用户名: 密码: 验证码:
蓝莓采摘机采摘策略及轨迹规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对以蓝莓为代表的天然抗氧化水果带给人们的健康益处的认识越来越深,需求也与日俱增,蓝莓在食品、药品、化工等方面具有巨大的市场潜力,种植蓝莓的经济效益十分显著,扩大种植面积是一种必然趋势。由于我国完全依靠人工采摘,而且蓝莓成熟期短,采摘耗资大、效率低,常因无法及时收获造成浪费,蓝莓的规模种植受到限制。发展机械采摘,成为我国蓝莓产业的迫切需求和必然趋势。
     为实现蓝莓采摘的机械化和自动化,需要研究一种高效智能的蓝莓采摘机械,并解决关键技术问题。本文重点解决两个问题,首先是采摘策略问题。要实现高效、安全地采摘,必须研究采摘策略,包括振动力大小和方向的确定、采摘机构运动的参数确定等,这不仅需要现场实测,据此建立蓝莓植株三维生长模型,还要在此基础上分析果枝的受力模型,建立蓝莓果树的振动模型,从而为实际采摘机的设计奠定基础。
     采摘机轨迹导航也是采摘成功的重要关键。采摘机由于单边牵引、地面凸凹和种植条件等原因,蓝莓采摘机车身沿种植垄行走时会发生偏斜,在垄距、株距固定的情况下,设计采摘机的空间受到限制,稍有偏斜就会造成蓝莓植株被压倒,甚至树根划伤。采摘机行走轨迹的规划引导是非常必要的。
     通过实测和抽象简化,对蓝莓植株的形态结构进行分析和建模,根据虚拟植物理论,以对树木进行动力学分析为目的建立植株模型。采用L系统理论,使用三维建模软件ProE建模,以VRML和OpenGL虚拟现实技术为手段,依据蓝莓树体结构特征,建立并实现蓝莓植株虚拟模型,实现蓝莓采摘过程可视化仿真。
     分析蓝莓采摘机振动系统呈现出的复杂、多自由度的振动性质,将蓝莓树枝简化为变截面连续振动系统,建立蓝莓植株的振动模型,并采用Matlab进行振动仿真,得到产生果枝分离的振动力来源。分析处于不同位置、不同角度枝桠上的蓝莓果实在采摘机工作时的受力情况,估算采摘成熟果实需求的外加采摘激振力,从而为采摘机采摘结构和工作参数的设计提供参考。
     根据蓝莓种植园的实地情况,确定识别和定位顺序,根据蓝莓特点研究蓝莓图像分割去噪、滤波、二值化等具体方法。利用图像分割的原理,采用Canny边缘检测得到蓝莓植株轮廓,得出的蓝莓植株中心线,调整蓝莓采摘机车体的进给朝向,进行轨迹引导和规划。根据成熟蓝莓颜色与背景颜色的明显差别评估当前蓝莓植株的熟果量,估算单株成熟蓝莓的多寡,藉此调整采摘机的采摘参数,确定自动采摘策略,实现智能采摘。
     根据蓝莓采摘机的结构特点和运动特点,分析行走偏斜和运动干涉产生的原因,根据种植条件和采摘机实际尺寸,得到采摘机轨迹干涉的边界条件和转弯安全距离的数学模型,实现采摘机的轨迹规划。
As the health benefits form the natural antioxidant fruit such as blueberry are getting known, demand for the blueberries is also growing. Blueberry is widly used in food, medicine, chemical industry and other fields. So it is obvious that the economic benefits to cultivated blueberry is great, and it will be an inevitable trend to expand the planting area. Because the blueberry harvesting is depent on entirely manual labor in our country, and the harvesting season is short, picking cost is large and the picking efficiency is low, the economic losses are always causes because the fruits could not be harvested in time. The blueberry fields could not be expanse because the same reason. So developing picking machine is a urgent task in our country.
     In order to realize the mechanization and automation of blueberry picking, a kind of high efficient and intelligent blueberry picking machine should be studied, and its key technologies should be overcome. Two key technologies will be studied here, the first is the picking strategy. In order to realize efficient and safe picking, the picking strategy must be confirmed,which includes the vibration magnitude and direction,motion parameters of picking machine and so on. The3-d growth model of blueberry plants is establish with the measured data, and the mechanical model and vibration model of blueberry tree could also be established. All these will become a foundation for designing the picking machine. The second key technology is track navigation of the picking machine. Because of unilateral traction, the sunken ground, the specific planting condition and other reasons, a deflection occurs a lot when blueberry walking along the planting ridge. Because the distance of strain and the ridging are fixed, the picking space of the machine is restricted, a slight deflection may cause blueberry plants overwhelmed even roots scratch. It is very necessary to guide walking path of the picking machine.
     The morphological structure model of blueberry plant is analyzed and set up with the measured data and abstract simplification. According to the theory of virtual plant, the plant model is established on the purpose for trees dynamic analysis. With L system theory and3-d modeling software ProE, with the VRML and OpenGL virtual reality technology, and based on the characteristic of blueberry tree structure, the virtual model of blueberry plants is established and achieved, the visualization simulation of blueberry picking process is realized.
     After the vibration characterastics of the blueberry branches are analyzed, such as complex, multi-freedom, nonlinear, blueberry branches were simplified as variable cross-section continuous vibration system, the axial and radial vibration models are established, then the vibration models are simulated with Matlab, the source of vibration that separate the fruits and branchs is confirmed. The stresses on blueberry branches in picking machine work space are analysed in different position and different angle, the extra picking vibration need in picking ripe fruit is evaluated. Thus the design for picking machine structure and working parameters will be provided from these.
     According to the environment of the blueberry planting farm, the sequence of identifying and locating of blueberries and the trees is conformed, the methods for image segmentation, out-noising, filtering, binary are studied according to blueberry characteristics. The blueberry trees outline is got with the Canny edge detection according to the principle of image segmentation, then the centerline of the blueberry tree is got to heading the direction of the blueberry picking machine, so the track guide could be finished. According to the difference color between mature blueberry and background, the quantity of the ripe fruits of blueberry trees may be estimated, through which the picking parameters of blueberry machine could be adjusted, then the automatic picking strategies is confirm, and the intelligent picking propose is realized.
     According to the structure characteristic and movement characteristic of blueberry picking machine, the reasons of deflection and movement interference when the machine was walking were analyzed, and according to the planting condition and the size of the machine, the mathematical models for the track boundary conditions and the safe turning distance of the picking machine were got,and the picking track is planed and designed, a reasonable picking path of blueberry picking machine is achived.
引文
[1]修英涛,常凤英,姜河等.我国蓝莓越橘栽培研究现状及发展措施[J],辽宁农业科学,2003(3):21-23
    [2]Strik B-Blueberry production and research treands in North America-Acta Horticulturae, 2006,715:173-184.
    [3]KaderF, Rovel B. Fractionation and identification of the phenolic compounds of high bush blueberries (Vaccinium Corymbosum L)[J]. Food Chemistry,1996,55 (1):35-40.
    [4]孙晓梅,王新苗,杨宏光,张丽杰,崔文山.矮丛蓝梅“北极星”启动培养研究[J].北方园艺,2010(1):23-26.
    [5]史海芝,刘惠民.国内外蓝莓研究现状[J].江苏林业科技,2009,36(4):48-51.
    [6]张德巧.2010年蓝莓国际市场分析.http://doc.mbalib.com/view/af016ccc079be8c47 6c36c1f91c49c74.html
    [7]董亚娟.蓝莓产业或可成为发展县域经济的一个强机遇[J].农村实用技术,2010,9:6-8.
    [8]刘庆忠,魏海荣,张力思,李国田,艾呈祥.蓝莓产业的发展现状及前景[J].烟台果树,2009,2:10-12.
    [9]Sanders K F. Orange harvesting systems review[J].Biosystems Engineering,2005,90(2): 115-125.
    [10]吐鲁洪,阿依木妮莎,杜英.国外果树振动采收机[J].新疆农机化,2004(3):54-56.
    [11]汤智辉,贾首星,沈从举等.新疆兵团林果机械化现状与发展[J].农机化研究2008(11):5-8
    [12]丁志祥.国外果园的机械采收[J].世界农业,1995(9):21-22.
    [13]陈度,杜小强,王书茂等.振动式果品收获技术机理分析机研究进展[J].2011,27(8):195-200.
    [14]Jutras P J, Coppock G E. Harvesting citrus fruit with an oscillating air blast[J]. Transactions of the ASAE,1963,6(2):192-194.
    [15]Castro-Garcia, S Gil-Ribes J A, Blanco-Roldan G L,et al. Mode shapes evaluation of trunk shakers used in oil olive harvesting.Trans ASABE,2007,50 (3):727-732..
    [16]Whitney J D, Hartmond U, Kender W J,et al. Orange removal with trunk shakers and abscission chemicals[J]. Applied Engineering in Agriculture,2000,16(4):367-371.
    [17]Parameswarakumar M, Gupta C P. Design parameters for vibratory mango harvesting system[J]. Transactions of the ASAE,1991,34(1):14-20.
    [18]Aristizabal T I D, Oliveros T C E, Alvarez M F. Mechanical harvest of coffee applying cicular and multidirectional vibrations[J].Transactions of the ASAE,2003,46(2).:205-209.
    [19]Erdo&gcaron D,Guner M,Dursun E,etal. Mechanicalharvesting of apricots[J].Biosystems Engineering,2003,85 (5):19-28.
    [20]汤智辉,沈从举,孟祥金等.4YS-24型红枣收获机的研制[J].新疆农机化,2010,(01).
    [21]Pezzi F,Caprara C. Mechanical grape harvesting:Investigation of the transmission of vibrations[J].Biosystems engineering,2009,103 (3):281-286.
    [22]Peterson D L,Brown G K. Mechanical harvester for fresh market quality blueberries[J].Transactions of the AS AE,1996,39 (3):823-827.
    [23]Peterson D L,Takeda F,Kornecki T. Harvester forT V,andYtrellised eastern thornless
    [24]blackberries[J].Applied Engineering in Agriculture,1992,8 (1):9-12.
    [25]丁志祥.国外果园的机械采收[J].世界农业,1995,(09):21-22.
    [26]张晓文.林木种子(球果)振动采集技术现状及展望[J].北京林业大学学报,1996,18(1):84-88
    [27]Whitney J D, Patterson J M. Development of a cirrus removal device using oscillating forced air[J]. Transactions of the ASEA,1972,15(5):849-855.
    [28]Whitney J D. Design and Performance of an air shaker for citrus fruit removal[J]. Transactions of the ASAE,1997,20(1)52-56.
    [29]Whitney J D. Performance of an oscillating, forced-air concept for removing citus fruits[J]. Transactions of the ASAE,1970,13(5):635-655.
    [30]Polat R, Gezer I, Guner M, et al. Mechanical harvesting of pistachio nuts[J]. Journal of Food Engineering,2007,79(4).1131-1135.
    [31]Blanco-Rolda G L, Gil-Ribes J A, Kouraba K, et al. Effects of trunk shaker duration and repetitions on removal efficiency for the harvesting of oil olives[J]. Applied Engineering in Agriculture,2009,25(3):329-334.
    [32]Pacheco A, Rehkugler G E. Design and development of a spring activated impact shaker for apple harvesting [J].Transactions of the ASAE,1980,23(4):826-830.
    [33]Peterson D L, Wolford S D. Mechanicial harvesting for fresh market quality stemless sweet cherries[J].Transactions of the ASAE,2001,44(3):481-485.
    [34]Peterson D L, Whiting M D, Wolford S D. Fresh-market quality tree fruit harvester, Part I: Sweet cherry [J]. Applied Engineering in Agriculture,2003,19(5):539-543.
    [35]Pezzi F,Caprara C. Mechanical grape harvesting:Investigation of the transmission of vibrations[J].Biosystems engineering,2009,103(3):281-286.
    [36]Peterson D L, Wolford S D, Timm E J,et al. Fresh market quality blueberry harvester[J]. Transactions of the ASAE,1997,40(3):535-540.
    [37]张克孝,林素元,许家美.黑豆果机械采收工作部件的理论分析[J].农业工程学报,1986,12(4):87-95.
    [38]工业成,陈海涛,林青.黑加仑采收装置参数的优化[J].农业工程学报,2009,25(3):79-83.
    [39]李强,叶力勤,安巍.枸杞采收机的适宜条件[J].农机化研究,2009,(6):126-128.
    [40]汤智辉,孟祥金,沈从举,贾首星,周艳,郑炫,秦朝民.机械振动式林果采收机的设计与试验研究[A].2010国际农业工程大会现代农机新技术应用研讨会分会场论文集[C],2010.
    [41]曾兰玲.树木花卉形态建模研究.浙江大学博士论文[D],2009
    [42]Center B, Verma, B P. A fuzzy photosynthesis model for tomato.Transactions of the ASAE, 1997,40:815-821.
    [43]Georgiev G A,Hoogenboom G. Near real-time agricultural simulations on the web. Simulation,1999,73:22-28.
    [44]Prusinkiewicz P, Hanan J. Lindenmayer Systems, Fractals, and Plants. New York: Springer-Verlag,1990
    [45]Prusinkiewicz P. A look at the visual modeling of plant using L-system.Agronomic,1990, 211-224.
    [46]De Reffye P, Fourcaud T, Blaise Fet al. A functional model of tree growth and tree architecture. Silva Fennica,1997,31:297-311.
    [47]Chen SG, Ceulemans R, Impens I. A fractal-based populus canopy structure model for the calculation of light interception. Ecol.Manage.1994,69:97-110.
    [48]
    [49]Viennot X G, Eyrolles G Combinatorial analysis of ramified patterns and computer imagery of trees.Computergraphics,1989,23(3):31-39.
    [50]Smith AR. Plants, fractals, and formal languages. In Proceedings of SIGGRAPH 1984. Computer Graphics,1984,18(3):1-10.
    [51]Aono M, Kunii T L. Botanical tree image generation.IEEE Comput.Graphics&Appl., 1984,4(5):10-34
    [52]Lindenmayer A. Mathematical models for cellular interaction in development, Parts I and II. Journal of Theoretical Biology 1968,18:280-315.
    [53]Lindenmayer A. Developmental systems without cellular interaction, their languages and grammars. Journal of Theoretical Biology 1971,30:455-484.
    [54]Prusinkiewicz P, Hammel M. Automata, language, and iterated function systems. In: Fractal Modeling in 3D Computer Graphics and Imagery, J C Hart, F K Musgrave, ACM SIGGRAPH, Course Note C14,1991,115-143.
    [55]Prusinkiewicz P, Hammel M. Language-restricted iterated function systems, Koch constructions and L-systems.In:Fractal Modeling in 3D Computer Graphics and Imagery, J C Hart (eds.), ACM SIGGRAPH, Course Note 13,1994, (4):1-14.
    [56]Prusinkiewicz P, James M, Mech R. Synthetic topiary. Computer Graphics, 1994,28(3):351-358.
    [57]Mech R.and Prusinkiewicz P. Visual Models of Plants Interacting with their Environment. In Proceedings of SIGGRAPH 1996. Computer Graphics,1996,30(3):397-410
    [58]Reffye P, Edelin C, Francon Jet al. Plant models faithful to botanical structure and development.ComputerGraphics,1988,22(4):151-158.
    [59]Reeves W T. Particle systems——A technique for modeling a class of fuzzy objects.Computer Graphics,1983,17(3):359-376.
    [60]王小铭.基于粒子系统方法的树木形态结构模拟.工程图学学报,2001:401-402.
    [61]Weber J, Penn J. Creation and rendering of realistic trees. In Proceedings of SIGGRAPH 1995.Los Angeles,1995. New York:ACM Press,1995,119-128.
    [62]Greene N. Voxel space automaton:modeling with stochastic growth processes in voxel space.Computer Graphics,1989,23(3):175-184.
    [63]Frederic Davesne,Claude Barret.A Reactive Navigation Method Based on an Incremental Learning of Tasks Sequences.Robot Motion and Control,1999:29-34
    [64]张宏烈.自主式水下潜器全局路径规划的研究.哈尔滨工程大学硕士论文.2002
    [65]Vadakkepat,P.Kay Chen Tan,Wang Ming-Liang.Evolutionary artificial potential fields and their application in real time robot path planning.Proceedings of the 2000 Congress on Evolutionary Computation,2000,(1):256-263
    [66]Na Y K,Oh S Y.Hybrid control for autonomous mobile robot navigationusing neural network based behaviormodules and environmentclassification.Proceedings of the 32nd ISR.2001:1637-1639
    [67]Warren C W.A technique for autonomous underwater vehicle route planning.IEEE J of Oceanic Engineering,1990,15(3):199-204
    [68]Vasudevan C,Ganesan K.Case-based path planning for autonomousunderwater vehicles.Autonomous Robots,1996,3(2):79-89
    [69]Nguyen Hoang Viet,Ngo Anh Vien,SeungGwan Lee,etl.Obstacle Avoidance Path Planning for Mobile Robot Based on Multi ColonyAnt Algorithm.2008 First International Conference on Advances in Computer-Human Interaction,2008,2:285-289
    [70]
    [71]徐新喜.基于ADAMS的急救车担架支架减振特性仿真分析与优化研究[D].中国人民解放军军事医学科学院博士论文,2009
    [72]张云波.多体动力学接触与碰撞建模研究[D].华中科技大学硕士论文,2007
    [73]许光浩.多体系统动力学通用仿真软件的扩展及工程应用[D].上海交通大学硕士论文,2010
    [74]徐杨,朱林,常明.树木三维形态结构的计算机建模[J].计算机工程与应用,2001,21:141-143.
    [75]孙家广.计算机图形.清华大学出版社,1998,308-318.
    [76]彭群生,鲍虎军等.计算机真实感图形的算法基础.科学出版社,1999,414-420。
    [77]孙博文,分形算法与程序设计Visual C++实现.科学出版社,60-90
    [78]胡静.随机函数在操作系统实验中的应用[J].太原重型机械学院学报,2004,25(4):271-274
    [79]P. Prusinkiewicz. Graphical applications of L-systems. In Proceedings of Graphics Interface'86--Vision Interface'86,247-253. CIPS,1986.
    [80]A. Lindenmayer and P. Prusinkiewicz. Developmental models of multicellular organisms: A computer graphics perspective. InC. Langton, editor, Artificial Life:Proceedings of an Interdisci-plinary Workshop on the Synthesis and Simulation of Living Sys-tems held September,1987, in Los Alamos, New Mexico,221-249. Addison-Wesley, Redwood City, 1989.
    [81]P. Prusinkiewicz. Applications of L-systems to computer imagery. In H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors, Graph grammars and their application to computer science; Third International Workshop,534-548. Springer-Verlag, Berlin,1987.
    [82]徐国保,尹怡欣,谢仕义.基于改进伪中值滤波器的道路图像滤波算法.2011年6月.计算机应用研究,
    [83]满玉春,张忠玉等.移相数字莫尔条纹图像滤波方法的研究.激光与光电子学进展,2011
    [84]姚芮芮,郭红卫.自适应条纹图像滤波方法.上海大学学报(自然科学版),2010(4)
    [85]高磊,张剑.一种基于Wiener滤波的数字X线图像滤波方法研究.研究论:142-143
    [86]张安发.基于双正交小波域的SAR图像滤波方法.通信技术.2010年第08期,第43卷
    [87]Sinha D,Dougherty morphology [J].Computer Visual Communication and Image Processing,1986,35(1):623-632
    [88]Koskinen L,Astola J,Neuvo Y,Soft morphological filters[C].Proc.SPIE.int.Socity of Optical Engineering,1991,1568:262-270
    [89]刘志敏,杨杰.基于数学形态学的图像形态滤波[J].电子科技大学学报,2004,33(4),391-394
    [90]蔡汉添.小波变换域中图像噪声平滑技术[J].光学技术,1998,6:6-9
    [91]韩非.蓝莓采摘机器人视觉识别与标定技术研究[D].东北林业大学博士学位论文,2011
    [92]张海一,白晶.基于图像处理的小波滤波方法研究[J].科技信息,2009,07 453-454
    [93]Guoliang Fan,Xiang-Gen Xia. Improved hiddenMarkov modelsin the wavelet domain[J].IEEE Trans.on signal processing,2001,49 (1)
    [94]梁亦强,李正明,孙俊.一种新小波图像降噪方法在农业采摘中的应用[J].安徽农业科学,2010,(04):2063-2065
    [95]余农,李吉成.图像滤波的形态学开闭型神经网络算法[J].电子信息学报.2005,41(2):1220-1224.
    [96]宋寅卯,李晓娟,刘磊.基于神经网络噪声检测的自适应中值滤波器.电视技术[J],2011(05)
    [97]Garnett R,Huegerich T,Chui C,et al. A universal noise removal algorithm with an impulse detector[J].IEEE Transactions on Image Processing,2005,14 (11):1747-1754.
    [98]赵春晖.层叠滤波器的研究进展与分析.电子测量与仪器学报[J],2009,05
    [99]马义德,张在峰,张祥光.基于全方位结构元层叠滤波的混合滤波器.甘肃科学学报[J],2002,14(2):56-60.
    [100]黄猛,唐琳,甄玉,张杰.基于自适应遗传算法FIR数字滤波器优化设计.现代电子技术[J],2010
    [101][ShawA K. Optimal design of digitaIIR filters bymodel-fitting frequency response data.IEEE InternationalSymposium onCircuits andSystems.1993,475-478.
    [102]史明霞,陶林波,沈建京.自适应遗传算法的改进与应用[J].微计算机应用,2006,(04)
    [103]金炜东,张葛祥,赵舵.Satisfactory Optimization Design of IIR Digital Filters[J]. Journal of Southwest Jiaotong University,2005,(01)
    [104]张至柔,罗四维,陈音欠,钟晶晶.移动Agent在网格中的路径优化算法研究[J].计算机研究与发展,2006,43(5):791-796.
    [105]L.Podsedkowski,J.Nowakowski,M.Idzikowski,I.Vizvary.A New Solution for PathPlanning in Partially Known or Unknown Environment for Nonholonomic MobileRobots[J].Robotics and Autonomous Systems,2001,34(2-3):145-152.
    [106]D.Frigioni,A.Marchetti-Spaccamela,U.Nanni.Fully Dynamic Algorithms for Maintaining Shortest Paths Trees[J]Journal of Algorithms,2000,34(2):251-281.
    [107]林剑柠,吴慧中.一种基于动态决策路径的网格任务调度算法[J].计算机研究与发展,2008,45(5):841-847.
    [108]Kirkpatrick S,Gelatt JrC D,VecchiP.Optimization by simulated annealing[J]. Science, 1983(220):671-680.
    [109]Nilsson N J. Introduction to artificial intelligence principles[J].Rivista Informatica,1981, 11(1):13-38.
    [110]StentzA.Optionaland efficientpath planning forpartly known en-vironment[C]. Proceedings of the IEEE International Conference on Robotics and Automation,1994.
    [111]StentzA.The focused D*algorithm for real tmi e replanning [C].Proceedings of the International Joint Conference on Artificial In-telligence,1995.
    [112]席裕庚,张纯刚.一类动态不确定环境下机器人的滚动路径规划[J].自动化学报,2002,28(2):161-175.
    [113]Ye C, Borenstein J. Characterization of a 2D laser scanner formo-bile robot obstacle negotiation[C].Washington DC:IEEE Interna-tionalConference on Robotics and Automation.2002.
    [114]孙增圻.智能控制理论与技术.北京:清华大学出版社,1997,3-45
    [115]J.C.Latombe.Robot Motion Planning.Norwell,Kluwer,1991,143-176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700