用户名: 密码: 验证码:
腋撑式钢筋混凝土结构转换层理论分析及抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对高层建筑中转换层结构的应用现状,在梁式转换的基础上,提出了一种介于斜柱转换和梁式转换之间的、腋撑式新型转换结构。该结构是在梁柱交接处增设斜撑,从而改变结构的传力模式,减少了转换梁的端部剪力、弯矩和梁跨,进而大大减少转换梁的截面尺寸和配筋,能较好地满足了建筑艺术和建筑功能日益提高的需求。目前,学术界和工程界对腋撑转换这种结构形式研究甚少,本文针对腋撑式转换这种复杂的建筑结构形式进行研究,主要包括以下几方面工作。
     (1)根据腋撑转换结构的特点,选取八型和V型腋撑转换结构进行了静力有限元数值模拟研究。以简单的平面转换框架结构为例,剖析了竖向荷载、水平荷载作用下转换结构的受力特点,分析了腋撑倾角、腋撑转换构件刚度对转换结构内力的影响;基于ABAQUS非线性有限元分析,对V型直接转换和八型直接转换框架结构在荷载作用下的变形状态、混凝土应力分布、钢筋应力分布状态进行了详细的分析,总结了其受力特点和规律。
     (2)由于腋撑式转换结构抗侧刚度沿竖向变化不均匀,导致结构构件会产生一定程度内力突变,为避免结构构件形成薄弱环节,对该转换结构进行抗震性能评估具有现实的意义。针对腋撑式转换结构的特点,通过结构算例的静力弹塑性分析,以求揭示腋撑式转换结构构件的塑性铰形成特点,讨论该结构塑性变形的发展特点及弹塑性阶段的内力和位移反应,对腋撑转换框架结构的出铰次序、破坏机理及弹塑性阶段的内力和位移反应进行了研究,基于变形破坏准则,采用能力谱法对腋撑转换框架结构的整体抗震性能进行评估,并提出可靠的抗震措施。
     (3)运用非线性结构分析的方法,根据弹塑性位移角对腋撑转换结构进行震害预测。基于性能的抗震设计理论,以结构的弹塑性位移角作为腋撑转换结构的整体性能指标,通过结构的抗震分析,探讨了一种通过震害预测分析寻找钢筋混凝土腋撑转换结构构件的薄弱环节,评估结构延性及抗震能力的方法。结构算例研究结果表明,对于数量较少或者单个钢筋混凝土框架房屋结构的震害预测,以Push-over分析方法为基础,根据结构薄弱楼层的变形指标来判断结构的破坏状态,是一种可行的腋撑转换结构震害预测的方法。
     (4)基于采用纤维截面的非线性梁柱单元,采用增量动力分析的方法对钢筋混凝土腋撑的抗震控制效果进行分析,以转换结构为微观承灾体,采用易损性的分析方法,通过概率能力分析和概率地震需求分析,确定转换结构抗震极限状态和概率地震需求,建立转换结构在不同地震强度作用下地震需求超越极限状态的条件概率,给出了普通转换结构与带钢筋混凝土腋撑转换结构的易损性曲线。
     (5)钢筋混凝土斜柱式或斜撑式转换结构中,斜柱或斜撑与框支柱之间的转换梁中将产生较大的轴向拉力,如何保证该部位转换梁在偏心受拉状态下的“强剪弱弯”设计,成为该结构设计的重点内容之一。为实现该项概念设计目标,以转换梁的设计参数为随机变量,采用可靠度的Monte Carlo分析方法,把转换梁看作由偏心受拉破坏与受剪破坏组成的串联体系,对按现行建筑结构规范设计的钢筋混凝土转换梁在偏心受拉状态下的“强剪弱弯”抗震可靠性进行了分析,研究了不同荷载比值(地震作用与自重荷载比值)、不同截面、材料强度等级和不同配筋率对偏心受拉梁“强剪弱弯”可靠度的影响。在此基础上,针对一、二级抗震等级偏心受拉转换梁“强剪弱弯”的设计,对目标可靠指标的剪切增强系数进行了校核,为合理地确定该转换结构中转换梁的剪切增强系数提供参考。
To the application status of transfer structure in tall buildings, based on the beam-type transfer,a new transfer structure with haunch braces and between the slant column transfer andbeam-type transfer is presented. The features of the structure are that the additional braces areset in the junction between the column and the beam, thus the force transmission mode of thestructure is changed, the shear force, the moment at the end of the beam and the span of thebeam is reduced, thereby the cross-section size and reinforcement of the transfer beam aregreatly reduced. The structure can meet the increasing demand for architectural arts andarchitectural features very well. Currently, few studies are carried on the structure of transferwith haunch braces. The studies to this complex transfer structure with haunch braces includethe following aspects of work.
     (1) According to the characteristics of transfer structure with haunch braces, the八-typeand V-type of the transfer structure with haunch braces are selected to study by finite elementnumerical simulation. Taking a simple plane transfer frame structure as example, the forcecharacteristics of the transfer structure under the vertical load and horizontal load areanalyzed, and the effects of the haunch braces angle and the stiffness of transfer structuremember on internal forces of the transfer structure are analyzed. Based on ABAQUSnonlinear finite element analysis, the deformation, the stress distribution of concrete and steelof the八-type and V-type direct-transfer frame structure under loads are analyzed andsummarized in detail.
     (2) Because the lateral stiffness of transfer structure with haunch braces changes unevenlyalong the vertical direction, it will lead to a certain degree of force mutation in structuralelements. In order to avoid the formation of weak links in structural members, it is practicallysignificant to evaluate the seismic performance of the transfer structure. Push-over analysis onan example structure against the transfer structure with haunch braces is conducted to revealthe characteristics of the formation of plastic hinges in elements of transfer structure withhaunch braces, and to discuss the development feature of the plastic deformation of the structure and the responses of the force and displacement during elasto-plastic stage of thestructure. The hinge sequence, failure mechanism and the reaction force and displacementduring elasto-plastic stage are studied. Based on the deformation damaged criteria, the overallseismic resistance performance for transfer structure with haunch braces is assessed usingCapacity Spectrum Method, and reliable earthquake-resistant measures are proposed.
     (3) Applying the nonlinear structural analysis method, the earthquake damage of thetransfer structure with haunch braces is predicted based on elasto-plastic displacement angle.According to performance-based seismic design theory and taking the elasto-plasticdisplacement angle of the structure as the overall performance index, through the seismicanalysis of the structure, a method was investigated to find the weak links in the elements ofreinforced concrete transfer structure with haunch braces and to evaluate the ductility andseismic capacity of the structure by the earthquake damage prediction analysis. The analyticalresults of an example show that for the earthquake damage prediction of a single or smallnumber of reinforced concrete frame building structures, based on the method of Push-overanalysis, to determine the structural damage state according to the deformation indexes of theweak floor, it is a viable earthquake damage prediction method for transfer structure withhaunch braces.
     (4) Based on the nonlinear beam-column element of fiber cross-section, the effects ofseismic control of the reinforced concrete haunch braces are analyzed by using the method ofincremental dynamic analysis.The transfer structure as micro-hazard-affected bodies, themethod of vulnerability analysis is used, and by the analysis of the probability of the capacityand the seismic demand, the seismic limit state and the probability of seismic demand of thetransfer structure are determined. The conditional probability of the transfer structure underdifferent seismic intensity when earthquake demand conditions beyond the limit state isestablished, and the vulnerability curve of the common transfer structure and the reinforcedconcrete structure with haunch braces is given.
     (5) In the reinforced concrete transfer structure with inclined column or haunch brace, thetransfer beam between the inclined column or haunch brace and the transfer column will havea great axial tension force, how to ensure the transfer beam satisfies "strong shear weak bending" design under eccentric tension has become the focus of the structural design. Toarchieve the concept design of "strong shear weak bending", the design parameters of transferbeam as random variables, using Monte Carlo method for reliability analysis, and taking thetransfer beam as the series connected system of the eccentric tensile failure and shear failure,the "strong shear weak bending" seismic reliability analysis is carried out for reinforcedconcrete transfer beams under eccentric tension designed according to the current buildingstructure specification. The different effections to the reliability of eccentric tension beams arediscussed for different load ratio such as the ratio of seismic action and gravity load, differentsections, strength grade of materials and different reinforcement ratio. For the "strong shearweak bending" design of eccentric tension transfer beams on the basis of seismic class oneand two, the target reliability index for shear enhancement factor is checked to providereference for reasonable analysis.
引文
[1]刘大海,杨翠如.高层建筑结构方案优选[M].北京:中国建筑工业出版社.1996
    [2]中国建筑科学研究院结构所.高层建筑转换层结构设计及工程实例[M].1993.3
    [3]傅学怡.带转换层高层建筑设计建议[J].建筑结构学报,1999;20(2):28-42
    [4]唐兴荣.高层建筑转换层结构设计与施工[M].中国建筑工业出版社,2002
    [5]高立人,方鄂华,钱稼茹.高层建筑结构概念设计[M].北京:中国计划出版社,2005
    [6]梁启智.高层建筑结构分析与设计[M].广州:华南理工大学出版社,1992
    [7]包世华,方鄂华.高层建筑结构设计[M].北京:清华大学出版社,1994
    [8] Fintel, M. Staggered Transverse Wall Beams for Multistory concrete Buildings[J]. Journal of theAmerican Concrete Institute,1996,65(5)
    [9] Mee, A. L.,Jordan, I. A. and Ward, M. A Wall-Beam Frames Under Static Lateral Load[J]. ASCE,1975,101(2)
    [10] Kuang, J. S.,fuvvala, Jawaharlal.Continuous transfer beams supporting in-plane loaded shear walls intall buildings [J]. Structural Design of Tall Buildings,1996, Vol.5(4):281-293
    [11]李国胜.关于底部大空间剪力墙结构的转换层设计[J].建筑结构,2001;31(7):39-42
    [12]娄宇,魏琏,丁大钧.高层建筑转换层结构的应用和发展[J].建筑结构,1997(1)
    [13]刘锡军.带结构转换层的高层建筑结构设计探讨[J].建筑结构,1996;(6):27-29.
    [14]王祖华,吴勇明.多高层建筑中的转换层结构体系[J].建筑结构,1994;(12):11-17.
    [15]魏琏,王森,韦承基.高层建筑转换梁结构类型及计算方法的研究[J].建筑结构,2001;31(11):7-14.
    [16]李哲明,陈清军.超大梁转换层结构两种分析方法的比较研究[J].西安建筑科技大学学报(自然科学版),2006;38(4):499-503
    [17]张新培,舒涛,赵勇等.梁式转换层异型柱框架的地震作用效应[J].西南交通大学学报,2004;39(2):142-146
    [18]冯健,樊德润,姜月林.江苏省公安交通指挥控制中心预应力混凝土曲梁转换层结构设计[J].工业建筑,2001;31(12):29-32
    [19]张建军,邱明广.17米跨度钢骨混凝土转换梁结构设计[J].哈尔滨工业大学学报,2003,35(x1):189-191
    [20]陆浩亮,李思明,金国芳等.高层建筑转换梁上短肢剪力墙抗震试验和分析[J].地震工程与工程振动,2005;25(2):77-81
    [21]舒情,李章政,李竞夷.某住宅转换梁的设计与内力分析[J].四川建筑科学研究,2006;32(5):18-22
    [22]张松林,舒赣平.预应力钢骨混凝土结构转换梁的设计和分析[J].工业建筑,1997;27(7):16-17
    [23]娄宇,丁大钧,魏琏.上部开洞剪力墙转换大梁结构的试验研究[J].东南大学学报,1996;26(6B):115-120
    [24]莫涛,周绪红,吴方伯.高层建筑中转换大梁的分析与设计[J]..湖南大学学报(自然科学版).1999;26(3):84-88
    [25]刘文.江苏省会议中心预应力梁式转换层设计研究[J].建筑结构学报,1998;19(6):65-71
    [26]李永贵,王非平.南宁市新华书店图书大厦转换梁裂缝控制措施[J].建筑技术,2006;37(4):266-267
    [27]金睿,秦从律,俞国平等.型钢混凝土梁式结构转换层的设计与施工[J].建筑技术,2006;37(5):339-341
    [28]李玉荣,沈金,裘涛等.型钢混凝土梁式转换节点抗震性能研究[J].浙江大学学报(工学版),2006;40(1):96-102
    [29]熊进刚,吴晓莉,程文瀼等.有梁式转换层的高层建筑结构设计与研究[J].工业建筑,2001;31(6):34-36
    [30]刘军进,吕志涛,冯健.9层(带转换层)钢筋混凝土异形柱框架结构模型振动台试验研究[J].建筑结构学报,2002;23(1):21-26
    [31]吕志涛,刘平昌,刘瑷琏等.南京状元楼预应力转换层结构工程研究[J].建筑技术,1997;28(3):178-180
    [32]徐培福,薛彦涛,肖从真等.带转换层型钢混凝土框架-核心筒结构模型拟静力试验对抗震设计的启示[J].土木工程学报,2005;38(9):1-8
    [33]朱向东.局部高位转换在续改建工程中的应用[J].工业建筑,2006;36(9):95-97
    [34]熊进刚,程文瀼,李爱群等.高层建筑转换层中混凝土连续短梁受力性能的试验研究[J].建筑技术,2001;32(5):314-315
    [35] F.X.Fan,X.R.Tang,B.J.Sun and Z.X.Guo.Optical Elastic Experimental Study on the transfer TrussStructure in Super-Rise Building. Journal of Southeast University, Vol.11, No.1A, Oct.1995
    [36]周旭歧,预应力混凝土桁架在高层建筑转换层中的应用[J].建筑科学,1993;(4):55-58
    [37]樊德润,郭泽贤,仓慧勤.南京新世纪广场工程简介[J].建筑结构,1996(2)
    [38]刘劲松,裘涛,贺明卫.大跨度钢桁架转换结构振动台试验研究[J].世界地震工程,2006;22(4):145-149
    [39]张洪学.大跨度无粘结预应力混凝土转换桁架工程应用[J].工业建筑,2002;32(12):32-35
    [40]沈朝勇,黄襄云,周福霖等.带SRC桁架转换层及钢加强层高层建筑抗震性能研究[J].地震工程与工程振动,2004;24(6):83-88
    [41]刘劲松,裘涛,唐锦春等.带钢桁架转换层框架剪力墙结构抗震性能研究[J].浙江大学学报(工学版),2005;39(1):108-113
    [42]孔雅莎,张凌云.北京大兴文图馆型钢混凝土桁架作为结构转换构件的设计[J].工业建筑,2005,35(增刊):147-153
    [43]唐兴荣,蒋永生,孙宝俊等.预应力高强混凝土桁架转换层结构的试验研究[J].东南大学学报,1997,27(增刊):6-11
    [44]唐兴荣,蒋永生,丁大钧.预应力混凝土桁架转换层结构的试验研究和设计建议[J].土木工程学报,2001;34(4):32-40
    [45]唐兴荣,蒋永生,孙宝俊等.带预应力混凝土桁架转换层的多高层建筑结构设计和施工建议[J].建筑结构学报,2000;21(5):65-74
    [46]范学伟,范重,杨苏等.奈伦国贸超高层转换结构设计[J].建筑结构,2009;39(增刊):203-206
    [47]成连生,陈有琪,罗民伟等.高层建筑转换层预应力桁架不对称偏心张拉的探讨[J].施工技术,1997;(12):17-18
    [48]樊发兴,孙宝俊,唐兴荣等.光弹性法在超高层建筑巨型桁架设计中的应用[J].东南大学学报,1995;25(5):152-158
    [49]康强,兰伟,康景文.世纪城小户型结构方案和转换层的选型及概念设计[J].四川建筑科学研究,2006;32(6):196-200
    [50] Nutt J. and Haworth P.,Grosvenor place, Sydney report on transfer system partl-interaction withsubrounding structure[C],1984
    [51] Nutt J. and Haworth P.,Grosvenor place, Sydney report on transfer system part2-interaction withsubrounding structure[C],1984
    [52] Kuang,J. S.,Zhang, Zhi jun. Analysis and behaviour of transfer plate-shear wall systems in tallbuildings [J]. Structural Design of Tall and Special Buildings,2003,Vol.12(5):409-421
    [53] Antony Lam.A Study of Common Transfer Structures in HK. Final Year Project Report.2001
    [54] Todorovska,Maria L.Base isolation by a soft first story with inclined columns?Journal of EngineeringMechanics.v12n4.Apr1999ASCE.
    [55]唐兴荣,蒋永生,丁大钧等.新型钢筋混凝土空腹桁架的结构分析[J].东南大学学报,1996;26(6B):94-96.
    [56]裘涛,陈学琪,沈金.高层建筑空腹桁架转换层优化设计[A].结构与地基国际学术研讨会议论文集[C],杭州:浙江大学出版社,1994.
    [57]张誉,赵鸣,方健等.空腹桁架式结构转换层的试验研究[J].建筑结构学报,1999;20(6):11-17.
    [58]曾华卿,许敏.钢筋混凝土空腹桁架式框架在房屋加层中的应用研究[J].建筑结构,1993;(6)
    [59]傅传国,蒋永生,梁书亭.大跨度叠层空腹桁架整体转换结构模型受力与抗震性能试验研究[J].建筑结构学报,2004;25(1):36-44
    [60]戴国亮,梁书亭,蒋永生等.迭层空腹桁架转换层结构的静力性能分析[J].东南大学学报(自然科学版),2000;30(4):39-42
    [61]张誉,赵鸣,方健等.空腹桁架式结构转换层的试验研究[J].建筑结构学报,1999;20(6):11-17
    [62]陈丽华.高层建筑中叠层混合空腹桁架转换层内力分析和设计建议[J].建筑技术,2005;36(2):99-100
    [63]张重阳,袁海涛,范晓燕等.某高层商住楼转换层结构方案的选择[J].工业建筑,2005;35(12):97-101
    [64]汪凯,盛小徽,吕志涛等.高层建筑预应力混凝土板式转换层结构设计[J].建筑结构,2000;30(6):45-49
    [65]彭斌,李溪喧.高层建筑厚板转换层整体分析方法研究.武汉大学学报(工学版),2003;36(1):64-68
    [66]王平山,干钢,孙炳楠等.高层建筑厚板转换层内力分布研究.浙江大学学报(工学版),1998;32(5):570-576
    [67]徐承强,李树昌.高层建筑厚板转换层结构设计[J].建筑结构,2003;33(2):19-22
    [68]丁建南,冯佶,申道辉.带厚板转换结构的设计与分析[J].东南大学学报,1997;27(增刊):29-32
    [69]潘国雄,陈旭能.某高层商住楼的厚板转换层设计[J].建筑结构,2010;40(7):27-29
    [70]楼德军,楼华华.东阳希宝广场厚板转换层施工技术[J].浙江建筑,2003;23(12):36-38
    [71]张家华,李委,周志勇.回形刚性板式转换层刚度要求的分析[J].同济大学学报,2000;28(4):468-471
    [72]邢凯,刘斌,刘子青.深圳佳宁娜友谊广场转换结构概念设计[J].东北大学学报(自然科学版),2007;28(2):262-265
    [73]李豪邦.高层建筑中结构转换层的新形式—斜柱转换,建筑结构学报,1997;18(2):41-45
    [74]钟树生,史世伦,卢挺等.框支短肢剪力墙结构中斜柱转换结构抗震试验研究[J].重庆建筑大学学报,2007;29(1):70-74
    [75]钟树生,王章浩,曹林.竖向荷载作用下变角斜柱的局部转换节点[J].重庆大学学报(自然科学版),2005;28(7):93-97
    [76]刘庆林,傅学怡,曹敏丽等.体型收进斜撑转换结构研究应用———珠海信息大厦高位收分转换解析[J].土木工程学报,2006;39(2):6-10
    [77]王翠坤、肖从真等,深圳福建兴业银行大厦模型振动台试验研究,第十七届全国高层建筑结构学术交流会,2002,11
    [78]徐培福、傅学怡等,深圳福建兴业银行大厦“搭接柱”转换层的试验研究,第十七届全国高层建筑结构学术交流会,2002,11
    [79]唐兴荣,何若全.高层建筑中转换层结构的现状和发展[J].苏州城建环保学院学报,2001;14(3):1-8
    [80] Otani S.. Earthquake resistant design of reinforced concrete buildings-past and future[J]. Journal ofAdvanced Concrete Technology,2004,2(1):3-24.
    [81]张静怡,李春祥.抗震性能设计的发展[J].自然灾害学报,2004,13(5):128-135.
    [82]谢礼立,张晓志,周雍年.论工程抗震设防标准[J].地震工程与工程振动,1996,16(1):1-18.
    [83]胡聿贤.中国地震工程五十年[J].建筑结构,1999,(10):22-25.
    [84]叶列平,经杰.论结构抗震设计方法[EB/OL].中国科技论文在线, http://www.paper.edu.cn.2004-06-25.
    [85]蔡健,周靖,禹奇才.建筑抗震设计理论研究进展[J].广州大学学报,2005,4(1):65-73.
    [86]谢礼立,马玉宏.现代抗震设计理论的发展过程[J].国际地震动态,2003,298(10):1-8.
    [87] Smith K.G.. Innovation in Earthquake Resistant Concrete Structure Design Philosophies; A Centuryof Progress Since Hennebique’s Patent[J]. Engineering Structures,2001,23(1):72-81.
    [88] Priestley. M. J. N. Performance Based Seismic Design[J]. Bulletin of the New Zealand Society forEarthquake Engineering,2000,33(3):325-346.
    [89]蔡健,周靖,方小丹.钢筋混凝土框架中震可修标准及简化抗震设计方法[J].地震工程与工程振动,2006,26(2):13-19.
    [90]姚振纲、刘祖华.建筑结构试验[M].上海:同济大学出版社,1996
    [91] S. Otani. Inelastic Analysis of R/C Frames Structures[J]. Journal of Structural Division, ASCE,1974,100(7).
    [92] V. Kilar and P. Fajfar. Simplified Push-over Analysis of Building Structures[A].In: Eervaed.11thworldconf on Earthquake Eng. Mexico: WCEE,1996.
    [93] A. S. Moghadam and W. K. Tso. Damage Assessment of Eccentric Multistorey Building Using3-DPush-over Analysis[A].In: Eerva A,ed.11thworld conf on Earthquake Eng. Mexico: WCEE,1996.
    [94] G. Faella. Evaluation of the RC Structure Seismic Response by Means of Nonlinear Static Push-overAnalysis[A].In: Eerva A,ed.11thworld conf on Earthquake Eng. Mexico:WCEE,1996.
    [95]方鄂华,钱稼茹,赵作周.弹塑性静力分析方法[A].第十五届全国高层建筑结构学术交流会论文集[C],北京:中国建筑科学研究院,1998
    [96] K. Emori and W. C.Schnobrich. Inelastic Behavior of Concrete Frame Wall Structures [J].ASCE,1981,107(1).
    [97] NigamN. C. Yielding in Framed Structures under Dynamic Load[J].ASCE,1970,96(5).
    [98]张新培.钢筋混凝土抗震结构非线性分析[M].北京.科学出版社,2003
    [99] Whittaker. Displacement estimates for performance-based seismic design[J]. ASCE,1998,124(8).
    [100] Moehle J P. Displacement based design of RC structural[A].In: Eerva A,ed.10thworld conf onEarthquake Eng. Mexico: WCEE,1992.
    [101] Riddell R.,Dela J C. and Lora.Seismic analysis and design current practice and future trend[A]. In:EervaA,ed.11thworld conf on Earthquake Eng. Mexico: WCEE,1996.
    [102] Faifar P. An approximate method for seismic damage analysis of building[A].In: Eerva A,ed.10thworld conf on Earthquake Eng. Mexico: WCEE,1992.
    [103] Michael N F. Current trends in earthquake resistant analysis and design of reinforced concretestructures[A]. In: Elnashai,ed. European Seismic Design Practice. RotterdamBalkema,1995.
    [104] Chopra A K. A modal pushover analysis procedure to estimate seismic demands forbuildings[C].PERR Report2001
    [105] Bracei J M, Kunnath S K, Reihorn A M. Seismic performance and retrofit evaluation of reinforcedconcrete structures[J].Journal of Structural Engineering, ASCE,1997, Vol.123(1):3-10
    [106] Chopa A K, Goel R K. Capacity-demand-diagram methods for estimating deformation ofinelastic systems[M].Digilander. libero. it,2002
    [107] Gupta B, Kunnath S K. Adaptive spectra-based pushover procedure for seismic evaluation ofstructures[J]. Earthquake Spectra,2000, Vol.16(2):367-391
    [108] Kilar V, Fajfar P. Simplified pushover analysis of asymmetric buildings[J]. EarthquakeEngineering and Structure Dynamics,1997,26:233-249
    [109] Fajfa P, Gaspersic P. The N2method for the seismic damage analysis of RC buildings[J].Earthquake Engineering and Structure Dynamics,1996,25:31-46
    [110] Chopra A K, Goel R K. Capacity demand diagram methods for estimating seismic deformation ofinelastic structures-SDF systems[R].PEER1999Report
    [111] Mwafy A M, Elnashai A S. Static pushover versus dynamic collapse analysis of RC building[J].Engineering Structures,2001,23:407-424
    [112] Elnasai A S. Advanced inelastic static (pushover) analysis for earthquake applications[J],Structuralengineering and Mechanics,2001, Vol.12(1):51-69
    [113] Fajfar P. A nonlinear analysis method for performance-based seismic design[J]. Earthquake Spectra,2000, Vol.16(3):573-592
    [114] Lawson R S, Vance V, Krawinkler H. Nonlinear static pushover analysis-why, when and how?[C]5thU. S. conference Earthquake engineering, Chicago, USA,1997,283-292
    [115] Fajfar P, Gaspersic P. Capacity spectrum method based on inelastic demand spectra[J].Earthquake Engineering and Structure Dynamics,1999,28:979-993
    [116] Misael R. Evaluation of a simplified method for the determination of the nonlinear seismic responseof RC frame[C]s.12thECEE, Acapulco, MEXICO,2000
    [117] Drawinkler H, Seneviratna G D P K. Pros and cons of a pushover analysis of seismicperformance evaluation[J].Engineering Structures,1998, Vol.20(4-6):452-464
    [118]张兰英,李艳娜.带高位转换层的框支剪力墙结构弹塑性地震反应分析[J].工业建筑,2003;33(6):24-27
    [119]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究[J].土木工程学报,2005;(1):1-10
    [120] Krawinkler H.Pushover Analysis:Why,How,When, and When not to Use it [R]. Proceeding forSEAOC65thAnnual Convention.Structural Engineering Association of California, MAUI,HAWAII,1996.
    [121] Kircher C A. Capacity Spectrum Pushover Method:Seeing is Believing[R]. Proceeding for SEAOC65thAnnual Convention. Structural EngineeringAssociation of California, MAUI,HAWAII,1996.
    [122] J.H. Li, R.K.L. Su, A.M. Chandler. Assessment of low-rise building with transfer beam underseismic forces. Engineering Structures,2003(25),1537–1549
    [123] Su RKL, Chandler AM, Li JH, Lam NTK. Seismic assessmentof transfer plate high rise buildings. JStruct Eng Mech2002;14(3):287–306.
    [124] Su RKL, Chandler AM, Lam NTK, Li JH. Motion induced by distant earthquakes: the assessment oftransfer building structures.In: International Conference on Advances in Structural Dynamics(ASD2000),1.The Hong Kong Polytechnic University;2000.p.249–56.
    [125]李春和.高层建筑结构动力分析模型的选取[J].同济大学学报(自然科学版),1999;27(5):608-611
    [126]周晓峰,董石麟.巨型钢框架结构自振特性分析[J].建筑结构,2001;31(6):3-6
    [127]汪梦甫.高层建筑框筒结构自由振动的模态综合法[J].工程抗震,1993;(4):9-12
    [128]沈祖炎,李国强.高层钢框架弹塑性地震反应简化分析模型[J].建筑结构,1993;(4):8-11
    [129]李君,张耀春.高层钢结构的非线性动力全过程分析方法[J].哈尔滨建筑大学学报,2000;33(14):16-19
    [130]陈兰等.钢框架一支撑结构二阶非线性随机地震响应分析[J].地震工程与工程振动,2002;22(3):170-174
    [131]李国强,谢卫兵.高层支撑钢框架弹塑性地震反应简化分析模型[J].建筑结构,1996,(11):3-6
    [132]李国强,姜丽人.高层建筑钢一混凝土混合结构简化分析模型[J].建筑结构,1999,6:12-14
    [133]周向明,李国强.钢一混凝土混合结构弹塑性地震反应简化分析模型[J].建筑结构,2002,Vol.32(5):26-30
    [134]李国强,丁翔.高层建筑钢一混凝土混合结构分区藕合分析模型[J].建筑结构,2002, Vol.32(2):21-25
    [135]王元战,何玉敖.结构地震反应分析的简化方法[J].建筑结构学报,1993, Vol.14(6):52-58
    [136]李占军,刘树堂.筒体结构地震反应实用计算方法[J].试验技术与试验机,1996Vol.36(3,4):31-34
    [137]易升创,包世华.筒体结构连续化模型的弹性动力时程分析[J].工程力学,1996, Vo1.13(2):34-42
    [138]惠宽堂,王荫长.高层筒体结构弹塑性地震反应计算[J].西安冶金建筑学院学报,1994,Vol.26(3):273-278
    [139]陈以一等.基于变轴力柱恢复力模型的钢框筒体地震反应分析[J].世界地震工程,2000,Vol.16(4):47-52
    [140]王肇民,邓洪洲.高层巨型框架悬挂结构体系抗震性能研究[J].建筑结构学报,1999,Vol.20(1):23-30
    [141]蓝宗建,杨东升.钢筋混凝土巨型框架结构弹性地震反应分析[J].东南大学学报,2002,Vol.32(5):724-727
    [142]钱稼茹,方鄂华,马镇炎.剪切刚度层模型恢复力特性骨架曲线的简化计算方法[J].工业建筑,1996, Vo1.26(1):23-27
    [143]吕西林,吴晓涵.抗震耗能剪力墙非线性有限元时程分析[J].同济大学学报,1996, Vo1.24(5):481-486
    [144]高层建筑混凝土结构技术规程(JGJ3-2002)[S].北京:中国建筑工业出版社,2002
    [145]建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [146]吕红山.基于地震动参数的灾害风险分析[D].中国地震局地球物理研究所,2005年
    [147] Dina F. D’ayala. Force and displacement based vulnerability assessment for traditional buildings[J].Bulletin of Earthquake Engineering,2005,3(3):235–265.
    [148]楼思展,叶志明,陈玲俐.框架结构房屋地震灾害风险评估[J].自然灾害学报,2005,14(5):99-105.
    [149]周靖.钢筋混凝土框架结构基于性能系数抗震设计法的基础研究[D].华南理工大学,2006
    [150] E. Dumova-Jovanoska. Fragility curves for reinforced concrete structures in Skopje (Macedonia)region[J]. Soil Dynamics and Earthquake Engineering2000(19),455-466
    [151] M. Altug Erberik, Amr S. Elnashai.Fragility analysis of flat-slab structures. EngineeringStructures,2004(26),937–948
    [152] M.I.J. Schotanus,P. Franchin,A. Lupoi, P.E. Pinto.Seismic fragility analysis of3D structures.Structural Safety2004(26),421–441
    [153] Emrah Erduran,Ph.D.and Ahmet Yakut.Vulnerability Assessment of Reinforced Concrete MomentResisting Frame Buildings.Journal of Structural Engineering,2007
    [154]王善,何水清.结构可靠性分析与设计[M].北京:国防工业出版社,1993
    [155]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1999
    [156]张伟主编.结构可靠性理论与应用[M].北京:科学出版社,2008
    [157] O.迪特莱夫森,H.O.麦德森.结构可靠度方法[M].上海:同济大学出版社,2005
    [158]李桂青,李秋胜编著.工程结构时变可靠度理论及应用[M].北京:科学出版社,2001
    [159]张新培.建筑结构可靠度分析与设计[M].北京:科学出版社,2001
    [160] Freudenthal AM. The safety of structures, Trans., ASCE,1947,112
    [161] Freudenthal A M, Garrelts J. The analysis of structural safety, J. Struct. Div. ASCE,92(1),1966,267-325
    [162] Task committee on structural safety. Structural safety-a literature review, J.Struct. Div.,98(4),1972,845-884
    [163] Cornell C.A. A probability-based structural code, ACI J.,66(12),1969,974-985
    [164] Lind N. C. Consistent partial safety factors. J. Struct.Div.,ASCE,97(ST6),1971,1651~1699
    [165] Hasofer A. M, Lind N. C. An exact and invariant first order reliability format, J.Eng. Mech. Div.,ASCE,100(1), I974,111-121
    [166] Rackwitz R. Fiessler B. Structural reliability under combined random load sequences, ComputerStructures,9(5),1978,489-494
    [167]国家标准.建筑结构可靠度设计统一标准(GB50068-2001)[S].北京:中国建筑工业出版社,2001
    [168] Bilal M. Ayyub, Achintya M. Practical structural reliability techniques, J. Struct.Eng.,110(8),1984,1707-1724
    [169] AS/NZS1170.4. Structural Design Actions, Part4: Earthquake Actions Volume2-Commentary[S],Draft Only Commentary2003, General Design Requirements and Loading on Structures,Australian/New Zealand.
    [170] UBC1997.Uniform Building Code[S]. International Conference of Building Officials, Whittier, CA,1997.
    [171] EC8. Design of Structures for Earthquake resistance, Part1:General Rules, Seismic Actions and Rulesfor Buildings[S]. Draft2003, European Committee for Standardization.
    [172] SEAOC. Version2000: Performance based seismic engineering of buildings: conceptual framework.Structural Engineers Association of California, Sacramento,1995.
    [173]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994
    [174]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997
    [175] Scordelis,A.C..Past,Present and Future Development, Finite Element Anlysis of ReinforcedConcrete Structures[J],ASCE,1986
    [176]董振样,颜德姮.用有限元方法研究钢筋混凝士梁的非线性性能[J].同济大学学报,1981(4)
    [177]朱伯龙,董振祥.钢筋混凝士非线性分析[M].上海:同济大学出版社,1985
    [178]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2008
    [179] LUBLINER J,OLIVER S,et a1.A Plastic—damage model for concrete[J].International Journal ofSolids Structures,1989,(25):299-326.
    [180] LEE J,FENVES G L.A Plastic—damage model for cyclic loading of concrete structures[J].J.Eng.Mechanics,1998,124(8):892—900.
    [181]混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社,2002
    [182]东南大学,天津大学,同济大学等.混凝土结构设计原理上册[M].中国建筑工业出版社.2005
    [183]冯光华.带腋撑梁式转换结构性能研究[D].2010年
    [184]徐培福.复杂高层建筑结构设计[M].中国建筑工业出版社.2005
    [185]王亚勇、白雪霜.台湾921地震中钢筋混凝土结构震害特征[J].工程抗震,2001年第3期.
    [186]胡庆昌,1995年1月17日日本阪神大地震中神户市房屋结构震害简介[J].建筑结构学报,1995年第3期.
    [187]胡庆昌.1985年智利地震多层及高层钢筋混凝土剪力墙结构的表现及其设计方法的探讨[J].建筑结构,1993年第9期.
    [188]种迅,叶献国,吴本华.Pushover分析中侧向力分布形式的影响[J].工程力学,2001(增刊):298-302.
    [189]杨溥,李英民,王亚勇等.结构静力弹塑性分析(push-over)方法的改进[J].建筑结构学报,2000;21(1):44-51.
    [190]范立础,卓卫东.桥梁延性抗震设计.人民交通出版社,2001
    [191]魏巍,冯启民.几种push-over分析方法对比研究.地震工程与工程振动,2002,22(4):66-73
    [192]李刚,程耿东.基于性能的结构抗震设计-理论、方法与应用[M].北京:科学出版社,2004,12
    [193]周正华,周雍年,卢涛等.竖向地震动特性研究[J].地震工程与工程振动.2003;23(3):27-31
    [194]张宇峰.巨型框架结构的抗震性能及抗震设计方法的研究[D].南京:东南大学,2002年.
    [195]史密斯B S,库尔A编著;陈瑜,龚炳年等译校.高层建筑结构分析与设计[M].地震出版社,1993
    [196]汪大绥,贺军利,张凤新.静力弹塑性分析(Pushover Analysis)的基本原理和计算实例[J].世界地震工程,2004;20(1):45-53.
    [197]姚大庆,孙景江.基于STM的简化拉压杆剪力墙单元模型[J].哈尔滨工业大学学报,2009;41(9):210-213.
    [198]陈云涛,吕西林.剪力墙非线性分析中多垂直杆元模型的分析与改进[J].结构工程师,2001;(4):19-24.
    [199]李康宁,洪亮,叶献国.结构三维弹塑性分析方法及其在建筑物震害研究中的应用[J].建筑结构,2001;31(3):53-57.
    [200] Faifar P, Krawinkler H. Seismic design methodologies for the next generation of codes[A]. SeismicDesign Practice into the Next Century[C]. Balkema: Booth,1998.459-466.
    [201] Qiang Xue. Need of performance-based earthquake engineering in Taiwan:A lesson from the Chichiearthquake[J]. Earthquake Engineering and Structural Dynamics,2000,39:1609-1627.
    [202]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报,2002,30(12):1429-1433.
    [203]尹之潜.结构易损性分类和未来地震灾害估计[J].中国地震.1996,12(1):49-55
    [204] Park YJ, AngAHS, Wen YK. Seismic damage analysis of reinforced concrete buildings[J]. StructureEngineering, ASCE,1985,111(4):740-57.
    [205]钟益村,高小旺,龙明英.钢筋混凝土框架结构抗震鉴定方法[J].建筑科学,1988,(3):28-33.
    [206]高小旺,钟益村,陈德彬.钢筋混凝土框架房屋震害预测方法[J].建筑科学,1989,17(1):16-23
    [207]尹之潜,李树桢.震害与地震损失的估计方法[J].地震工程与工程振动.1990,10(1):99-107
    [208]尹之潜,李树祯,孙萍舜.多层建筑楼层变位与屈服强度的关系和控制变位防止结构倒塌问题,地震工程与工程振动,1985;5(1):33-44.
    [209]东南大学.建筑结构抗震设计[M].北京:中国建筑工业出版社,1999
    [210]汪梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究[M].土木工程学报.2003,36(11)
    [211]李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望[J].地震工程与工程振动,2001,21(4):73-79.
    [212]程斌,薛伟承.基于性能的框架结构抗震设计研究[J].地震工程与工程振动,2003,23(4):50-55.
    [213]魏琏,王森.建筑抗震设计的屈服判别法及其工程应用[R].《学术讲座材料》,2006,深圳.
    [214] Harbitz A. An efficient sampling-an iterative fast Monte Carlo procedure, Structural Safety,3(2),1986,109-115
    [215]贡金鑫.工程可靠度计算方法[M].大连:大连理工大学出版社,2003
    [216]国家标准.建筑结构设计统一标准(GBJ68-1984)[S].北京:中国建筑工业出版社,1984
    [217]周道成,段忠东,欧进萍.建筑结构相关荷载组合的平稳二项随机过程方法[J].工程力学,2007;24(4):97-103
    [218]姚继涛,浦津修.现有结构的荷载概率模型及其统计推断[J].西安建筑科技大学学报,1998;30(2):103-106
    [219]欧进萍,段宇博,刘会仪.结构随机地震作用及其统计参数[J].哈尔滨建筑工程学院学报,1994;27(5):1-10.
    [220]高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J].地震工程与工程震动,1985;5(1):13-22
    [221] Cornell.C.A..Engineering seismic risk analysis[J].Bullentin of the Seismological Society ofAmerica,1968,58(5)
    [222]林忠民.工程结构可靠性设计及统计数学基础[M].福建师范大学出版社,1981
    [223] Ellingwood. B.R. Statistical analysis of RC beam-column interaction[J]. Journal of the StructuralDivision,ASCE,103(ST7),1977
    [224] Morris Israel,Bruce Ellingwood. Reliability-Based code formulations for reliability concretebuildings[J]. Journal of Structural Engineering,VOL113,NO.10,1987
    [225]管品武,陈萌,邹银生.混凝土框架柱抗剪承载力计算公式的可靠度分析探讨[J].世界地震工程,2004;20(4):59-63.
    [226]吴飞.产生随机数的几种方法及其应用[J].数值计算与计算机应用,2006;27(1):48-51
    [227]方再根.计算机模拟和蒙特卡洛方法[M].北京:北京工业学院出版社.1988
    [228]欧进萍,段宇博.高层建筑结构的抗震可靠度分析与优化设计[J].地震工程与工程振动,1995;15(1):1-13
    [229]马宏旺.钢筋混凝土柱“强剪弱弯”设计可靠度分析[J].水利学报,2002;(4):88-92
    [230]徐伟,王静爱,史培军等.中国城市地震灾害危险度评价[J].自然灾害学报,2004;13(1):9-15
    [231]陈顺,陈棋福,陈凌.地震损失预测评估中的易损性分析[M].中国地震,1999,15(2):97-105
    [232] Shinozuka M,Feng M Q,Kim H K,et al. Nonlinear static procedure for fragility curvedevelopment[J]. Journal of engineering mechanics,2000;126(12):1287-1295
    [233]吕大刚,于晓辉,宋鹏彦等.抗震结构最优设防水平决策与全寿命优化设计的简化易损性分析方法[J].地震工程与工程振动,2009;29(4):23-32.
    [234] Ellingwood B R. Earthquake risk assessment of building structures[J]. Reliability Engineering andSystem Safety,2001,74(3):251–262
    [235] Rosowsky D V, Ellingwood B R. Performance-based engineering of wood frame housing: Fragilityanalysis methodology[J]. Journal of Structural Engineering, ASCE2002;128(1):32-38.
    [236] Vamvatsikos D,Cornell CA. Incremental dynamic analysis[J]. Earthquake engineering and structuraldynamics,2002,31(3):491-514
    [237] Vamvatsikos D. Seismic performance capacity and reliability of structures as seen throughincremental dynamic analysis[D]. California:Stanford University,2002
    [238] Vamvatsikos D,Cornell CA. Applied incremental dynamic analysis[D]. Earthquake spectra,2004,20(2):523-553
    [239]卜一,吕西林,周颖等.采用增量动力分析方法确定高层混合结构的性能水准[J].结构工程师,2009,25(2):77-84
    [240]玉军.钢筋混凝土高层建筑结构抗震弹塑性分析方法的研究及其应用[D].湖南大学硕士学位论文,2007
    [241] Luco N,Cornell C A. Effects of connection fractures on SMRF seismic drift demands[J]. ASCEJournal of structural engineering,2000,126(1):127-136
    [242]陈亮.钢筋混凝土桥梁地震易损性分析方法[J].上海公路,2007,26(3):48-51
    [243] HAZUS99User’s Manual. Washington D C:Federal Emergency Management Agency,1999
    [244] SeismoSoft. SeismoStruct—A computer programme for static and dynamic nonlinear analysis offramed structures (online). Available from URL:http://www.seismosoft.com
    [245] Martinez-Rueda J E,Einashai A S. Confined concrete model under cyclic load[J]. Materials andStructures,1997,(30):139-147
    [246] Filippou F C,Popov E P,Bertero V V. Effects of bond deterioration on hysteretic behavior ofreinforced concrete joints [R]. USA:Earthquake Engineering Research Centre,University ofCalifornia Berkeley,1983
    [247] Filippou F C,Popov E P,Bertero V V. Modeling of RC joints under cyclic excitations [J]. Journal ofStructural Engineering,1983,109(11):2666-2684
    [248]刘伟庆,魏琏,丁大钧等.塑性耗能支撑钢筋混凝土框架的低周反复荷载试验研究[J].南京建筑工程学院学报,1996,38(13):11-18
    [249] FEMA. NEHRP guidelines for seismic rehabilitation of buildings[R]. Report No. FEMA-273,SACJoint Venture,Federal Emergency Management Agency,Washington DC,1997
    [250]邓小刚.多层钢筋砼框架房屋的震害预测方法[J].工程抗震,1993,16(1):28-33
    [251] Gardoni P,KiureghianAD,MosalamK M. Probabilistic capacity models and fragility estimates forreinforced concrete columns based on experimental observations[J]. Journal of EngineeringMechanics,ASCE,2002,128(10):1024-1038
    [252] Dooley K L,Bracci J M.. Seismic evaluation of column-to-beam strength ratios in reinforcedconcrete frames[J]. ACI Structural Journal,2001,98(6):843-851

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700