用户名: 密码: 验证码:
小流域降雨—径流—产沙关系及水土保持措施响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀是人类面临的重要环境问题之一。土壤侵蚀持续发生,在破坏土地资源、淤塞河道和湖泊、加剧洪涝灾害的同时,引发的面源污染破坏水资源,加剧缺水地区的水危机,严重影响生态和人类生存环境。小流域是地表径流和泥沙输移的基本单元,并形成了相对完整、有序的生态系统。小流域土壤侵蚀过程也是自成完整系统,即降雨径流期,降雨发生雨滴溅蚀,产流以后在坡面形成片流,发生片蚀,流域中下部坡面片流汇集进行细沟和浅沟侵蚀,至沟道径流汇集,在大的水流冲刷下发生沟道侵蚀,并最终将泥沙输出流域,这是一个完整的侵蚀产沙过程。小流域综合治理被公认为是行之有效的水土保持措施,小流域降雨—径流—产沙关系也受到普遍关注。因此,明确小流域降雨—径流—产沙关系,既是理解小流域土壤侵蚀过程的要求,也是预报水土流失、评价侵蚀环境效应、指导水土保持措施配置、优化水土资源利用的实际需要。
     三峡库区包括湖北省、重庆市的21个县市,总面积5.8万平方公里。这一地区因地形起伏大,易风化岩层出露面积广,降雨多且强度大,水土流失极其严重。随着三峡工程的运行,土壤侵蚀及其泥沙输移问题尤为突出。本文以三峡库区典型小流域——王家桥小流域为研究对象,以次降雨过程为重点,研究了小流域尺度降雨—径流—泥沙响应关系;通过野外调查和数据挖掘分析,探讨了小流域不同时间尺度水土流失的特点和主控因子。并在观测资料分析和野外试验的基础上,选取WATEM/SEDEM模型,定量评价了三峡库区小流域综合治理中常见水土保持措施效益。取得的主要结果有:
     (1)利用1989-1996年降雨、径流、泥沙数据,选取明显产流的侵蚀性降雨29场,对SCS-CN模型的关键参数初损率进行修正。通过基流分离,计算不同降雨事件的初损率变化,结果发现初损率取值主要分布在0.05附近,范围为0.010~0.154之间,中间值为0.048,平均为0.053,初损率与降雨深度的相关性不高。分析认为,三峡地区SCS-CN方程的初损率Ia/S取值为0.05比较合适。使用效率系数和决定系数,运用流域1989、1990和1993年的侵蚀性降雨数据对重新率定参数前后的模型进行检验,模型的效率系数由0.482上升到0.768,方程的决定系数由0.509提升到0.804,结果表明修正后模型径流深度预测效果和效率系数都有较大提高。
     (2)利用王家桥小流域1989-2004年气象、水文、泥沙相关数据,在不同时间尺度上研究了小流域降雨、径流产沙之间的关系。降雨、径流和产沙的年际变化很大。多年平均水平上,夏季是王家桥小流域降雨最多的季节,占全年的41%,产生了全年52%的径流量,对应的产沙总量达到了全年的78%。在次降雨尺度上,采用经典的Hewlett和Hibbert水文过程分割法,分离出降雨过程中的基流和地表径流量,分析次降雨事件中降雨相关变量(总雨量、总历时、平均雨强、最大30分钟雨强、前1天降雨量、前7天降雨量)、径流相关变量(径流系数、最大径流量、径流总量)和侵蚀相关变量(平均泥沙浓度、最大泥沙浓度、总侵蚀量)之间的关系。揭示王家桥小流域降雨—径流—侵蚀响应过程中的主控因素。在选取的40场降雨事件中,皮尔逊相关分析结果表明降雨总量和最大30分钟雨强可以解释84%的径流变量,而最大径流量和降雨历时可以解释76%的侵蚀总量。雨强大的降雨产生的侵蚀较大,径流—侵蚀关系表明王家桥小流域主要侵蚀来源于沟道附近区域。
     (3)通过K-means聚类分析,根据雨量、降雨历时和最大30分钟雨强将王家桥小流域1989-2004年间152场降雨分成三种类型。中等雨强、中等降雨历时的雨被划分为雨型Ⅰ(31.8mm和1371min)。雨型Ⅱ是一般降雨量较大(54.0mm)历时较长(2548min)的暴雨,发生频率较小。雨型Ⅲ是最普遍的降雨,平均雨量较小(22.2mm),历时相对较短(494min)。分析不同降雨的降雨-径流-泥沙响应,研究发现,不同雨型引起的径流和土壤侵蚀差异很大;雨型Ⅰ产流总量和侵蚀总量都最大(分别是368.7mm和4283t)。三种雨型的平均径流系数和平均侵蚀量按依次排列为雨型Ⅱ>雨型Ⅰ>雨型Ⅲ。在王家桥小流域,1989-2004年间最显著的土地利用变化是水田、旱地的减少,而林地和柑橘园分别增加了9.9%和7.7%。土地利用变化对降雨、径流和侵蚀产生了强烈的影响。对雨型Ⅰ、雨型Ⅱ的影响较大,对雨型Ⅲ的影响较小。研究发现不同雨型的产流、侵蚀差异较大,但是年际间总体变化趋势是由土地利用变化决定的。
     (4)王家桥小流域自90年代以来以来开展了以水土保持为主要内容的小流域综合治理,使得流域面貌发生较大变化。研究充分利用卡口站的监测数据,辅以1995-2005年间小流域水保措施制图,使用WATEM/SEDEM模型来评估小流域综合治理的成效。结果表明土壤侵蚀量由1995年的18.5t ha-1y-1减少到2005年的13.2t ha-1y-1,泥沙沉积量由7.7增到12.4t ha-1)y-1,流域泥沙输出从8.4减至3.9t ha-1y-1,相应的泥沙输移比也从0.454降低至0.295。模型情景模拟结果表明:在小流域尺度上坡面水土保持措施(土地利用优化、梯田、垄沟耕作等)比流域内径流泥沙控制措施(如塘堰、沉沙凼等),减沙效果更明显。使用WATEM/SEDEM模型评估小流域综合治理各种水保措施效益,可以使结果更具有直观性和可比性,适宜在三峡库区推广。
Soil erosion is a hazard traditionally associated with agriculture that is known to have long-term effects on soil productivity and sustainable agriculture. Soil erosion also leads to environmental damage through sedimentation, pollution and increased flooding. Soil erosion and its associated problems have already deteriorated land and water resources of China. Soil erosion affects an area of3.6×106km2in China, or about37%of its land area. Not surprisingly soil erosion has become important topics on the agenda of local and national policy makers. This has led to an increasing demand for proper understanding of the watershed and the hydrological processes to delineate target zones in which soil and water conservation measures are likely to be the most effective.
     The Three Gorges area (TGA) is characterized by hilly topography, high mountains, steep slope soil of poor structure and low organic matter content. Following construction of the Three Gorges Dam, many farmers resettled in surrounding mountain areas and cultivated marginal lands, which are mostly on steep slopes with soil of poor structure. The soil erosion problem is obvious. Small watersheds are a convenient scale for soil conservation planning because they are easily identified on maps and on the ground, and they allow suitable descriptions of some ecosystem processes and capabilities. The objectives of this study is:(1) to investigate rainfall-runoff-sediment transport relationships; and (2) to assess the hydrological and sedimentary response of the Wangjiaqiao watershed, which is a representative watershed within the TGA. Soil erosion characteristics and main controlling factors were also discussed in the present small watershed. Based on observation data analysis and field survey, a erosion model was used to evaluate the impacts of integrated small watershed management in the sutdy area. The main results are as follows:
     (1) The initial abstraction ratio (Ia/S) in SCS-CN equation was determined using rainfall-runoff event analysis from an agricultural watershed in the TGA of China. The results indicated that the Ia/S values varied from0.010to0.154, with a median of0.048. The average initial abstraction ratio of the watershed was equal to0.052. This is mainly attributed to the landscape and geological characteristics in the study watershed. A comparison between standard and modified Ia/S values showed that modified Ia/S value improved the agreement between measured and predicted direct runoff to a high degree. The standard SCS-CN method underestimates large runoff events, yielded a slope of the regression line of0.559and an intercept of0.301. The modified Ia/S valuewas about0.05that better predicted runoff depths with an R2of0.804and a linear regression slope of0.834. It also improved model efficiency coefficient (E) to0.768compared with0.482for traditional Ia/S value. Improvements in SCS-CN predictive ability may be expected with a0.05Ia/S value in the TGA of China.
     (2) The relationships among rainfall, runoff, and sediment transport were analysised in the Wangjiaqiao watershed. Strong seasonal and monthly variability in sediment load was found. Sediment was strongly transported during summer months, a period when frequent flood events of high magnitude and intensity occurred. Analysis of the relationships between precipitation, discharge and sediment transport at an individual event scale showed significant correlations between total precipitation, peak discharge, total water yield, maximum30min rainfall intensity, and sediment-related variables. Stepwise multiple regression analysis revealed that rainfall amount is the major cause of runoff, while events producing a large discharge in a short time play an important role in inducing severe soil erosion. During40flood events, three different types of hysteretic loops were observed:clockwise (28events,70%), figure-eight (5events,12.5%), and complex (7events,17.5%). The results of this study confirm the complex and heterogeneous nature of sediment response in the Wangjiaqiao watershed.
     (3) Based on10years of rainfall measurements and K-means clustering,152rainfall events were classified into3rainfall regimes. Rainfall Regime I is the aggregation of the rainfall events of medium amounts (31.8mm) and medium duration (1371min). Rainfall Regime II is an aggregation of the rainfall events with high amounts (54.0mm), long duration (2548min), and an infrequent occurrence. Rainfall Regime III is the aggregation of the rainfall events of low depth (22.2mm), short duration (494min) and high frequency. In each rainfall regime, there are differing levels of runoff and erosion. Rainfall Regime I causes the greatest proportion of accumulated discharge (368.7mm)and soil loss (4283t). In the different rainfall regimes, the values of the mean runoff coefficient (RC) and the mean sediment load were as follows:Rainfall Regime II> Rainfall Regime I> Rainfall Regime III. These results suggest that greater attention should be paid to Rainfall Regimes I and II because they had the most erosive effect. In the Wangjiaqiao watershed, the changes in land use primarily affected the paddy fields, where the cropland decreased significantly, while the forest and orchards increased by9.9%and7.7%, respectively, during the study years1995-2004. These land use changes caused significant decreasing trends in the runoff coefficients and sediment loads. In order, the most sensitive response of runoff and erosion to land uses was exhibited by Rainfall Regime II, Rainfall Regime I, and then Rainfall Regime III. We conclude that rainfall characteristics are decisive for the relative importance of different storm-runoff generation mechanisms and that the land use changes have considerably decreased runoff and soil loss in the study watershed.
     (4) Integrated small watershed management (ISWM) for soil conservation in the TGA was rapidly developed. The impact of ISWM on soil erosion and sediment delivery in the Wangjiaqiao watershed was investigated. The WATEM/SEDEM distributed erosion and sediment transport model were used to evaluate the effectiveness of the ISWM project. The model was calibrated against long-term measured suspended sediments at the watershed outlet. Land use and conservation measures were mapped and analyzed for1995and2005, paying particular attention to quantification of changes in soil erosion and sediment delivery due to ISWM. The results showed that a combination of decreased soil loss (from18.5tha-1y-1in1995 to13.2t ha-1y-1in2005) and increased sediment deposition (from7.7to12.4t ha-1y-1) has led to a strong decrease in sediment yield (from8.4to3.9t ha-1y-1) and the sediment delivery ratio (from0.454to0.295). The results of scenario analysis showed that soil conservation measures taken in fields effectively reduce on-site soil loss and sediment yield. However, off-site sediment control measures appear to be much less effective at reducing sediment yield. This diachronic comparison of soil erosion and sediment delivery revealed that ISWM is quite effective and efficient; therefore, it is the appropriate method to combat soil erosion in the TGA and similar areas.
引文
1.卜兆宏,孙金庄,周伏建,等.水土流失的定量遥感方法及其应用研究.土壤学报,1997,34(3):235-245
    2.陈雷.中国的水土保持.中国水土保持,2002,7:4-6
    3.陈晓安,蔡强国,张利超等.黄土丘陵沟壑不同雨强下坡长对坡面土壤侵蚀的影响.土壤通报,2011,42(3):721-725
    4.陈正发,郭宏忠,史东梅等.地形因子对紫色土坡耕地土壤侵蚀作用的试验研究.2010,24(5):83-87
    5.蔡强国.坡面细沟发生临界条件研究.泥沙研究,1998,1:52-59
    6.蔡崇法,丁树文,史志华等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究.水土保持学报,2000,14(2):19-24
    7.豆林,黄明斌.自动基流分割方法在黄土区流域的应用研究[J].水土保持通报.2010(3):107-111.
    8.杜鹃,赵景波.西安高陵人工林土壤干层与含水量季节变化研究,地理科学,2007,27(1):98-103
    9.付兴涛,张丽萍,叶碎高等.经济林地坡长对侵蚀产流动态过程影响的模拟试验研究.水土保持学报,2009,23(5):5-9
    10.付智勇,李朝霞,蔡崇法等.三峡库区不同厚度紫色土坡耕地产流机制分析.水科学进展,2011,22(5):680-688
    11.傅伯杰,邱扬,王军等.黄土丘陵小流域土地利用变化对水土流失的影响.地理学报,2002,57(6):717-722
    12.傅伯杰,陈利顶,于秀波.中国生态环境的新特点及其对策.环境科学,2000,9:104-106
    13.傅国斌,刘昌明.遥感技术在水文学中的应用与研究进展.水科学进展,2001,12(4):548-559
    14.傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响.地理学报,1999,54(3):241-246
    15.傅伯杰,邱扬,王军等.黄土丘陵小流域土地利用变化对水土流失的影响.地理学报,2002,57(6):717-722
    16.胡世雄,靳长兴.坡面流与坡面侵蚀动力过程研究的最新进展.地理研究,1998,17(3):326-335
    17.侯建才,李占斌,李勉等.流域次降雨侵蚀产沙的BP神经网络模拟.水土保持通报,2007,27(3):79-83
    18.候喜禄,曹清玉.黄土丘陵区幼林和草地水保及经济效益研究.水土保持通报,1990,10(4):53-61
    19.贾松伟.黄土丘陵区不同坡度下土壤有机碳流失规律研究.水土保持研究,2009,16(2):30-33
    20.蒋定生,黄国俊.地面坡度对降水入渗影响的模拟试验.1984:10-13
    21.江忠善,李秀英.黄土高原土壤流失预报方程中降雨侵蚀力和地形因子的研究.中国科学院水土保持研究所集刊,1988,7:40-45
    22.景可,焦菊英.基于全球气候变暖的土壤侵蚀态势初见.中国水土保持,2011,6:7-10
    23.贾志军,王小平,李俊义.晋西黄土丘陵沟壑区降雨侵蚀力指标R值的确定.山西水土保持科学研究所,1987:18-21
    24.孔亚平,张科利,唐克丽.坡长对侵蚀产沙过程影响的模拟研究.水土保持学报,2001,15(2):17-24
    25.廖纯艳,韩凤翔,冯明汉.长江上中游水土保持工程建设成效与经验.人民长江,2010,41(13):16-20
    26.廖纯艳.长江流域水土保持60年回顾与展望.人民长江,2010,41:2-6
    27.李秀霞,韩鹏,倪晋仁.黄河流域上中游地区土壤侵蚀潜在危险度及抗侵蚀潜力特征.水利学报,2009,40(3):303-310
    28.李斌兵,郑粉莉,龙栋才等.基于支持向量机回归的次降雨小流域侵蚀产沙预报研究.水土保持通报,2007,27(6):120-125
    29.刘栋,刘普灵,邓瑞芬等.不同下垫面径流小区次降雨侵蚀特征相关分析.水土保持通报,2011,31(2):99-102
    30.刘东生.黄土与环境.北京:科学出版社,1985
    31.刘爱霞,王静,刘正军.三峡库区土壤侵蚀遥感定量监测——基于GIS和修正通用土壤流失方程的研究,自然灾害学报,2009,18:25-30
    32.刘连友,王建华,李小雁等.耕作土壤可蚀性颗粒的风洞模拟测定.科学通报,1998,43(15):1663-1666
    33.柳云龙,胡宏涛.红壤地区地形位置和利用方式对土壤物理性质的影响.水土保持学报,2004,18(1):22-26
    34.路炳军,温美丽,路文学.黄土高原西部雨养农业区集雨水窖的类型及其效益分析.干旱区资源与环境,2004,18(2):71-75
    35.鹿化煜,胡挺,王先彦.1100万年以来中国北方风尘堆积与古气候变化的周期及驱动因素分析.高校地质学报,2009,15(2):149-158
    36.倪晋仁,李英奎.基于土地利用结构变化的水土流失动态评估.地理学报,2001,56(5):611-621
    37.牛志明,解明曙,孙阁,McNulty S G.ANSWER2000在小流域土壤侵蚀过程模拟中的应用研究.水土保持学报,2001.15(3):56-60
    38.景可,郑粉莉.黄土高原水土保持对地表水资源的影响.水土保持研究,2004,11(4):11-14
    39.金雁海,柴建华,朱智红.内蒙古黄土丘陵区次降雨条件下坡面土壤侵蚀影响因子研究.水土保持研究,2006,13(6):192-194
    40.蒋德麒,朱显漠.水土保持.中国农业土壤论文集,上海:上海科学技术出版社,1962.
    41.琚彤军,刘普灵,徐学选等.不同次降雨条件对黄土区主要地类水沙动态过程的影响极其机理研究.泥沙研究,2007,4:65-71
    42.秦伟,范瑜,朱熙.永磁磁轮磁悬浮力的解析与数值方法研究.微计算机信息,2010,26(5):217-220
    43.唐克丽,郑世清,席道勤等.杏子河流域坡耕地的水土流失及其防治,水土保持通报,1983:43-48
    44.唐政洪,蔡强国,许峰等.基于GIS的农林复合经营的侵蚀控制模拟研究.水土保持研究,2001,8(4):170-174
    45.田积莹,黄义端,雍绍萍.黄土地区土壤物理性质及与黄土成因的关系.中国科学院西北水土保持研究所集刊,1987,5:1-12
    46.谢云,章文波,刘宝元.用日雨量和雨强计算降雨侵蚀力.水土保持通报,2001,21(6):53-56
    47.熊兴华,钱曾波,王任享.遗传算法与最小二乘法相结合的遥感图像子像素匹配[J].2001,30(1):
    48.魏建兵,肖笃宁,张兴义等.侵蚀黑土容重空间分异与地形和土地利用的关系.水土保持学报,2006,20(3):118-122
    49.魏天兴,朱金兆.黄土残垣沟壑区坡度和坡长对土壤侵蚀的影响分析.北京林业大学学报,2002,24(1):59-62
    50.吴杨.基于137Cs示踪法的小流域系统坡长要素坡面侵蚀机制.兰州大学学报,2011,47(1):57-61
    51.韦红波,李锐,杨勤科.我国植被水土保持功能研究进展.植物生态学报,2002,26(4):489-496
    52.温光远,刘世荣.我国主要森林生态系统类型降雨截流规律的数量分析.林业科学,1995,31(4):289-298
    53.王宏,蔡强国,朱远达.应用EUROSEM模型对三峡库区陡坡地水力侵蚀的模拟研究.地理研究,2003,22(5):579-589
    54.王万忠,焦菊英.黄土高原坡面产流产沙过程变化的统计分析.水土保持通报,1996, 5:21-28
    55.王波,杨振明,鲍士旦.水稻耐低钾基因型的筛选及吸钾特性的研究.植物营养与肥料学报,1999,5(1):85-88
    56.王春,汤国安,张婷等.黄土模拟小流域降雨侵蚀中地面坡度的空间变异.地理科学,2005,25(6):683-689
    57.王晓.用粒度分析法计算砒砂岩小流域泥沙来源的探讨.中国水土保持,2001,1:22-25
    58.吴从林,张平仓.三峡库区王家桥小流域土壤侵蚀因子初步研究.长江流域资源与环境,2002,11(2):165-170
    59.严冬春,文安邦,史忠林等.川中紫色丘陵坡耕地细沟发生临界坡长及其控制探讨.水土保持研究,2010,17(6):1-4
    60.杨子生.土壤流失方程在山区耕地可持续利用适宜性评价与土地利用规划中的应用.山地学报,1999,17(5):36-44
    61.杨艳生.地表径流与土壤渗透拟合方程.1982:40-44
    62.杨艳生,史德明,姚宗虞.侵蚀土壤地表径流和土壤渗透的研究.土壤学报,1984,21(2),203-210
    63.于国强,李占斌,李鹏等.黄土高原小流域重力侵蚀数值模拟.农业工程学报,2009,25(12):74-79
    64.原翠萍,李淑芹,雷启祥等.黄土丘陵沟壑区治理与非治理对比小流域侵蚀产流比较研究.中国农业大学学报,2010,15(6):95-101
    65.张金存,芮孝芳.分布式水文模型构建理论与方法述评[J].水科学进展,2007,18(2):286-292.
    66.张永光,伍永秋,刘洪皓等.东北漫岗黑土区地形因子对浅沟侵蚀的影响分析.水土保持学报,2007,21(1):35-39
    67.张光永,徐辉,王靖涛等.等P路径下砂土本构关系的归—化特性及数值建模方法.固体力学学报,2008,29(1):85-90
    68.张光辉,梁一民.模拟降雨条件下人工草地产流产沙过程研究.土壤侵蚀与水土保持学报,1996,2(3):56-59
    69.张信宝,吴积善,汪阳春.川西北高原地貌垂直地带性及山地灾害对南水北调西线工程的影响.地理研究,2006,25(4):633-640
    70.张信宝.有关湖泊沉积137Cs深度分布资料解译的探讨.山地学报,2005,23(3):294-299
    71.赵龙山,张青峰,梁心蓝等.基础GIS的坡耕地数字高程模型的建立与应用.农业工程学报,2010,26(11):317-322
    72.张科利,蔡永明,刘宝元等.黄土高原地区土壤可蚀性及其应用研究.生态学报,2001,21(10):1687-1695
    73.赵富海,赵宏夫.应用新算法编制张家口市R值图的研究.海河水利,1994,2:47-51
    74.赵晓光,石辉.用稀土元素示踪方法研究裸露坡面沿程侵蚀与沉积.林业科学,2003,39(2):98-101
    75.邹春霞,申向东,李夏子等.内蒙古阴山北麓农牧交错带风蚀气候侵蚀力特征.吉林大学学报,2011,41(7):1172-1178
    76.周佩华,王占礼.黄土高原土壤侵蚀暴雨标准.水土保持通报,1987,7(1):38-44
    77.周万村.三峡库区土地自然坡度和高程对经济发展的影响.长江流域资源与环境.2001(10):15-21
    78.166.朱显谟.黄土高原水蚀的主要类型及其有关因素.中国科学院水土保持研究所,1982:25-30
    79. Anderberg M R. Cluster Analysis for Applications. Academic Press Inc., New York.1973
    80. Arnold J G, Williams J R, Srinivasan R, King K W, Griggs R H. SWAT-Soil and Water Assessment Tool-User Manual. Agricultural Research Service, Grassland, Soil and Water Research Lab, US Department of Agriculture.1994
    81. Addiscott T M, Smith J, Bradbury N. Critical evaluation of models and their parameters. J. Environ. Qual,1995,24:803-807
    82. Alatorre L C, Begueria S, Garcia-Ruiz J M., Regional scale modeling of hillslope sediment delivery:A case study in the Barasona Reservoir watershed (Spain) using WATEM/SEDEM. J.Hydrol,2010,391:109-123
    83. Bakker M M, Govers G, van Doom A, Quetier F, et al. The response of soil erosion and sediment export to land-use change in four areas of Europe:the importance of landscape pattern. Geomorphology,2008,98:213-226
    84. Binkley D, Brown T C. Management Impacts on Water Quality of Forests and Rangelands. Gen. Tech. Rep. RM-239. USDA Forest Service, Fort Collins.1993
    85. Bronstert A, Niehoff D, Burger Gerd. Effects of climate and land-use change on storm runoff generation:present knowledge and modelling capabilities. Hydrological Processes,2002,16: 509-529
    86. Bu C F, Cai Q G, Sai-Leung N G, Chuan K C, et al. Effects of hedgerows on sediment erosion in Three Gorges Dam area, China. International Journal of Sediment Research,2008, 23:119-129
    87. Butler J, Laclau E, Zizek S, Contingency, Hegemony, Universality:Contemporary Dialogues on the Left, London:Verso.2000
    88. Capolongo D, Pennetta L, Piccarreta M, Fallacara G, et al. Spatial and temporal variations in soil erosion and deposition due to land-leveling in a semi-arid area of Basilicata (Southern Italy). Earth Surf. Proc. Land,2008,33:364-379
    89. Clark L. IDRIS132 Release 2 Tutorials. Worcester, MA:Clark University.2001
    90. Croke B F W, Ticehurst J L, Letcher R A, Norton J P. et al. Integrated assessment of water resources:Australian experiences. Water Resour. Manag,2007,21:351-73
    91. de Lima J L M P, Singh V P. The influence of the pattern of moving rainstorms on overland flow. Advances in Water Resources,2002,25:817-828
    92. Desmet P J J, Govers G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv,1996,51:427-433
    93. di Cenzo P D, Luk S. Gully erosion and sediment transport in a small subtropical catchment, South China. Catena,1997,29:161-176
    94. Elsen E, Hessel R, Liu B. Discharge and sediment measurements at the outlet of a watershed on the Loess plateau of China. Catena,2003,54:147-160
    95. Ekwue E I. Effect of organic and fertilizer treatments on soil physical properties and erodibilities. Soil Tillage Research,1992,22 (3-4):199-209.
    96. Fang N F, Shi Z H, Li L, et al. Rainfall, runoff, and suspended sediment delivery relationships in a small agricultural watershed of the Three Gorges area, China, Geomorphology,2011,135:158-166
    97. Fu Z Y, Li Z X, Cai C F, et al. Soil thickness effect on hydrological and erosion characteristics under sloping lands:A hydropedological perspective. Geoderma,2011, 167-168:41-53
    98. Gafur A, Jensen J R, Borggaard O K, et al. Runoff and losses of soil and nutrients from small watersheds under shifting cultivation (Jhum) in the Chittagong Hill Tracts of Bangladesh. Journal of Hydrology,2003,279:292-309
    99. Hartantoa H, Prabhub R, Anggoro S E, et al. Factors affecting runoff and soil erosion: plot-level soil loss monitoring for assessing sustainability of forest management. Forest Ecology and Management,2003,180:361-374
    100. Hawkins R H, Jiang R, Woodward D E, et al. Runoff curve number method:examination of the initial abstraction ratio. Proceedings of the Second Federal Interagency Hydrologic Modeling Conference, Las Vegas, Nevada.U.S.Geological Survey, Lakewood, Colorado, CD-ROM,2002
    101. Heathcote I W, Integrated watershed management:principles and practice. John Wiley, New York,1998
    102. Hewlett J D, Hibbert A R. Factors affecting the response of small watersheds to precipitation in humid areas. In:Sopper, W.E., Lull, H.W. (Eds.), Forest Hydrology. Pergamon, Oxford, UK,1967, pp:275-290
    103. Hudson N W. Soil Conservation. London:BT Batsford,1976
    104. Jeje L K, Ogunkoya O O, Oluwatimilehin J M. Variation in suspended sediment concentration during storm discharges in three small streams in upper Osun basin, central western Nigeria. Hydrological Processes,1991,5:361-369
    105. Jetten V, Govers G, Hessel R. Erosion models:quality of spatial predictions. Hydrol. Process, 2003,17:887-900
    106. Jordan G, Van Rompaey A, Szilassi P, et al. Historical landuse change and their impact on sediment fluxes in the Balaton basin (Hungary). Agr. Ecosyst. Environ,2005,108:119-133
    107. Keesstra S D, van Dam O, Verstraeten G, et al. Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena,2009,78:60-71.
    108. Klein M. Anti-clockwise hysteresis in suspended sediment concentration during individual storms. Catena,1984,11:251-257
    109. Kronvang B, Laubel A, Grant R. Suspended sediment and particulate phosphorus transport and delivery pathways in an arable catchment, Gelbaek stream, Denmark. Hydrological Processes,1997,11:627-642
    110. Lal R. Physical management of soils of the tropics:Priorities for the 21st century. Soil Science,2000,165:191-207.
    111. Lenzi M A, Marchi L. Suspended sediment load during floods in a small stream of the Dolomites (northeastern Italy). Catena,2000,39:267-282
    112. Licznar P, Nearing M A. Artificial neural networks of soil erosion and runoff prediction at the plot scale. Catena,2003,51:89-114
    113. Lu X X, Ashmore P, Wang J. Sediment load mapping in a large river basin:the Upper Yangtze, China. Environ. Modell. Softw,2003,18,339-353.
    114. Lu X X, Higgitt D L. Recent changes of sediment yield in the upper Yangtze, China. Environ. Manage,1998,22:697-709
    115. Lobb D A, Kachanoski R G, Miller M H. Tillage translocation and tillage erosion on shoulder slope landscape positions measured using Cs-137 as a tracer, Canadian Journal of Soil Science,1995,75:211-18
    116. Lopez-Tarazon J A, Batalla R J, Vericat D. Suspended sediment in a highly erodible catchment, the River Isabena (southern Pyrenees), Geomorphology,2009,109:210-221
    117. Meerveld I, Tromp-van W. Hillslope dynamics modeled with increasing complexity. Journal of Hydrology,2008,361:24-40
    118. McCool D K, Brown G R, Foster G R. et al. Revised slope steepness factor for the Universal Soil Loss Equation. Trans. ASAE,1987,30:1387-1396
    119. Morin E, Goodrich D C, Maddox R A. Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response. Advances in Water Resources,2006,29 (6):843-860
    120. Moriasi D N, Arnold J G, Van Liew M W, Bingner R L, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the AS ABE, 2007,50:885-900
    121. Nadal-Romero E, Regues D, Latron J. Relationships among rainfall, runoff, and suspended sediment in a small catchment with badlands. Catena,2008,74:127-136
    122. Nash J, Sutcliffe J. River flow forecasting through conceptual models part 1-A discussion of principles. J. Hydrol,1970,10:282-290
    123. Niehoff D, Fritsch U, Bronstert A. Land-use impacts on storm-runoff generation:scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. Journal of Hydrology,2002,267:80-93
    124. Nearing M A. A single, continuous function for slope steepness influence on soil loss. Soil Sci. Soc. Am. J,1997,61:917-919
    125. Nyssen J, Poesen J, Moeyersons J, et al. Spatial distribution of rock fragments in cultivated soils in Northern Ethiopia as affected by lateral and vertical displacement processes. Geomorphology,2002,43:1-16.
    126. Oeurng C, Sauvage S, Sanchez-Perez J M. Dynamics of suspended sediment transport and yield in a large agricultural catchment, southwest France. Earth Surface Processes and Landforms,2010,35:1289-1301
    127. Olson K R, Lal R, Norton L D. Assessment of methods of study soil erosion productivity relationships. Journal of Soil and Water Conservation,1994,49:586-590
    128. Olson T C, Wischmeier W H. Soil erodibility evaluation for soils on the runoff and erosion stations. Soil Science Society of America Proceedings,1963,27:589-592
    129. Oost K V, Govers G, Desmet P. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage,2000, (6):577-589
    130. Perrin C, Michel C, Andreassian V. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments [J]. Journal of Hydrology,2001,242:275-301
    131. Paul J, Besl, Neil D, et al. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell,1992,14 (2):239-256
    132. Rose S, Peters N E. Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): a comparative hydrological approach. Hydrological Processes,2001,15:1441-1457
    133. Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water:a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agric. Handb. No.703. US Department of Agriculture, Washington, DC.1997
    134. Renard K G, Foster G R, Weenies G A, et al. RUSLE-revised universal soil loss equation. Journal of Soil and Water Conservation,1991,46 (1):30-33
    135. Sayer A M, Walsh R P P, Bidin K. Pipeflow suspended sediment dynamics and their contribution to stream sediment budgets in small rainforest catchment, Sabah, Malaysia. Forest Ecology and Management,2006,224:119-130
    136. Seeger M, Errea M P, Begueria S, et al. Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees. Journal of Hydrology,2004,288 (3-4): 299-311
    137. Shen Z Y, Gong Y W, Li Y H, et al. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong watershed in the Three Gorges reservoir area. Agricultural Water Management,2009,96 (10):1435-1442
    138. Shi Z H, Chen L D, Fang N F, et al. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges area, China. Catena,2009,77:1-7
    139. Shi Z H, Cai C F, Ding S W, et al. Soil conservation planning at the small watershed level using RUSLE with GIS, a case study in the Three Gorges area of China. Catena,2004,55: 33-48
    140. Shen Z Y, Gong Y W, Li Y H, et al. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agr. Water Manage,2009,96:1435-1442
    141. Trimble S W, Crosson P. US soil erosion rates:myth and reality? Science,2000,289: 248-250
    142. Van Sickle J, Beschta R L. Supply-based models of suspended sediment transport in streams. Water Resources Research,1983,19 (3):768-778
    143. Van Rompaey A, Govers G, Puttemans C. Modelling land use changes and their impact on soil erosion and sediment supply to rivers. Earth Surface Processes and Landforms,2002,27: 481-494
    144. Vrieling, A. Satellite remote sensing for water erosion assessment:a review. In:Catena:an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution,2006,65 (1):2-18
    145. Vezina F, Speakman J R, Williams T D. Individually-variable energy management strategies in relation to energetic costs of egg production. Ecology,2006,87:2447-2458
    146. Van Oost K, Govers G, Desmet P J J. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landscape Ecol,2000,15:579-591
    147. Van Rompaey A, Verstraeten G, Van Oost K, et al. Modelling mean annual sediment yield using a distributed approach. Earth Surf. Proc. Land,2001,26:1221-1236
    148. Van Rompaey A, Govers G, Puttemans C. Modelling land use changes and their impact on soil erosion and sediment supply to rivers. Earth Surf. Proc. Land,2002,27:481-494
    149. Van Rompaey A, Krasa J, Dostal T, et al. Modelling sediment supply to rivers and reservoirs in Eastern Europe during and after the collectivisation period. Hydrobiologia,2003,494: 169-176
    150. Van Rompaey A, Bazzoffi P, Jones R J A, et al. Modelling sediment budgets in Italian catchments. Geomorphology,2005,65:157-169
    151. Van Rompaey A, Krasa J, Dostal T. Modelling the impact of land cover changes in the Czech Republic on sediment delivery. Land Use Policy,2007,24:576-583
    152. Verstraeten G, Van Oost K, Van RompaeyA, et al. Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use Manage,2002,19:386-394
    153. Verstraeten G. Regional scale modelling of hillslope sediment delivery with SRTM elevation data. Geomorphology,2006,81:128-140
    154. Verstraeten G, Poesen J, Gillijns K, et al. The use of riparian vegetated filter strips to reduce river sediment loads:an over-estimated control measure? Hydrol. Precess,2006,20: 4259-4267
    155. Verstraeten G, Prosser I P, Fogarty P. Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia. J. Hydrol,2007,334: 440-454
    156. Wegehenkel M. Estimating of impact of land use changes using the conceptual hydrological model THESEUS-a case study. Physics and Chemistry of The Earth,2002,27:631-640
    157. Wei W, Chen L D, Fu B J, et al. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. Journal of Hydrology,2007,335:247-258
    158. Williams G P. Sediment concentration versus water discharge during single hydrologic events in rivers. Journal of Hydrology,1989,111:89-106
    159. Wischmeier W H, Smith D D. Rainfall energy and its relationship to soil loss. Transaction of American Geophysical Union,1958, (39):285-291
    160. Wischmeier W H, Smith D D. Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains. Agricultural Handbook No.282. Washington DC:USDA,1965
    161. Wischmeier W H, Smith D D. Predicting rainfall erosion losses. US Department of Agriculture, Agricultural Research Service Handbook No.537,1978:58.
    162. Wischmeier W H, Smith D D. Predicting rainfall erosion losses, a guide to conservation planning. Agric. Handb. No.537, US Department of Agriculture, Washington, DC,1978, pp: 58
    163. Wood P A. Controls of variation in suspended sediment concentration in the River Rother, West Sussex, England. Sedimentology,1977,24:437-445
    164. Yeh H Y, Wensel L C, Turnblom E C. An objective approach for classifying precipitation patterns to study climatic effects on tree growth. Forestry Ecology and Management,2000, 139:41-50
    165. Young R A, Onstad C A, Bosch D D, et al.'AGNPS:A Non-Point-Source Pollution Model for Evaluating Agricultural Watersheds,'Journal of Soil and Water Conservation,1989,44: 168-173
    166. Zabaleta A, Martinez M, Uriarte J A, et al. Factors controlling suspended sediment yield during runoff events in small headwater catchments of the Basque country, Catena,2007,71:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700