munda, R.K.Dube, Bikramjit Basu, etc.Friction and wear properties of steel backed Al-10Sn-4Si-1Cu metallic strips prepared via spray atomization-deposition-rolling route [J].Surface&Coatings Technology,2009,203:3541-3548
    89. Pascal Da Silva, Cedric Briens, Alain Bernis.Development of a new rapid method to measure erosion rates in laboratory and pilot plant cyclones [J].Powder Technology,2003,131:111-119
    90. R. Ramesh, R. Gnanamoorthy.Effect of hardness on fretting wear behaviour of structural steel,En 24, against bearing steel, En 31 [J].Materials and Design,2007,8:1447-145
    91. R.A.Ibrahim.Recent advances in nonlinear passive vibration isolators [JJ.Journal of Sound and Vibration,2008,314:371-452
    92. R.B.Tait, C.Emslie.The use of fracture mechanics in failure analysis in the offshore diamond mining industry [J].Engineering Failure Analysis,2005,12:893-905
    93. R.Gnanamoorthy,R.Rosi Reddy.Fretting fatigue in AIS11015 steel [J].Bull.Mater.SCI,2004-4,25(2): 109-114
    94. R.Ramesh, R.Gnanamoorthy.Development of a fretting wear test rig and preliminary studies for understanding the fretting wear properties of steels [J].Materials and Design,2006,27:141-146
    95. Rekha Rattan, J.Bijwe, M.Fahim.Influence of weave of carbon fabric on low amplitude oscillating wear performance of Polyetherimide composites [J].Wear,2007,262:727-735
    96. S.Affatato, M.Spinelli, M.Zavalloni, etc.Tribology and total hip joint replacement:Current concepts in mechanical simulation [J].Medical Engineering&Physics,2008,30:1305-1317
    97. S.K.Lee, D.C.Ko, B.M.Kim.Pass schedule of wire drawing process to prevent delamination for high strength steel cord wire [J].Materials and Design,2009,30:2919-2927
    98. Shanjun Li, Junjun Xing, Yanlin Zhang, etc. Construction of 7YGS-45 type orchard transport automatic control test platform[J].Advanced Materials Research,2011,201-203:1936-1041
    99. Shanjun Li, Yanlin Zhang, etc. Grasp planning analysis and strategy modeling for underactuated multi-fingered robot hand using in fruits grasping, African Journal of Agricultural Research. 2011,6(9):2086-2098
    100. Takahiro Yamamoto, Kazuyuki Watanabe, Eduardo R.Hernandez.Mechanical Properties,ThermaI Stability and Heat Transport in Carbon Nanotubes [J].Topics Appl.Physics,2008,111:165-195
    101. Xu Jia-lin, Wu Ren-lun, Xu Guang, etc.Device development and experimental study on the methane explosion ignited by sparks of cable bolt slippage(breakage) [J].Procedia Earth and Planetary Sciences,2009,1:47-53
    102. Y.S.Zhang, Z.Han, K.Lu.Fretting wear behavior of nanocrystalline surface layer of copper under dry condition [J].Wear,2008,265:396-401
    103. Y.S.Zhang, Z.Han, K.Wang, etc.Friction and wear behaviors of nanocrystalline surface layer of pure copper [J].Wear,2006,260:942-948
    104. Yongqing Fu, Jun Wei, Andrew W.Batchelor.[Some considerations on the mitigation of fretting damage by the application of surface-modi?cation technologiesJ].Journal of Materials Processing Technology,2000,99,231-245
    105. Yongqing Fu, Nee Lam Loh, Andrew W.Batchelor, etc.Improvement in fretting wear and fatigue resistance of Ti-6A1-4V by application of several surface treatments and coatings [J].Surface and Coatings Technology,1998,106:193-197
    106. Young J.Chiang.Characterizing simple-stranded wire cables under axial loading [J].Finite Elements in Analysis and Design,1996,24:49-66
    107. Z.R.Zhou a, Q.Y.Liu, M.H.Zhu,etc. An investigation of fretting behaviour of several metallic materialsunder grease lubrication [J].Tribology International,2000,33:69-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700