用户名: 密码: 验证码:
不同排污机制下发电能耗与排放成本优化模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发电行业既是优质清洁能源的创造者,也是一次能源消耗大户和污染排放大户,因而成为国家实施节能减排的重点领域。目前,推进我国发电行业降低能耗和排放主要依靠的是行政手段,包括政府在政策和法律法规的制定、节能减排工作的监管等方面。但目前我国政府对节能减排的行政干预的范围、方式、程度等都存在明显缺陷,主要表现在价格、财税政策等经济激励手段力度不够,法律法规缺失或不适应新形势发展的需要,能源环保管理体制不顺等。为更好的实现我国“十二五”节能减排目标,迫切需要建立发电行业建立排污长效激励机制,以促进企业参与减排的积极性和可持续发展、提高电力节能减排效率、实现电力资源的优化配置。以此为背景,本文主要研究发电能耗与排放的影响因素,以及不同排污机制如排污权交易机制、排污费税机制、排污合作机制下发电能耗与排放成本的一系列问题,并提出了相应的分析及优化方法。
     协调电力产业链各环节的投入产出对降低发电能耗与排放具有重要意义。煤炭生产环节、发电环节、电网输配电环节、用户电力需求环节构成了电力产业链。运用系统动力学方法建立发电能耗与排放分析模拟模型,并对2010-2030年我国发电能耗与排放效果进行模拟仿真和预测分析,得到电力强度、用户电价、煤耗率和清洁能源发电比例是影响发电能耗与排放的四个重要因素的结论。有针对性地推进电力需求侧管理、引导客户科学合理用电,提高锅炉效率、降低发电煤耗率,调整电源结构、提高清洁能源发电比例等,既可节约煤炭等一次能源消耗量,又可以减少温室气体排放。
     发电排污权交易是推动我国排污权交易市场发展、发展低碳电力的重要组成部分。建立计及排污权交易的发电能耗与排放优化模型,该模型以社会效用最大化为目标,考虑到电量约束、功率约束、排放约束、交易约束等条件,是对我国发电排污权交易市场的理论探索。以碳排放权交易为例,由于目前国内发电成本较高、国际碳交易价格水平较低,在我国碳排放权交易市场建立初期,建议通过采用发电权交易和排放权交易混合的交易模式平衡发电企业利润,增加发电企业参与排放权交易的积极性。
     发电排污费税机制是促进发电企业降低能耗与排放的重要经济手段。在激励性排污费的研究中,为同时兼顾到企业效益和社会效益,建立燃煤发电企业能耗与排放两级优化模型,第一级优化模型将社会环境效益和发电节能效益最大化作为目标函数,第二级优化模型以各个发电企业的竞争利益最大化作为目标函数,以第一级模型的KKT条件作为约束。在排污税机制的研究中,建立燃煤发电企业排污税两级优化模型,第一级优化模型将燃煤发电企业成本最小化作为目标函数,第二级优化模型将社会福利最大化作为目标函数,同时引入排放绩效约束,按照总量控制原则分配得到排污指标。上述模型反应出的排污激励税费机制,既可以从总量上控制排放、节约能耗,又提高了燃煤发电企业进行排污治理的积极性。
     发电侧和供电侧开展排污合作博弈是降低发电能耗与排放、提高发供电企业经济效益的重要途径。从发电侧与供电侧合作的角度,在供电公司参与提供可中断负荷下,建立发电侧燃料成本、备用成本和排污成本优化模型;然后,应用博弈论中求解多人合作博弈的Shapley值法,在发电侧与供电侧之间分配利润。双方的合作不仅可以提高利润,而且可以大大提高节能减排效率。
Power generation industry as the focus area of the national implementation of energy saving and emission reduction, is not only the creator of quality clean energy, but also the primary energy guzzler and pollution emitters. At present, promoting energy saving and emission reduction of China's power generation industry relies mainly on administrative measures, including the formulation of policies, laws and regulations and the supervision of energy saving work. There are still obvious defects on the scope, manner and extent of energy saving and emission reduction of government's administrative intervention, including insufficient price and fiscal policy incentives, lack of laws, regulations and energy environmental management system. For better realization of China's "the12th Five-Year" energy saving and emission reduction targets, there is an urgent need to establish the long-term emission incentive mechanisms to promote the enterprises participating in a positive and sustainable development, improve the efficiency of electricity energy saving and achieve the power resources optimization configurations. Against this background, this paper studies the impact factors of energy consumption and emissions of power generation, and series of issues on generation cost of energy consumption and emission under the mechanisms of emissions trading mechanism, emission charge and tax mechnism and emission cooperation mechanism, and raises analysis and optimization methods.
     Coordination input-output relationship of power industrial chain has an important significance to achieve energy saving and emission reduction. Coal production, power generation, power transmission, power distribution and user demand form power industry chain. The generation energy consumption and emission analysis model is established with system dynamics method to simulate effects of energy consumption and emission in power industry chain from2010to2030. Analysis and simulation results showed that electricity strength, user price, coal consumption rate and the proportion of clean energy power generation were the four important influence factors of energy consumption and emission in power industry. Accordingly, there can be targeted to promote demand side management and guide customers to use electricity in scientific and rational ways, improve boiler efficiency and reduce coal consumption rate, adjust the power structure and improve the proportion of clean energy generation, which can both save coal consumption and reduce greenhouse gas emissions.
     The emissions right trading of generation is an important part of promoting the development of China's emissions trading market and the development of low-carbon electricity. Considering the emission right trading, the power generation energy consumption and emissions optimization model is established. As the goal of social utility maximization, the model takes into account the power amount constraints, power output constraints, emission constraints, trading constraints, which is the theoretical exploration of the emission rights trading market. However, during the carbon emission trading process, due to higher cost of domestic power generation and lower international carbon trading price level, it is recommended to mix power generation right trading and emission right trading to balance of power generation profits in the early establishment of China's carbon emissions trading market in order to increase the enthusiasm of participating transaction.
     Generation emission charge and tax are the important economic means to promote power generation enterprises to participate in energy saving and emission reduction. In the emission fee research, considering enterprise benefits and social benefits, two stage optimization models of energy-consumption and emission were established. In the first stage model, maximums of the social environmental benefits and energy-saving effect were conducted as the objective functions. In the second stage model, maximums of power generation enterprises'profits were conducted as the objective functions with the constraints of KKT conditions of the first stage model. In the emission tax research, a two-stage optimization model for emission tax of coal-fired power plants was established. In the first stage model, minimums of the coal-fired power plants'cost were conducted. In the second stage model, maximums of the social welfare made of consumer surplus and producer surplus were conducted as the objective function. Emissions performance method was used to distribute the emission targets of coal-fired power plants in accordance with the principles of total amount control. The proposed marginal incentive emission tax and charge mechanism not only controlled emissions from the total amount, but also improved emissions treatment initiative of coal-fired power generation enterprises.
     Emission cooperation of generation side and supply side is an important way to improve the efficiency of power generation energy saving and emission reduction and raise their profits. Based on cooperation, optimization models of the coal-consumption cost, reserve cost and emission cost of generators were given out considering interruptible loads provided by power supply companies. Then, the Shapley model, as a means of solving multiplayer cooperative game, was applied to allocate profits between the generators and power supply companies. Both sides' cooperation not only raises profits, but also improves the efficiency of energy saving and emission reduction.
引文
[1]Sheble GB, NG KH. Eeonomic Lessons from the Market Evolution of Present US Power Markets[J]. IEE Proceedings Generation Transmission and Distribution, 2001,148(2):185-188.
    [2]Mork E. Emergence of Financial Markets for Electricity:A European Perspective[J]. Energy Policy,2001,29(1):7-15.
    [3]黎灿兵,康重庆,夏清,等.发电权交易及其机理分析[J].电力系统自动化,2003,27(6):13-18.
    [4]尚金成,张立庆.电力节能减排与资源优化配置技术的研究与应用[J].电网技术,2007,31(22):58-63.
    [5]王雁凌,张粒子,等.基于水火电置换的发电权调节市场[J].中国电机工程学报,2006,26(5):131-136.
    [6]郑欣,蒋传文等.基于能耗和效益最优的发电权节能降耗分析[J].电力系统自动化,2008,32(24):39-42.
    [7]姚建刚,周启亮,等.基于期权理论的发电权交易模型[J].中国电机工程学报,2005,25(21):76-81.
    [8]伍玉林,文福拴等.基于两部制电价的发电权交易模式[J].华北电力大学学报,2010,37(5):16-22.
    [9]黄大为,刘志向等.计及网损成本的发电权交易模式[J].电力系统自动化,2010,34(5):38-42.
    [10]卢志刚,陈静思.计及网损的发电权交易报价修正方法[J].电网技术,2010,34(3):146-149.
    [11]莫莉,周建中,等.基于多任务委托代理的发电权交易协调激励机制[J].电力系统自动化,2008,32(23):51-55.
    [12]盛方正,季建华.基于发电期权交易的发电公司决策[J].电力系统自动化,2007,31(23):30-33.
    [13]Hogan W W. Electricity market restructuring:reforms of reforms[J]. Journal of Regulatory Economics,2002,20(1):103-132.
    [14]Joskow P L, Tirole J. Transmission rights and market power on electric power networks[J]. Rand Journal of Economics,2000,31(3):450-487.
    [15]肖健,文福拴.发电权交易的阻塞调度[J].电力系统自动化,2008,32(18):24-29.
    [16]Sarkar V, Khaparde S A. A comprehensive assessment of the evolution of financial transmission rights[J]. Transactions on Power Systems,2008,23(4): 1783-1795.
    [17]Pritchard G, Philpott A. On financial transmission rights and market power[J]. Decision Support Systems,2005, (40):507-515.
    [18]肖健,彭政.考虑机组停机的发电权交易阻塞调度[J].华东电力,2010,38(5):0655-0658.
    [19]肖健,文福拴.混合发电权交易市场环境下的阻塞协调调度[J].电力系统自动化,2010,34(8):44-48.
    [20]GALIANA F D, PHELAN M. Allocation of transmission losses to bilateral contracts in a competitive environment[J]. IEEE Trans on Power Systems,2000, 15(1):143-150.
    [21]艾东平,鲍海,杨以涵.基于电路理论的发电权交易网损增量补偿解析[J].电力系统保护与控制,2010,38(22):135-140.
    [22]王楠,张粒子等.发电权交易增量网损计算及分摊方法[J].电力系统自动化,2010,34(19):25-30.
    [23]尚金成.兼顾市场机制的主要节能发电调度模式比较研究[J].电网技术,2008,32(4):78-85.
    [24]滕晓毕,李继红等,有序调停燃煤机组的节能调度模式及效益分析[J].中国电力,2010,43(9):19-23.
    [25]苗增强,谢宇翔等.兼顾能耗与排放的发电侧节能减排调度新模式[J].电力系统自动化,2009,33(24):16-20.
    [26]陈皓勇,张森林,等.区域电力市场环境下节能发电调度方式[J].电网技术,2008,32(24):16-22,
    [27]范玉宏,张维等.区域电网节能发电调度模式研究[J].电力系统保护与控制,2009,37(16):107-111.
    [28]范玉宏,张维等.基于机组煤耗高低匹配替换的区域电网节能调度模型[J].电网技术,2009,33(6):78-81.
    [29]韩彬,周京阳等.引入S02排放惩罚价格因子的节能减排发电调度模型及实用算法[J].电网技术,2009,33(19):50-54.
    [30]孙静,于继来.节能发电调度问题的多目标期望控制模型及解法[J].电力系统自动化,2010,34(11):23-27.
    [31]ABIDOMA. Environmental/economic power dispatch using multiobjective evolutionary algorithms[J]. IEEETrans on Power Systems,2003,18(4): 1529-1537.
    [32]尚金成,庞博等.节能发电调度经济补偿机制市场模型及算法[J].电网技术,2010,34(4):62-68.
    [33]WANG L, SINGH C. Environmental/economic power dispatch using a fuzzified multiobjective particle swarm optimization algorithm[J]. Electric Power Systems Research.2007,77(12):1654-1664.
    [34]Choi J, Jeong S, Bo Shi, et al. CO2, SOx and NOx emissions constrained multi-criteria-best generation mix using fuzzy set theory[C]. Power Engineering, 2007 Large Engineering Systems Conference on Montreal, Quebec, Canada, 2007.
    [35]刘盛松,邰能灵,侯志俭,等.基于最优潮流与模糊贴近度的电力系统环境保护研究[J].中国电机工程学报,2003,23(4):21-26.
    [36]彭春华.综合环境保护及竞价风险的发电侧经济运行[J].中国电机工程学报,2008,28(28):97-102.
    [37]Ongsakul Weerakorn, Petcharaks Nit. Unit commitment by enhanced adaptive Lagrangian relaxation[J]. IEEE Trans on Power Systems,2004,19(1):620-628.
    [38]陈之栩,谢开灯.电网安全节能发电日前调度优化模型及算法[J].电力系统自动化,2009,33(1):10-13.
    [39]苏鹏,刘天琪等.基于改进粒子群算法的节能调度下多目标负荷最优分配[J].电网技术,2009,33(5):48-53.
    [40]赵维兴,林成等.安全约束条件下综合煤耗最优的节能调度算法研究[J].电力系统保护与控制,2010,38(9):1822.
    [41]饶攀,彭春华.基于改进微分进化算法的节能减排发电调度研究[J].华东交通大学学报,2010,27(5):48-52.
    [42]McArthur, Davidson S D J, Funabashi F. Multi-Agent systems for power engineering applications-part Ⅱ:technologies, standards, and tools for building multiAgent systems[J]. IEEE Transactions on Power Systems,2007,22(4): 1753-1759.
    [43]Zhao B, Guo C X, CaoYJ. A multi-Agent-based particle swarm optimization approach for optimal reactive power dispatch[J]. IEEE Trans on Power Syst, 2005,20(2):1070-1078.
    [44]Nordman M M, Lehtonen M. Distributed Agent-based state estimation for electrical distribution networks[J]. IEEE Trans on Power Syst,2005,20(2): 652-658.
    [45]Dimeas A L, Hatziargyriou N D. Operation of a multi-Agent system for microgrid control[J]. IEEE Trans on Power Syst,2006,20(3):1447-1455.
    [46]Mcarthur S D J, Booth D, McDonald J R, et al. An Agent-based anomaly detection architecture for condition monitoring[J]. IEEE Trans on Power Syst, 2005,20(4):1675-1682.
    [47]Davidson E M, McArthur S D J, McDonald J R. Applying multi-Agent system technology in practice:automated management and analysis of SCADA and digital fault recorder data[J]. IEEE Trans on Power Syst,2006,21(2):559-567.
    [48]Baran M E, EI-Markabi I M. A multi-Agent-based dispatching scheme for distributed generators for voltage support on distribution feeders[J]. IEEE Trans on Power Syst,2007,22(1):52-59.
    [49]McArthur S D J, Strachan S M, Jahn G. The design of a multi-Agent transformer condition monitoring system[J]. IEEE Trans on Power Syst,2004,19(4): 1845-1852.
    [50]尚金成.节能发电调度的经济补偿机制研究:(一)基于行政手段的经济补偿机制设计与分析[J].电力系统自动化,2009,133(2):44-48.
    [51]尚金成.节能发电调度的经济补偿机制研究:(二)基于市场机制的经济补偿机制设计与分析[J].电力系统自动化,2009,33(13):46-50.
    [52]叶永松,张维,等.兼容市场机制的节能发电调度利益补偿机制研究[J].电力需求侧管理,2008,10(6):7-15.
    [53]Tietenberg T. Environmental and natural resource economics[M]. Boston: Addison Wesley,2003.
    [54]Tzetakis E S. On the efficiency of competitive markets for emission permit[J]. Environmental and Resource Economics,2004,27(10):1-19
    [55]Bramoulle Y, Olsonb L. Allocation of pollution abatement under learning by doing[J]. Journal of Public Economics,2005,89(9):1935-1960.
    [56]Duggan J, Roberts J. Implementing the efficient allocation of pollution[J]. American Economic Review,2002,92(4):1070-1078.
    [57]Kling C L, Zhao J H. On the long-run efficiency of auctioned vs. free permit[J]. Economics Letters,2000,69(2):235-238.
    [58]赵文会.排污权交易市场理论与实践[M].北京:中国电力出版社,2010.
    [59]金帅,盛昭瀚等.区域排污权交易系统监管机制均衡分析[J].中国人口资源与环境,2011,21(3):14-19.
    [60]任玉珑,罗晓燕等.基于高低匹配的排污权交易市场机制设计[J].统计与决策,2011,(5):60-61.
    [61]王珂,毕军等.排污权有偿使用政策的寻租博弈分析[J].中国人口资源与环境,2010,20(9):95-99.
    [62]李清雅,许筝等.基于流域管理的排污权交易模式研究[J].中国人口资源与环境,2010,20(3):43-46.
    [63]James J. Murphy, John K. Stranlund. A laboratory investigation of compliance behavior under tradable emissions rights:Implications for targeted enforcement[J]. Journal of Environmental Economics and Management,2007, 53(2):196-212.
    [64]Kahana N, Mealemc Y, Nitzan S. A complete implementation of the efficient allocation of pollution[J]. Economics Letters,2008,101(2):142-144.
    [65]WOERDMAN E. Implementing the Kyoto Protoco:1 Why JI and CDM show more promise than international emissions trading[J]. Energy Policy,2000, 28(1):29-38.
    [66]FARE R, GROSSKOPF S, PASURKA C. Environmental Production Functions and Environmental Directional Distance Functions[J]-Energy,2007, 32(7):1055-1066.
    [67]MASTAD O. Allocation of emission permits with leakage through capitalmarkets[J]. Resource and Energy Economics,2007,29(1):40-57.
    [68]林涛,储益萍等.排污权交易初始分配价格的制定与调节[J].哈尔滨商业大学学报,2011,27(1):33-36.
    [69]饶从军,赵勇.基于统一价格拍卖的初始排污权分配方法[J].数学的实践与认识,2011,41(3):48-55.
    [70]颜蕾,彭建华.S02初始排污权分配模式研究[J].重庆理工大学学报,2010,24(10):60-64.
    [71]王成勇.基于成本效率的排污权初始分配模型建立[J].技术与市场,2010,17(6):12-1:3.
    [72]高鑫,潘磊.从社会资本角度探索创新排污权初始分配模式[J].生态经济,2010,(5):34-37.
    [73]Julien Hanoteau. The political economy of tradable emissions permits allocation[J]. Political Economy of Environment Policy,2003,24(3):1-20.
    [74]Athanasios Kampas. Selecting permit allocation rules for agricultural pollution control:A bargaining solution[J]. Ecological Economics,2003,47:135-147.
    [75]Carolyn Fisher. Out-based allocations of emissions permits:Efficiency and distributional effects in a general equilibrium setting with taxes and trade[J]. Resources for the Future,2004:1-27.
    [76]Cramton P, Kerr S. Tradeable carbon permit auctions-how and why to auction not grandfather [J]. Energy Policy,2002,30(4):333-345.
    [77]李爱年,胡春冬.排污权初始分配的有偿性研究[J].中国软科学,2003,(05):17-21.
    [78]张颖,王勇.我国排污权初始分配的研究[J].生态经济,2005,(08):50-52.
    [79]SOUS A J, PINTO B, ROSA N, et al. Emissions trading impact on the power industry with application to the Iberian electricity market[C]. Proceedings of IEEE Power Tech Conference, June 27-30,2005, Saint-Petersburg, Russia: 1-4.
    [80]LAURIKKA H, KOLJNEN T. Emissions trading and investment decisions in the power sector:a case study in Finland[J]. Energy Policy,2006,34(9): 1063-1074.
    [81]CHAPPIN E J L, DIJKEMA G P J. On the impact of CO2 emission-trading on power generation emissions[J]. Technological Forecasting and Social Change, 2009,76(3):358-370.
    [82]任玉珑,夏德建.中国电力行业排污权交易机制设计研究[J].技术经济,2010,29(1):35-43.
    [83]寻斌斌,文福拴等.电力联营体模式下计及排污权交易的跨期多市场均衡[J].电力系统自动化,2011,35(3):21-27.
    [84]Remei Aldrich, F. Xavier Llauro, Josep Puig, Pere Mutje, M. Angels Pelach. Allocation of GHG emissions in combined heat and power systems:a new proposal for considering inefficiencies of the system[J]. Journal of Cleaner Production,2011,19(9):1072-1079
    [85]PERSSON TA, AZAR C, LINDGRENK. Allocation of CO2 emission permits-Economic incentives for emission reductions in developing countries[J]. Energy Policy,2006,34(14):1889-1899.
    [86]任玉珑,王昌海,等.排污权制度下的电力市场稳定性分析[J].工业工程,2009,12(1):5-9.
    [87]Maeda A. The emergence of market power in emission rights markets:the role of initial permit distribution[J]. Journal of Regulatory Economics,2003,234(3): 293-314.
    [88]Kenneth L. Wertz. Short-run Effects of an Increased Effluent Charge In a Competitive Market[J]. The Canadian Journal of Economics,1974,7(4): 676-682.
    [89]Alfred Endres. Do effluent charges (always) reduce environmental damages[J]. Oxford economics paper(new Series),1983,35(2):254-261.
    [90]傅国伟,王永航.排污收费标准制定理论及技术方法研究[J].环境科学学报,1999(7):378-382.
    [91]赵勇,祝飞,岳超群.排污收费的定价模型探讨[J].华中理工大学学报,1999(4):74-76.
    [92]林鉴军,任玉珑,唐浩阳.基于古诺模型的电力市场排污收费制度研究[J].生态经济,2007,(5):99-101.
    [93]肖江文,严浩,等.寡头垄断市场排污收费的政府调控模型[J].数学的实践与认识,2006,36(3):1-4.
    [94]郑佩娜,陈新庚等.排污收费制度与污染物减排关系研究[J].生态环境,2007,16(5):1376-1381.
    [95]王均奇,施国庆.动态排污收费机制分析[J].水资源保护,2007,23(5):75-81.
    [96]李煜华,张铁男,孙凯.基于价格控制的排污收费二层线性规划模型[J].统计与决策,2008,(11):41-43.
    [97]A. Sandmo. Efficient Environmental Policy With Imperfect Compliance[J]. Environmental Resource Economics.2002,23:85-103.
    [98]Gert Tinggaard Svendsen, Carsten Daugbjerg, Lene H. Consumers, Industrialists and the Political Economy of Green Taxation:CO2 Taxation in OECD[J]. Energy Policy,2001(29):489-497.
    [99]Leslie Shiell. Descriptive, Prescriptive and Second-best Approaches to the Control of Global Greenhouse Gas Emissions[J]. Journal of Public Economics, 2003(87):1431-1452.
    [100]Schuichi Ohori. Optimal Environmental Tax and Level of Privatization in an International Duopoly[J]. Journal of Regulatory Economics,2006(29): 225-233.
    [101]Christoph Bohringer, Klaus Conrad and Andreas Loschel. Carbon Taxes and Joint Implementation[J]. Environmental and Resource Economics,2003(24): 49-76.
    [102]谭宗宪.关于建立绿色税收体系的思考[J].黑河学刊,2004,(5):45-48.
    [103]Andrii Gritsevskyi, Nebojsa Nakicenovic, Modeling Uncertainty of Induced Technological Change[J]. Energy Poliey,2000(28):907-921.
    [104]Asami Miketa, Leo Schrattenholzer. Experiments with a Methodology to Model the Role of R&D Expenditures in Energy Technology Learning Processes: First Results[J]. Energy Policy,2004,32(15):1679-1692.
    [105]刘强,姜克隽,等.碳税和能源税情景下的中国电力清洁技术选择[J].中国电力,2006,39(9):19-23.
    [106]马士国.征收硫税对中国二氧化硫排放和能源消费的影响[J].中国工业经济,2008,(2):20-30.
    [107]王灿,陈吉宁,邹骥.基于CGE模型的C02减排对中国经济的影响[J].清华大学学报(自然科学版),2005,45(12):1621-1624.
    [108]于娟,彭希哲.碳税循环政策对中国农村能源结构调整的作用—基于CGE模型的政策讨论[J].世界经济文汇,2007,(6):86-98.
    [109]刘强,姜克隽,胡秀莲.碳税和能源税情景下的中国电力清洁技术选择[J].中国电力,2006,39(9):19-23.
    [110]Hiroyuki Tamura, Takashi Kimura. Evaluating the Effectiveness of Carbon Tax and Emissions Trading for Resolving Social Dilemma on Global Environment[C]. Systems, Man and Cybernetics,2007. ISIC. IEEE International Conference,1746-1751.
    [111]Yao Dong, Jianzhou Wang, He Jiang, Jie Wu. Short-term electricity price forecast based on the improved hybrid model[J]. Energy Conversion and Management,2011,52(8):2987-2995.
    [112]C. Unsihuay-Vila, A. C. Zambroni de Souza, J. W. Marangon-Lima, P. P. Balestrassi. Electricity demand and spot price forecasting using evolutionary computation combined with chaotic nonlinear dynamic model[J]. International Journal of Electrical Power & Energy Systems,2010, 32(2):108-116.
    [113]Y. X. He, L. F. Yang, H. Y. He, T. Luo, Y. J. Wang. Electricity demand price elasticity in China based on computable general equilibrium model analysis[J]. Energy,2011,36(2):1115-1123.
    [114]Graeme Guthrie, Steen Videbeck. Electricity spot price dynamics:Beyond financial models[J]. Energy Policy,2007,35(11):5614-5621.
    [115]廖永进,王力,等.火电厂脱硫电价研究与探讨[J].中国电力,2008,41(3):71-74.
    [116]刘晓壮,王世昌,等.新燃煤机组脱硫电价下的脱硫经济性分析[J].广州化][,2009,37(4):58-60.
    [117]沈继楼.完善差别电价政策促进资源节约和环境保护[J].价格理论与实践,2006,(10):1-2.
    [118]施应玲,孙艺新,等.差别电价效应及影响因素的系统动力学分析[J].技术经济,2008,27(8):85-89.
    [119]施应玲,孙艺新,等.差别电价传导机制及延迟性的系统动力学模拟[J].技术经济,2009,28(3):66-69.
    [120]谭忠富,陈广娟,等.以节能调度为导向的发电侧与售电侧峰谷分时电价联合优化模型[J].中国电机工程学报,2009,29(1):55-62.
    [121]胡福年,汤玉东,邹云.考虑双边价格联动的峰谷分时电价机理研究[J].中国电机工程学报,2007,27(25):61-66.
    [122]李才华,罗鑫,张粒子.完善可再生能源电价机制的设想[J].价格理论与实践,2007,(5):23-28.
    [123]时憬丽.关于在电力市场环境下建立和促进可再生能源发电价格体系的研究[J].可再生能源,2008,30(1):43-47.
    [124]谭忠富,侯建朝.电价设计与电力产业节能的关系研究[J].华北电力大学学报(社会科学版),2007,(2):56-59.
    [125]HLEDIK R. How green is the smart grid[J].The Electricity Journal,2009(4): 29-41.
    [126]KLOBASA M. Analysis of demand response and wind integration in Germany's electricity market [J]. IET Renewable Power Generation,2010, 4(1):55-63.
    [127]SIOSHANSI R. Evaluating the impacts of real-time pricing on the cost and value of wind generation[J]. IEEE Transactions on Power Systems,2010,25(2): 741-748.
    [128]FINN P, FITZPATRIC C, LEAHY M. Increased penetration of wind generated electricity using real time pricing & demand side management [C]. IEEE International Symposium on Sustainable Systems and Technology. Tempe, AZ, USA:ISSST'09,2009:1-6.
    [129]MALIDIN A S, KAYSER-BRIL C, MAIZI N, et al. Assessing the impact of smart building techniques:a prospective study for France[C].2008 IEEE Energy 2030 Conference. Atlanta, GA, USA:IEEE,2008:1-7.
    [130]SAIZMAA T, KIM Heecheol. Smart home design:home or house? [C]. Proceedings of the Third 2008 International Conference on Convergence and Hybrid Information Technology. Busan, Korea:IEEE Computer Society, 2008:143-148.
    [131]国网能源研究院.2010世界能源与电力统计分析报告[M].北京:中国电力出版社,2010
    [132]朱四海.电力节能减排政策解析[M].北京:中国电力出版社,2010.
    [133]孟弘.低碳经济背景下加快推进我国排污权交易的建议[J].科技管理研究,2011(12):89-92
    [134]姜妮.“十二五”:排污权交易期待新突破[J].环境经济,2011(6):20-27.
    [135]白宇飞,王冠群.我国排污收费制度的变迁历程及改革完善措施[J].学术交流,2011,212(11):79-82.
    [136]袁潮清.中国节能降耗途径的节能效果测算及优化研究[D].南京航空航天大学博士学位论文,2011.
    [137]马亚梅.可持续发展网络群体认知的模型研究[D].昆明理工大学硕士论文,2010.
    [138]Zhaoguang Hu, Jiahai Yuan, Zheng Hu. Study on China's low carbon development in an Economy-Energy-Electricity-Environment framework[J]. Energy Policy,2011(39):4511-4521.
    [139]秦祯芳.零售市场中电量电价弹性系数分析[D].天津大学硕士论文,2003.
    [140]张胜军,徐鹏炜,卢瑛莹,郦颖.浙江省排污权初始分配与有偿使用定价方法初探[J].环境污染与防治,2010,32(7):96-99.
    [141]李丹峰.基于多目标优化理论的小流域水排污权交易技术研究[D].浙江大学硕士论文,2010.
    [142]王金南,高树婷,杨金田.排放绩效:电力减排新机制[M].北京:中国环境科学出版社,2006.
    [143]Ongsaku W, Petcharaks N. Unit commitment by enhanced adaptive lagrangian relaxation[J]. IEEE Trans, on Power Systems,2004,19(1):620-628.
    [144]Dang C Y, Li M Q. Floating-point genetic algorithm for solving the unit commitment problem[J]. European Journal of Operational Research,2007, 181(3):1370-1395.
    [145]张晓花,赵晋泉,陈星莺.节能减排多目标机组组合问题的模糊建模及优化[J].中国电机工程学报,2010,30(22):71-75.
    [146]C. J. Day, B. F. Hobbs, J. S. Pang. Oligopolistic competition in power networks:a conjectured supply function approach[J]. IEEE Transactions on Power Systems,2002,17(3):597-607.
    [147]B. F. Hobbs. Linear Complementarity Models of Nash-Cournot competition in bilateral and poolco power[J]. IEEE Transactions on Power Systems,2001,6(2): 194-202.
    [148]王晛,李渝曾,张少华.求解电力市场均衡模型的非线性互补方法[J].电力系统自动化,2004,28(1):7-11.
    [149]V. Vahidinasab, S. Jadid. Multiobjective environmental/techno-economic approach for strategic bidding in energy markets[J]. Applied energy,2009,86(4): 496-504.
    [150]Tan X, Lie T T. Application of the Shapley Value on transmission cost allocation in the competitive power market environment[J]. IEE Proceeedings-Generation, Transmission and Distribution,2002,149(1):15-20.
    [151]Senjyu T, Yamashiro H, Uezato K, et al. A unit commitment problem by using genetic algorithm based on characteristic classification[C]. IEEE Power Engineering Society Winter Meet, New York,2002.
    [152]P. K. Hota, R. Chakrabarti, P. K. Chattopadhyay. Economic emission load dispatch through an interactive fuzzy satisfying method[J]. Electric Power Systems Research,2000(54):151-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700