用户名: 密码: 验证码:
地震动的速度脉冲对结构反应及结构减隔震性能影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近断层地震动非常复杂,受地壳介质和地表局部场地影响的同时,更受地震断层破裂尺度、断层面位错的发展过程、破裂速度、滑动方向等因素的影响。近断层地震动常具有震动集中性、速度脉冲、永久位移以及破裂的方向性和上/下盘效应等特征。其中,地震动速度脉冲随带着很高能量,结构在近断层脉冲型地震动激励下的反应力、位移和延性都会较一般地震记录激励下的大。本文的研究目的是揭示近断层速度脉冲的工程影响特性,为近断层区域工程结构抗震设防提供有参考价值的建议。为了排除地震动谱特征的不同对结构地震反应分析结果所造成的影响,本文提山了一种控制地震动峰值速度和位移的人工合成地震动的方法,将实际的速度脉冲型地震动与相对应的有相同反应谱且控制峰值速度但无速度脉冲的人工合成地震动作为输入,对工程结构的地震反应进行对比分析,以突显速度脉冲这一因素对工程结构的影响。在进行工程结构反应分析计算时,考虑了速度脉冲成机制的不同,分别选取了典型的具有向前方向性效应和具有滑冲效应的速度脉冲型强震动记录时程作为输入地震动,同时建立了钢筋混凝上框架结构、基础隔震建筑和大跨斜拉桥结构三种代表性结构模型。计算分析了地震动的速度脉冲对结构地震反应和减震效果的影响及两种不同产生机理的地震动速度脉冲对框架结构建筑及基础隔震建筑影响的差异。
     主要研究内容和结论包括以下5个方面:
     (1)提出一种以绝对加速度反应谱和峰值加速度、峰值速度、峰值位移多参数为控制目标的人工地震动时程合成的方法。在拟合目标加速度反应谱的前提下,通过单独调整傅立叶谱中较长周期成分来控制合成地震动峰值速度和位移。结果表明,该方法所得结果对目标反应谱和目标峰值加速度、峰值速度(或峰值位移)的拟合具有很高的精度,其结果对研究地震动的速度脉冲的影响具有理论与实际意义,也是本文后续研究工作的基础。
     (2)分别以4层、9层和14层的钢筋混凝土框架结构建筑为典型建筑结构计算模型,分析计算探讨了地震动速度脉冲对钢筋混凝土框架结构地震反应的影响,以及向前方向性效应和滑冲效应两类地震动速度脉冲对钢筋混凝土框架结构地震反应影响的差异。利用6条速度脉冲型强震动记录,并以这些速度脉冲型地震动的峰值加速度和反应谱作为目标谱分别合成各6条控制峰值速度的无速度脉冲的地震动时程样本,对比分析了在有、无速度脉冲的地震动作用下钢筋混凝土框架结构的反应。研究结果表明,地震动速度脉冲使钢筋混凝土框架结构变形明显变大,滑冲效应速度脉冲和向前方向性效应速度脉冲对短周期的中、低层钢筋混凝土框架结构的变形影响在弹性阶段并无明显差异,而对于周期较长的高层钢筋混凝土框架结构,相对于向前方向性速度脉冲而言,滑冲效应速度脉冲对结构的层间变形影响更大。
     (3)分别以4层、9层和14层的基础隔震建筑为典型隔震建筑结构计算模型,对速度脉冲地震动作用下基础隔震装置的有效性进行了分析讨论。利用6条速度脉冲型地震动记录,对比分析了在速度脉冲地震动激励下钢筋混凝上框架结构和基础隔震建筑的地震反应。研究结果表明,在速度脉冲型地震动作用下,铅芯橡胶支座具有较好的耗能能力,近断层脉冲型地震动作用下基础固定结构的地震反应比基础隔震结构的地震反应明显偏大,结构基础隔震装置可以显著地减轻近断层脉冲型地震动作用下结构的反应。
     (4)分别以4层、9层和14层的基础隔震建筑为典型隔震建筑结构计算模型,进一步分析了速度脉冲对基础隔震结构地震反应的影响特征,并深入探讨了两类地震动速度脉冲对基础隔震地震反应影响的差异。研究结果表明,速度脉冲使得基础隔震结构的位移反应明显增大,对于4层和9层基础隔震结构,滑移效应脉冲引起的位移反应略大于向前方向性速度脉冲,而对于14层基础隔震结构,向前方向性速度脉冲对位移反应的影响更大些。速度脉冲对结构底部位移反应的影响明显大于对上部结构的影响,且滑冲效应速度脉冲使得结构底部变形更大,导致结构可能发生倒塌破坏,向前方向性效应速度脉冲对结构底部与顶部的影响差异不大。
     (5)以一座大跨飘浮体系斜拉桥为例,利用三维有限元方法计算分析了地震动速度脉冲对斜拉桥地震反应和减震控制效果的影响,研究中选择了4组具有速度脉冲特性的实际地震动加速度记录及人工模拟的具有相同加速度反应谱和峰值加速度而无速度脉冲的地震动时程分别作为地震动输入。总体上看,斜拉桥在速度脉冲型地震动作用下的地震反应大部分要大于无速度脉冲型地震动的,近断层地震动的速度脉冲对斜拉桥无控制、半主动控制和被动控制地震反应均具有一定的不利影响,且地震动的速度脉冲对半主动控制和被动控制减震效果的影响趋势大体相同。
The near-fault strong ground motion is very complex, mainly affected by the length of fault rupture, the development process of fault dislocation, fault rupture velocity, sliding direction and other factors. The basic characteristics of near-fault ground motion include the concentration of strong ground motions, surface rupture, rupture directivity effect, large velocity pulse and hanging wall effect. For all of these basic characteristics, the large velocity pulse with very high energy has the greatest influence on the engineering structures, and the seismic responses (such as stress, displacement, ductility and etc.) of structures subjected to velocity pulse are much greater than those ground motions without velocity pulse.
     The purpose of this study is to reveal the engineering characteristics of velocity pulse, and to provide valuable advice for the seismic design of structure near fault. In order to eliminate the influence to results caused by different response spectrums, this paper proposes a synthetic method of seismic motion. Several strong motion records with velocity pulse and corresponding synthetic time histories with same response spectra are used as ground motion inputs, and the seismic responses of structure are compared and analyzed to highlight the effect of velocity pulse on engineering structures. Reinforced concrete (RC) frame structures, base-isolated structures and large span cable-stayed bridge structure are modeled with Finite Element Method for the seismic responses analysis. For the selection of ground motion with velocity pulse, the forming mechanism of velocity pulse is specially considered. Typical ground motion with forward directivity pulses and fling-step pulses are used as ground motion inputs. In the paper, the influence of velocity pulse to the seismic responses and the damping effect are discussed. At the same time, the differences of two kinds of velocity pulse to the seismic response of RC frame structures and base-isolated structures are compared.
     The main contents and research results include the following5aspects:
     (1) A synthetic method of seismic time-history with the absolute acceleration response spectrum and the peak velocity as target is proposed. Under the premise of fitting the target acceleration response spectrum, the peak ground velocity is obtained by a separate adjustment of long period component of the ground motion Fourier Spectrum. The results show that this fitting method has a high precision for the target response spectrum and target peak velocity, and it has theory and practical significance on the study on velocity pulse.
     (2) In order to study the different influences of two types of velocity pulses to the seismic response of RC frame structures, the seismic responses of3RC frame structures (4stories,9stories and14stories) under the velocity pulse are analyzed with three dimensional finite element models. Comparative analyses were carried out for the seismic responses of the RC frame structures under6ground motion records with velocity pulse and corresponding6synthetic time histories with same response spectra but without velocity pulse. The results show that the seismic response of RC frame structures under the ground motions with velocity pulse is significantly greater than the ground motions with no velocity pulse. The influence of forward-directivity pulses and fling-step pulses to median-low RC frame structures have no obvious difference in elastic stage, but for the seismic displacement response of the longer period of high-rise RC frame structures, the influence of forward directivity pulse is greater than fling-step pulse.
     C3) To study the validity of base isolating for a building under near-fault velocity pulse,3base-isolated buildings(4stories,9stories and14stories) are selected as typical base-isolated structures. Comparative analyses were done for the seismic responses of the RC frame structures and the base-isolated structures under6near-fault ground motions with velocity pulse. The results show that the lead rubber bearing has the good ability of energy dissipation under near-fault ground motions with velocity pulse. The seismic responses of base fixed structures under near-fault ground motions with velocity pulse are apparently bigger than the seismic responses of base-isolated structures. The lead rubber bearing can significantly reduce the seismic responses of base-isolated structures under near-fault ground motions with velocity pulse.
     (4) In order to study the different influences of two types of velocity pulses to the seismic response of base-isolated buildings, the seismic responses of3base-isolated buildings (4stories,9stories and14stories) under the velocity pulse are analyzed with three dimensional finite element models. Comparative analyses were carried out for the seismic responses of the RC frame structures under6ground motion records with velocity pulse and corresponding6synthetic time histories with same response spectra but without velocity pulse. The results show that the seismic displacement response of base-isolated buildings under the ground motions with velocity pulse is significantly greater than the ground motions without velocity pulse. For the4-story and9-story base-isolated buildings, the impact of fling-step pulse is a little bigger than forward directivity pulse. For the14-story base-isolated buildings, the impact of forward directivity pulse is bigger than fling-step pulse. The fling-step pulses lead to large displacement response in the lower layer of base-isolated building, and the forward directivity velocity pulse has a certain influence on each layer of base-isolated building.
     (5) In order to study the influence of velocity pulse on the seismic response and seismic control for a long-span floating cable-stayed bridge, three dimensional finite element model are set up, inputting with4strong motion records with velocity pulse and corresponding4synthetic time histories with the same response spectra but without velocity pulse. In general, most seismic responses of a cable-stayed bridge subject to ground motions with velocity pulse are greater than those without velocity pulse. Ground motions with velocity pulse can make bad influence on seismic responses of non-control, semi-active control and passive control for the cable-stayed bridge, and the influence on semi-active control is almost same as the influence on passive control.
引文
[1]GB50011-2001建筑抗震设计规范[S].
    [2]白文婷.地震动的脉冲特性与结构破坏之间的关系研究初探[D].中国地震局工程力学研究所硕士学位论文,哈尔滨,2005.
    [3]北京金土木软件技术有限公司,中国建筑标准设计研究院.SAP2000中文版使用指南[M].北京:人民交通出版社,2006.
    [4]伯克利大学http://www.eqsols.com/Bispec.aspx.
    [5]蔡长青,沈建文.人造地震动的时域叠加法和反应谱整体逼近技术[J].地震学报,1997,19(1):71-78.
    [6]程纬.地震加速度反应谱拟合的直接法研究[J].工程力学,2000,17(1):83-87.
    [7]大崎顺彦著,吕敏申,谢礼立译.地震动的谱分析入门[M].地震出版社,北京:1980.
    [8]戴君武,张敏政,等.地震动的3D-瞬态特征与结构破坏的关系[J].辽宁工程技术大学学报,2004,23(4):453-456.
    [9]党育,杜永峰,李慧,韩建平.基础隔震结构的耗能分析[J].世界地震工程,2005;21(3).
    [10]范立础.桥梁抗震[M].同济大学出版社,1997
    [11]胡聿贤.地震工程学[M].地震出版社,1988
    [12]胡聿贤,何训.考虑相位谱的人造地震动反应谱拟合[J].地震工程与工程振动,1986,6(2):37-51.
    [13]胡聿贤.地震安全性评价工作培训教材[M].北京:地震出版社,1999.
    [14]姜慧,黄剑涛,俞言祥等,地表破裂断层近场速度大脉冲研究[J].华南地震,2009,29(2):1-9.
    [15]江近仁,洪峰.功率谱与反应谱的转换和人造地震波[J].地震工程与工程振动,1984,4(3):1-11.
    [16]李爽,谢礼立.近场脉冲型地震动对钢筋混凝土框架结构影响[J].沈阳建筑大学学报,2006,22(3):406-410.
    [17]李爽,谢礼立.近场问题的研究现状与发展方向[J].地震学报,2007,29(1):102-111.
    [18]李爽.近场脉冲型地震动对钢筋混凝土框架结构影响[D].哈尔滨工业大学硕士学位论文,哈尔滨,2005.
    [19]李新乐,窦慧娟,孙建刚,近断层地震动速度脉冲之桥梁地震反应敏感参数分析[J],大连民族学院学报,2008,10(3):261-265
    [20]李新乐,窦慧娟,朱晞,孙建刚.缺乏近断层强震观测资料地区抗震设计规范反应谱研究[J].地震学报,2007,29(4):419-425.
    [21]李新乐,王瀑,窦慧娟,杜蓬娟.近断层地震动峰值加速度特性研究[J].大连民族大学学报.2006,32(3):73-75.
    [22]李新乐,朱晞.近断层地震动等效速度脉冲研究[J].地震学报,2004,26(6):634-643.
    [23]李新乐,朱晞.近断层地震速度脉冲效应对桥墩地震反应的影响[J].北方交通大学学报,2004,28(1),11-16
    [24]李新乐,朱晞.抗震设计规范之近断层中小地震影响[J].工程抗震,2004b,4:43-46.
    [25]李新乐,朱晞.考虑场地和震源机制的近断层地震动衰减特性的研究[J].工程地质学报.2004,12(2):141-148.
    [26]李新乐,朱晞.近场地震速度脉冲效应及模拟模型的研究[J].中国安全科学学报,2003,13(12):48-52
    [27]刘鹏程,林皋,金春山.考虑地震环境的人造地震动合成方法[J].地震工程与工程振动,1992,12(4):9-15.
    [28]刘启方,袁一凡,金星,丁海平.近断层地震动的基本特征[J].地震工程与工程振动,2006,26(1):1-10.
    [29]刘士林,梁智涛,候金龙,孟凡超.斜拉桥[M].人民交通出版社,2002
    [30]刘文光,橡胶隔震支座力学性能及隔震结构地震反应分析研究[D].北京工业大学博士学位论文,北京,2003.
    [31]廖文义,罗俊雄,万绚.隔震桥梁承受近断层地震之反应分析[J].地震工程与工程振动,2001,21(4):102-108.
    [32]陆鸣,田学民,王笃国,李丽媛.建筑结构基础隔震技术的研究和应用[J].震灾防御技术,2006;1(1).
    [33]卢明奇,近断层地震加速度设计反应谱,三峡大学学报:自然科学版.2007,29(1).-33-36,45
    [34]罗伟,近断层地震作用下钢筋混凝土多层框架结构的响应分析[D].北京交通大学硕士学位论文,北京,2008.
    [35]倪永军,朱晞.近断层地震的加速度峰值比和反应谱分析[J].北方交通大学学报,2004,28(4):1-5.
    [36]倪永军.桥梁结构抗震设计的设计地震与基于位移的抗震设计方法[D].北方交通大学学位论文,北京,2001
    [37]欧进萍.结构振动控制——主动、半主动和智能控制[M].科学出版社,2003
    [38]潘波,许建东,关口春子等,2006.北京地区近断层强地震动模拟.地震地质,28(4):623-634.
    [39]彭俊生,罗永坤,彭地.结构动力学、抗震计算[M].成都:西南交通大学出版社,2007.
    [40]亓兴军,李小军,李美玲.设置粘滞阻尼器的大跨斜拉桥抗震分析[J].铁道建筑,2007,2007(1):1-3
    [41]亓兴军,李小军.大跨飘浮体系斜拉桥减震控制研究[J].振动与冲击,2007,26(3):79-82
    [42]亓兴军.桥梁减震半主动控制研究[D].中国地震局地球物理研究所博士学位论文,2006
    [43]邵广彪,冯启民.近断层地震动峰值加速度衰减规律的研究[J].地震工程与工程振动,2004,24(3):30-37.
    [44]孙敦本,梁路.多层框架结构基础隔震地震反应分析[J].建筑与结构设计,2007,25-27
    [45]孙敦本,梁路.多层框架结构基础隔震地震反应分析[J].建筑与结构设计,2007,25-27
    [46]孙佳伟,采用隔震装置的框架结构抗震性能分析[D].合肥工业大学硕士学位论文,合肥,2005.
    [47]唐玉红,张敏政,戴君武.钢筋混凝土结构在近场脉冲型地震作用下的试验分析[J].世界地震工程,2007,23(3):41-46.
    [48]田玉基,杨庆山,卢明奇.近断层脉冲型地震动的模拟方法[J].地震学报,2007,29(1):78-84.
    [49]王海云,谢礼立.近断层强地震动的特点[J].哈尔滨工业大学学报,2006,38(12):2070-2076.
    [50]王京哲,朱晞.近场地震速度脉冲下的反应谱加速度敏感区[J].中国铁道科学,2003,24(6):27-30.
    [51]王统宁,刘健新,于泳波.近断层地震动作用下减隔震桥梁空间动力分析[J].交通运输工程学报,2009,9(5):20-25
    [52]王亚勇.台湾9121大地震特点及震害经验[J].工程抗震,2000,16(2):42-46.
    [53]韦韬,赵凤新,张郁山.近断层速度脉冲的地震动特性研究[J].地震学报,2006,28(6):629-637.
    [54]韦韬.近断层速度脉冲对钢筋混凝土框架结构影响的研究[D].中国地震局地球物理研究所 硕士学位论文,北京,2005.
    [55]邬鑫,朱晞.近场地震的速度脉冲效应及简化冲击回归公式的检验[J].北方交通大学学报,2003.2(27):36-39.
    [56]武田寿一.建筑物隔震防震与控震[M].中国建筑工业出版社,1997.
    [57]徐龙军,谢礼立.近断层地区抗震设计谱研究[J].东南大学学报(自然科学版),2005,35(Ⅰ):105-110.
    [58]杨飚,欧进萍.导管架式海洋平台模型结构磁流变阻尼隔震数值分析[J].应用基础与工程科学学报,2007,15(2):183-189
    [59]杨迪雄,李刚,程耿东.近断层脉冲型地震动作用下隔震结构地震反应分析[J].地震工程与工程振动,2005,25(2):119-124.
    [60]杨迪雄,李刚,程耿东.近断层地震动作用下隔震结构的优化设计[J].世界地震工程,2006,22(1):1-8.
    [61]杨迪雄,赵岩,李刚,近断层地震动运动特征对长周期结构地震响应的影响分析[J].防灾工程学报,2007,27(2):133-140
    [62]杨迪雄,潘建伟,李刚.近断层脉冲型地震动作用下建筑结构的层间变形分布特征和机理分析[J].建筑结构学报,2009,30(4):108-118.
    [63]杨林,周锡元,苏幼坡,常永平.基础隔震建筑中应用变刚度保护装置的地震反应分析[J].工业建筑,2006;36(9).
    [64]杨庆山,姜海鹏.基于相位差谱的时频非平稳人造地震动的反应谱拟合[J].地震工程与工程振动,2002,22(1):32-38.
    [65]叶爱君,范立础.附加阻尼器对超大跨度斜拉桥的减震效果[J].同济大学学报(自然科学版),2006,34(7):859-863
    [66]俞言祥,高孟谭.台湾集集地震近场地震动的上盘效应[J].地震学报,2001,23(6):615-621.
    [67]翟长海,李爽,谢礼立,孙亚民.近场脉冲型地震动位移比谱特征研究[J].土木工程学报,2008,41(10):1-5.
    [68]翟长海,谢礼立.近场脉冲效应对强度折减系数的影响分析[J].土木工程学报,2006,39(7):15-42.
    [69]张伯艳,陈厚群.合成人造地震动的非线性解法[J].水利水电技术,1998,31(7):13-16.
    [70]张冬丽,陶夏新,周正华.近场强地震动数值模拟的简化计算方法[J].地震地 质,2006,4(2A):613-624.
    [71]赵凤新.时程的相位差特性及设计地震动的合成[D].北京:中国地震局地球物理研究所,1992
    [72]赵凤新,胡聿贤.地震安全性评价工作培训教材[M].北京:地震出版社,1993.
    [73]赵凤新,张郁山.拟合峰值速度与目标反应谱的人造地震动,地震学报,2006,28(4):429-437
    [74]赵凤新,张郁山.拟合峰值位移与目标反应谱的人造地震动,核动力工程,2007,28(2):38-41
    [75]赵凤新,张郁山.人造地震动反应谱拟合的窄带时程叠加法,上程力学,2007,24(4):87-91
    [76]赵凤新,韦韬.近断层速度脉冲对钢筋混凝上框架结构地震反应的影响[J].工程力学,2008,25(10):180-193.
    [77]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [78]周媛,赵凤新,霍新,张郁山.地震动位移峰值对斜拉桥地震反应的影响[J].中国地震,2006,23(4):418-424
    [79]Aagaard B T, Hall J F, Heaton T H. Characterization of near-source ground motion with earthquake simulations [J].Earthquake Spectra,2002,17(2):177-207.
    [80]Abrahamson N A, Somerville P G. Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake[J].Bull.Seism.Soc.Am.1996,86(1):93-99.
    [81]Abrahamson, N. A. Near-fault ground motions from the 1999 Chi-Chi earthquake [A], in Proc. Of U.S.-Japan Workshop on the Effects of Near-Field Earthquake Shaking[C]. San Francisco, California,20-21 March 2000.
    [82]Anderson J C, Bertero V V. Uncertainties in establishing design earthquake [J]. A SCE Journal of Structural Engineering,1987,113(8):170921724
    [83]Agrawal A K, Xu Z, He W L. Ground motion pulse-based active control of a linear base-isolated benchmark building [J].Structural control and health monitoring.2005, 13(23):792-808.
    [84]Akkar S, Bommer J J.Empirical. Prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East [J].Bulletin of the Seismological Society of America,2007,97(2):511-530.
    [85]Akkar S, Yazgan U, Giilkan P. Drift estimates in frame buildings subjected to near-fault ground motions[J].Journal of Structural Engineering,2005 131(7):1014-1024,
    [86]Alavi B, Krawinkler H. Consideration of near-fault ground motion effects in seismic design Proceedings[C].12WCEE, New Zealand,2000, No.2665.
    [87]Alavi B. Effect s of near-fault ground motions on frame structure [D]. PHD Dissertation, Berkeley, California:University of California:2000.
    [88]Alavi,B, Krawinkler H. Strengthening of moment-resisting frame structures against near-fault ground motion effects[J].Earthquake Engineering and Structural Dynamics,2004,33 (6):707-722.
    [89]Ambraseys N, Douglas J. Reappraisal of the effect of vertical ground motions on response[R].Engineering Seismology and Earthquake Engineering Report,2000, No.00-4.
    [90]Amiri J A, M R. Sahafi D A. Behavior of MRF structures designed according to IRAN seismic code (2800) subjected to near-fault ground motions. The 14WCEE, Beijing, China,2008, ID:05-05-0002.
    [91]Anderson, J C, Bertero V V. Uncertainties in Establishing Design Earthquakes [J].Structural Engineering,1987,113(8):1709-24.
    [92]Arias A.A measure of earthquake intensity[R].Seismic Design of Nuclear Power Plants. Cambridge, MA:MIT Press.1970:438-468.
    [93]Ariga T, Kanno Y, Takewaki I. Resonant behavior of base-isolated high-rise buildings under long-period ground motions the structure design of tall and special building [J].Design Tall Spec.Build.2006,15(3):325-338.
    [94]Bachmann H, Dazio A.A Deformation-Based Seismic Design Procedure for Structural Wall Buildings. Seismic Design Methodologies for the Next Generation of Codes Bled, Slovenia, 1997:159-170.
    [95]Baez J I and Miranda E. Amplification factors to estimate inelastic displacement demands for the design of structures in the near field[C].12WCEE,2000, No.1561.
    [96]Baki Mehti Ozturk. Seismic drift response of building structures in seismically active and near-fault regions [D].Purdue University Requirements for the Degree of Doctor of Philosophy, 2003.
    [97]Bertero V V, Mahin S A, Herrera R A. Seismic design implications of near-fault San Fernando earthquake records [J].Earthquake Eng Struct Dyn,1978,6(1):31-42.
    [98]Bolt B. A, Abrahamson N A. New attenuation relations for peak and expected accelerations of strong ground motion [J].Bull.Seism.Soc.Am.1982,72(6):2307-2321.
    [99]Bolt B. A. The contribution of directivity focusing to earthquake intensities [R]. Report 20,U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg.1983
    [100]Bray J D, Rodriguez-Marek A. Characterization of forward directivity ground motions in the near fault region[J].Soil Dyn Earthq Eng,2004,24(11):815-828.
    [101]Calvi G M, Kingsley G R. Displacement-based seismic design of muti-degree-of-freedom bridge structures [J].Earthquake Engineering and Structural Dynamics,1995,24(9):1247-1266.
    [102]Campbell K W, Bozorgnia Y. Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra [J].Bulletin of the Seismological Society of America.2003,93(1):314-331.
    [103]Campbell K.W, Bozorgnia Y. Near-source attenuation of peak horizontal acceleration [J].Bulletin of the Seismological Society of America.1981,71 (6):2039-2070.
    [104]Chandler A M, Lam N T K. Preformace-Based Design in Earthquake Engineering:A Muti-Disciplinary Review [J].Engineering Structures,2001,23(12):1525-1543.
    [105]Chandler A M. Performance of Reinforced Concrete Frames Using Force and Displacement Based Seismic Assessment Methods [J].Engineering Structures.2002,22(4):352-363.
    [106]Chang-Hai Z, Hong-Bo L, Li-Li X. Near-fault pulse-like effect on strength reduction factors[C].4th International Conference on Earthquake Engineering Taipei,Taiwan,2006,No.160
    [107]Chi Wu C,Douglas D, Anastasia K. Finite-source modeling of the 1999 Taiwan(Chi-Chi) earthquake derived from a dense strong-motion network[J].Bull.Seismic.Soc.Am.,2001,91(5):1144-1157.
    [108]Chopra A K, Chintanapakdee C. Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions[J].Earthquake Engineering and Structural Dynamics.2001,30(12):1769-1789.
    [109]Chopra A K, Chintanapakdee C. Accuracy of response spectrum estimates of structural response to near-field earthquake ground motions:Preliminary results[C].
    [110]Chopra A K, Goel R K. Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures:SDF systems[R].PEER Report 1999, Berkeley,1999:55-57.
    [111]Hall J, Ryan K. Isolated buildings and the 1997 UBC near-source factors [J]. Earthquake Spectra,2000,16(2):393-411.
    [112]Hall J F, Heaton T H, Hailing MW, Wald D J. Near-source ground motion and its effects on flexible buildings [J]. Earthquake Spectra,1995,11 (4):569-605
    [113]Heaton, T. H., Hall, J. F., Wald, D. J. and Hailing, M. W. Response of high rise and base isolated buildings to hypothetical MW 7.0 blind thrust earthquake [J J. Science,1995, 267:206-211.
    [114]Hirasawa M, Watabe M. Generation of Simulated Earthquake Motions Compatible with Multi-Damping Response Spectra [C]. Proc 10th World Conf Earthq Eng,Madrid,1992, 2:807-810.
    [115]Huang C T, Iwan W D. Generalized damped wave approach for evaluating seismic shear demands [J] Journal of Engineering Mechanics,2005,131 (12):1248-1256.
    [116]Jangid R, Kelly J. Base isolated for near-fault motions [J]. Earthquake Engineering and Structural Dynamics,2001,30:691-707.
    [117]Kalkan E, Kunnath S K. Effects of fling step and forward directivity on seismic response of buildings[J].Earthquake Spectra,2006,22 (2):367-390.
    [118]Kawase, H. and Aki, K. Topography effect at the critical SV-wave incidence:possible explanation of damage pattern by the Whittier Narrows, California, earthquake of 1 October 1987 [J]. Bull. Seism. Soc. Amer.,1990,80:1—22
    [119]Kelly J M. The role of damping in seismic isolation [J]. Earthquake Engineering and Structural Dynamics.1999,28(3):4-20.
    [120]Liao W I, Loh C H, Wan S. Earthquake response of RC moment frames subjected to near2fault ground motions[J]. The Structural Design of Tall Buildings,2001,10:219—229.
    [121]Makris N. Rigidity-plasticity-viscosity:can electroheological dampers protect base-isolated structures from near-source ground motions [J]. Earthquake Engineering and Structural Dynamics, 1997,26:571-591.
    [122]Makris N, Chang S P. Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures [J]. Earthquake Engineering and Structural Dynamics,2000,29: 85-107.
    [123]Malhotra P K. Response of buildings to near2field pulse2like ground motions [J]. Earthquake Engineering and Structural Dynamics,1999,28(11):1309-1326.
    [124]Mavroeidis G P, Dong G, Papageorgiou A S. Near-fault ground motions, and the response of elastic and inelastic single-degree2of2freedom system[J].Earthquake Engineering and Stractural Dynamics,2004,33 (9):1023-1049.
    [125]Murat Dicleli. Performance of seismic-isolated bridges in relation to near-fault ground-motion and isolator characteristics [J]. Earthquake Spectra,2006,22(4):887-907
    [126]Newmark N M. Fundamentals of Earthquake Engineering [M].N.J:Prentice-hall Inc,1971.
    [127]Oglesby, D. and Archuleta, R. A. Faulting model for the 1992 Petrolia earthquake:can extreme ground acceleration be a source effect? [J]. J. Geophys. Res.,1997,102(B6):1 1877 —11897.
    [128]Panza, G. F. and Suhadolc, P. Complete strong motion synthetics [A]. Bolt, B. A. (Ed.), Seismic Strong Motion Synthetics, Computational Techniques 4 [C], Orlando:Academic Press, 1987,153-204.
    [129]Polsak Tothong, C. Allin Cornell. Structural performance assessment under near-source pulse-like ground motions using advanced ground motion intensity measures[J]. Earthquake Engineering and Structural Dynamics,2008,37(7):1013-1037
    [130]Proceedings o f the A S CE Structures World Conference. Ox-ford, England:Elsevier Science Ltd,1998:T136-1.
    [131]Somerville, P. and Graves, R. Conditions that Give Rise to Unusually Large Long Period Ground Motions [J]. The Structural Design of Tall Buildings,1993,2:211-232.
    [132]Somerville P G, Smith N F, Graves R W, et al.1997. Modification of empirical strong ground motion attenuation relations to include amplitude and duration effect s of rupture directivity [J]. Seism Res Lett,68 (1):199-222.
    [133]Somerville P G.2003. Magnitude scaling of the near-fault rupture directivity pulse [J]. Phys Earth Planet Interi,137:2012212.
    [134]Somerville P G.1998. Development of an improved ground motion representation for near-fault ground motions [C] //Proceedings SMI P 98 Seminar on Utilization of Strong Motion Data. Oakland, California:California Division of Mines and Geology:1220.
    [135]Stewart J P, Chiou S J, Bray J D, et al.2001. Ground Motion Evaluation Procedures for Per f romance-based Design[R]. Berkeley, California: Pacific Earthquake Engineering Research Center, University of California, Report No.01209:63267.
    [136]Tsai N C. Spectrum-Compatible Motions for Design Purposes [J]. J of Engineering Mechanics Division, ASCE,1972,98(2):345-356.
    [137]Vasant A. Matsagar, R.S. Janggid. Seismic response of base-isolated structures During impact with adjacent structures, Engineering Structures,25(2003),1311-1323.
    [138]Villaverde R. Reduction on seismic response with heavily damped vibration absorbers [J].Earthquake Eng. Struct. Dyn.1985,13(1):33-42.
    [139]Villaverde R, Koyama LA. Damped Resonant Appendages to increase inherent damping in Buildings [J].Earthquake Eng.Struct.Dyn,1993,22(6):491-507.
    [140]Villaverde R. Seismic control of structure with resonant appendages [A].Proc,1st World Conf. On Structural Control, International Association for Structural Control[C].Los Angeles, Callif. (1994)WP4:113-122.
    [141]Villaverde R, Marin S C. Passive seismic control of cable-stayed bridges with damped resonant appendages [J].Earthquake Eng. Struct. Dyn,1995,24(2):233-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700