用户名: 密码: 验证码:
基于元胞自动机的水运枢纽运输组织研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,内河运输凭借其成本低、能耗低、污染少、占地省的优势逐渐在国民经济中扮演着越来越重要的角色,内河航运运输需求不断攀升。与此同时,由于当年工程设计水平的局限性,使得部分水运枢纽船闸实际运行效率远未达到设计水平,这一尴尬现实导致部分水运枢纽船闸通过能力不足的问题日益突出。特别是在大雾等自然条件的影响下,内河航段船舶拥堵现象更为严重。因此,本文以三峡枢纽为对象,研究三峡枢纽在常规条件下船舶流在过坝时的特征、不同翻坝方案选择时船舶流的走向和大雾等自然天气影响下的安全距离等问题,将水上交通的特点与传统道路交通流理论结合起来,利用元胞自动机原理构建模拟模型,从而优化三峡枢纽的运输组织模式,使得当前三峡枢纽运输组织更趋科学、合理、有序,最大程度上提高船闸的综合通过能力及利用率,为内河运力的发展解除后顾之忧。论文主要研究内容及成果如下:
     1)将道路交通流的传统定义与船舶流的相似点相结合,提出了船舶交通流的定义,并分析了船舶交通流的三个关键要素;从元胞自动机的基本理论出发,以整个水运枢纽系统为对象介绍了元胞自动机四大基本元素----元胞、元胞空间、邻居和演化规则的基本概念和在本文中的设定,为构建复杂的元胞自动机模型理清思路和奠定基础。
     2)分析了多个船舶领域模型的构成与特点,相互比较后选取适用于元胞自动机建模的藤井模型做为本文船舶领域的基础模型,并将其引入以N-S模型为基础的跟驰模型和换道模型中,通过改进原有加、减速规则得到了符合船舶交通流特点的考虑船舶领域影响的水上单通道和多通道CA改进模型。水上单通道CA模型以跟驰模型为基础,将船头距的大小作为后方船舶是否加减速的决定因素;水上多通道CA模型以换道模型为基础,分析后方船舶在追越过程中追赶、并行、超越三阶段船间距对加、减速的决定作用。
     3)在分析了三峡库区过闸的现状和存在问题的基础上,分别研究双向船闸和考虑升船机在内的三通道过闸运输组织方式,结合高速公路船闸模型、升船机适用条件和船舶过闸调度原理,构建了水运枢纽过闸运输组织模型;另外将排队论与元胞自动机结合构建了基于排队论的元胞自动机模型。
     4)以三峡翻坝公路为研究背景,分析现行翻坝运输的特点和不同翻坝方案的走向,以还原船舶流流向为根本出发点,构建了翻坝运输组织模型;并研究在陆-水翻坝过程中,滚装船汇入主航道对行进中的船舶造成的影响,构建了翻坝陆-水入口模型。
     5)通过分析雾情对三峡库区船舶运输的影响,研究并得出了船舶运输组织方式在相应情况下的特征函数,结合现有船舶运输组织方式,构建了雾航限速元胞自动机模型。在雾情影响下,主要考虑了驾驶员视距对前方船舶行为反应的延迟影响和船舶突然进入雾区采取制动后的船舶运动状态。
     本文将航道划分成若干网格、船舶看做元胞在网格上移动,从新的视角对水运枢纽区域运输组织中的船舶跟驰、船舶追越、船舶过闸、船舶翻坝等微观行为进行模拟,不仅拓展了元胞自动机理论的应用范围,更深化和完善了水运运输组织优化理论,为水运枢纽区域运输组织优化提供科学依据,对减少船舶过闸排队时间,提高水运枢纽综合通过能力具有现实意义。
In recent years, by virtue of the advantages of low costs, low consumption, and low pollution, inland waterway transportation is playing increasingly important role in national economy, and the demand of inland water transportation is growing. Meanwhile, because of the limitation of the previous engineering design level, the actual operation efficiency of partial ship lock of the water transportation hub is far from the design level. This awkward situation led the problem of insufficient lock capacity in some of the water transportation hubs. Especially when being influenced by natural situation, for example, flood, low flow and fog, the traffic jam for inland water transportation is particularly serious. Therefore, this article will analyze the transportation and organization mode in natural disaster with the object of three gorges hydro-junction area. Based on the traffic flow theory, this paper analyzes the characters of the running of ships. Moreover, Cellular Automata theory is utilized for establishing simulation model, optimizing the transportation and organization mode of the three gorges hydro-junction area, allowing Scheduling of ships in the three gorges hydro-junction area more scientific, reasonable and orderly. By doing so, it is also expected to further enhance the lock capacity and utilization rate, eliminating the anxieties on the development of inland waterway transportation. The main research content and achievements are given as follows:
     1) Through combination of the traditional definition of road traffic flow with the ship traffic flow, the definition of aquatic traffic flow is proposed, while the three key elements for aquatic traffic flow are also analyzed. Proceeding from the basic Cellular Automata theory, it introduces the basic structure and changing rules of aquatic one-way CA model and aquatic multiple-way CA model, and analyzes the structures and features of multiple ship domain models. After comparison, FUJII Model, which is suitable for Cellular Automata modeling, is selected as the basic model in this paper. It will be one of the most important parameters—the basis for bow distance calculation.
     2) By considering the unique undulation effect of water transportation on ships based on the N-S model, the concept of the marine sector is introduced; the original rules of acceleration and deceleration are improved; an updated CA model of appropriate single-channel as well as multi-channels on water transportation is put forward. With ship-following as the basis, for single channel of CA model on water transportation, distance between bows of ships is regarded as the determinant factor of conducting acceleration or deceleration; while for multi-channel CA model on water, on basis of channel changing model, analysis is made on the decisive role of overtaking, parallelizing and surpassing during the chasing process on acceleration and deceleration.
     3) Through an analysis on the current lockage status as well as existing problems of the Three Gorges Reservoir area, in addition to separate studies on the arrangement methods of two-channel ship locks and ship shift inclusive three-channel locks, by combination with highway toll station model, applied conditions for ship lift and ship lock scheduling principle, a dual-channel and multi-channel model of ship lock have been built, and an analysis on simulation results is given.
     4) Under the natural conditions such as fogs, floods, and low flow impact, corresponding characteristic functions of ship transportation organization mode are figured out, by combination with the current ship transportation mode, cellular automata models are built corresponding to the impact factors. With fog conditions, taking major considerations on the delay effect of drivers'visibility range on reactions to the ships in front, a ship transportation mode under fog conditions is constructed; while under the impact of floods, considering mainly the influence of water flow on the speed of ships and forces between ships, a ship transportation mode under floods is constructed; with low flow seasons, in view of the impact of less draft on the density of ships in the reservoir area, a shipping model under low flow seasons is designed.
     5) With the research background of passing the dam to the Three Gorges, an analysis is made on the flow characteristics of different kinds of goods. During the modeling process, definitions of cellular length are made according to characteristics of ships for major cargo species. With separations of goods suitable for road transportation from the cargoes through regular lockage, on basis of lockage model of ships discussed in Chapter4, transportation modes for specific cargoes are constructed and empirical studies are carried out on simulation models with historical data of the Three Gorges as the basis.
     The paper, regarding ships as cellular, makes simulations from a new perspective on the ship following, ship overtaking and ship lockage of regional transport organizations in the water transport hubs, not only expanding applications of the cellular automata theory, but more importantly deepening and improving the optimization theory of water transportation, which has provided scientific basis for the optimization of transportation modes on water transport areas, and is of realistic significance to reduce waiting time of ships or lockage and improve the lock capacity of water transportation hubs.
引文
[1]张广磊.三峡枢纽水路货运综合运输组织模式研究[D].武汉理工大学,2009.
    [2]朱凯.三峡枢纽运输组织优化及模拟[D].武汉理工大学,2009.
    [3]刘佳.交通环境变化下宜昌港口物流发展研究[D]北京交通大学,2007.
    [4]刘远平.三峡船闸过闸需求预测及提高过闸能力对策研究[D]重庆交通大学,2008.
    [5]陈晓关.提高三峡船闸通航能力的研究[D]武汉理工大学,2006
    [6]骆世钟.长江三峡工程的升船机是航运和发电的共同需要[J]航海技术,2002,(01)
    [7]李臣波,刘润涛.一种基于Dijkstra的最短路径算法[J]哈尔滨理工大学学报,2008,(03).
    [8]宋雪莲,王道新.三峡航运遇“瓶颈”“水陆水”翻坝成首选[J]中国经济周刊,2005,(31)
    [9]李国柏.三峡大坝翻坝交通方案聚焦[J]交通企业管理,2005,(08)
    [10]陈淑楣,杜经农.关于三峡坝区翻坝运输的若干思考[J]武汉交通职业学院学报,2006,(02)
    [11]杨慎勤.升船机:三峡工程的设计句号[J]中国三峡建设,2008,(05)
    [13]金卓.三峡升船机解析[J]武汉交通职业学院学报,2008,(02).唐建桥,李新民,王慈光,王如义.集装箱多式联运组织优化模型及算法研究[J]交通与计算机,2008,(03)
    [14]杨慎勤.升船机:三峡工程的设计句号[J]中国三峡建设,2008,(05)
    [15]EXPERIMENTAL FEEDBACK ON THE INVESTIGATION OF HYDRAULIC CHARACTERISTICS FOR THE SHIP-LOCK FILLING AND EMPTYING SYSTEM OF TGP[J] Journal of Hydrodynamics (Ser.B),2005, (06)
    [16]郑浩吴.长江两坝之间交通运输瓶颈的形成原因及对策[J]交通企业管理,2006,(10)
    [17]钮新强,宋维邦.三峡船闸设计中的关键技术问题是如何解决的(上)——船闸技术的新发展[J]中国三峡建设,2003,(03)
    [18]钮新强,宋维邦.三艘船闸设计中的关键技术问题是如何解决的(下)——船届计算机模拟与信息技术会议论文集[C],2005.
    [19]朱俊,张玮,余劲.提高三峡船闸综合通过能力对策研究[J]水运工程,2008,(03)
    [20]陶桂兰,张玮,丁坚,廖鹏,吴玲丽,黄海鸥.船闸1次过闸平均吨位的确定[J]水运工程,2003, (04)
    [21]胡洋.三峡工程五级船闸通过能力初步分析和提高枢纽综合通过能力的对策[J]水运工程,2004,(10)
    [22]魏明,杨方廷,曹正清.交通仿真的发展及研究现状[J]系统仿真学报,2003,(08)
    [23]郑弘.道路交织区仿真模型研究[D]北京工业大学,2001.
    [24]陈小鸿,肖海峰.交织区交通特性的微观仿真研究[J]中国公路学报,2001,(S1)
    [25]伍建国.平面交叉口控制策略及仿真系统研究[D]长安大学,2000.
    [26]孟文杰.南水北调中线工程水量调度仿真研究[D]西安理工大学,2003.
    [27]商蕾.城市微观交通仿真及其应用[D]武汉理工大学,2003.
    [28]魏明.基于HLA的城市道路交通仿真系统研究[D]中国农业大学,2004.
    [29]刘颖,李克平,张振华.城市快速路交通仿真模型的标定及有效性检验方法[J]华东公路,2008,(01)
    [30]王彩霞.交通仿真中的换道模型研究[D]吉林大学,2007.
    [31]李奎,王坚.基于微观仿真的快速路短时交通流预测[J]安徽理工大学学报(自然科学版),2008,(04)
    [32]余燕芳,陆军.基于动态交通仿真模型的最优路径选择方法[J].计算机应用研究,2010(05)
    [33]姚荣涵.船舶排队模型研究[D]吉林大学,2007.
    [34]陈洪仁,杨龙海,赵国锋.寒冷地区二级公路航道交通微观仿真研究[J]中国公路学报,2001,(03)
    [35]莫智锋,余嘉,孙跃.基于泊松分布的微观交通仿真断面发车数学模型研究[J]武汉理工大学学报(交通科学与工程版),2003,(01)
    [36]马寿峰,贺国光,刘豹.一种通用的城市道路交通流微观仿真系统的研究[J]系统工程学报,1998,(04)
    [37]吕立生.城市交通阻塞分析[J]上海大学学报(自然科学版),1998,(03)
    [38]贾洪飞,隽志才,袁少波.船舶跟驰模拟模型的建立[J]山东工程学院学报,2000,(03)
    [39]金春霞,王慧.跟车模型及其稳定性分析综述[J]交通运输系统工程与信息,2001,(03)
    [40]杨小宝,张宁.一种改进的跟驰状态判定方法[J]交通运输系统工程与信息,2006,(02)
    [41]徐杰,杜文,孙宏.跟随车安全距离的分析[J]交通运输工程学报,2002,(01)
    [42]王文清,王武宏,钟永刚,易生平.基于模糊推理的跟驰安全距离控制算法及实现[J]交通运输工程学报,2003,(01)
    [43]邹智军,杨东援.道路交通仿真研究综述[J]交通运输工程学报,2001,(02)
    [44]狄宣.基于元胞自动机的快速路仿真建模与交通流优化分析[D].同济大学,2008.
    [45]董力耘,薛郁,戴世强.基于跟车思想的一维元胞自动机交通流模型[J]应用数学和力学,2002,(04)
    [46]张晋,王慧,李平.基于一维元胞自动机的可变时距跟车模型[J]浙江大学学报(工学版),2006,(02)
    [47]雷丽,董力耘,宋涛,戴世强.基于元胞自动机模型的高架路交织区交通流的研究[J]物理学报,2006,(04)
    [48]张晋.基于元胞自动机的城域混合交通流建模方法研究[D]浙江大学,2004.
    [49]朱波.基于元胞自动机和多智能体的混合微观交通仿真研究[D]山东大学,2006.
    [50]冯毅恒.基于元胞自动机的交通流建模与仿真研究[D]浙江大学,2007.
    [51]周少林.基于动态流的交通疏散算法设计及其系统实现[D]浙江大学,2008.
    [52]孙乳笋.基于元胞自动机的轨道交通流预测研究[D]北京交通大学,2008.
    [53]应力天.基于元胞自动机的城市航道混合交通流建模与仿真[D]北京交通大学,2008.
    [54]邹杰.基于元胞自动机的交通流模型研究[D]山东科技大学,2007.
    [55]邱松林,程琳.基于元胞自动机的航道交通流模拟研究[A]2007第三届中国智能交通年会论文集[C],2007.
    [56]陈军华,赵凛,张星臣.基于元胞自动机理论的交通流模拟研究进展[A].管理学报,2005,2(z1):12-15.
    [57]陈冈.模拟城市交通系统的细胞自动机的研究[D]北京工业大学,2001.
    [58]谭惠丽.交通流元胞自动机模型及其在城市主干道交通中的应用与研究[D]广西师范大学,2002.
    [59]刘永欣.基于元胞自动机的交通流研究[D].西南交通大学,2003.
    [60]徐高.人群疏散的仿真研究[D].西南交通大学,2003.
    [61]严飞.基于Agent和元胞自动机的智能交通仿真研究[D].大连海事大学,2004.
    [62]吴大艳.三车道元胞自动机交通流模型的研究[D].广西师范大学,2004.
    [63]Mahnke R,Kaupuzs J,Lubashevsky I; Probabilistic description of traffic flow [M];Physics Reports (S1063-780X); 2005
    [64]Wolfram S; Theory and application of cellular automata [M].1986.
    [65]Nagel K,Wolf D E,Wagner P; Two-lane traffic rules for cellular automata:a system aticaproach [M];physical Review E (S1063-651X); 1996.
    [66]C.Behring, M.Bracho, M.castro,J.A.Moreno.An Algorithm for Robot Path Planning with Cellular Automata [C].Proceedings of the Fourth International Conference on Cellular Automata for Research and Industry:Theoretical and Practical Issues on Cellular Automata. 2000:11-19.
    [67]Fabio Marchese.A Directional Diffusion Algorithm on Cellular Automata for Robot Path Planning[J]. F
    [68]Yuan W and Tan K H.An evacuation model using cellular automata[J].Physica A,2007,384:549-566.
    [69]Guo R Y and Huang H J.A mobile lattice gas model for simulating pedestrian evacuation[J].Physica A,2008,387:580-586.
    [70]Chow W K and Ng M Y.Waiting time in emergency evacuation of crowded public transport terminals[J].Safety Science,2008,46 (5):844-857.
    [71]蒋熙.面向铁路行车组织的仿真建模方法研究[D].北京交通大学,2008.
    [72]宋学文.高速公路扩建期交通流组织优化研究[D].武汉理工大学,2008.
    [73]Abdulaal.M..and L.J.Leblanc. Methods for Combining Modal Split and Equilibrium Assignment Models [J].Transportation Science.1979.13 (4):292314
    [74]Florlan.M..and S.Nguyen.A Combined Trip distribution Modal Split and Trip Assignment [J]. Transportation Research.1978.12 (4) p:374-246
    [75]Safwat K.N.and Magnanti T.L. A Combined Trip Generation. Trip Distribution Modal split and trip Assignment Modal[J]. Transportation Science.1988.18 (1):14-30
    [76]Takuya Maruyama. Noboru Harata and Katsutosbi Ohta. An Application of Combined Stochastic User Equilibrium Model to the Tokyo Area:Combined Trip Distribution. Model Split and Assignment Model with Explicitly Distinct Trip Purposes [J]. Proceedings of the Conference on Traffic and Transportation Studies.2002.:764-753
    [77]陆化普,朱军等.城市轨道交通规划的研究与实践[M].北京:中国水利出版社.2001
    [78]陈征.交通方式划分—交通分布组合模型研究与软件设计[D].东南大学,2004
    [79]邓卫.新型交通组合需求预测方法的研究[J].东南大学学报,1997,5.
    [80]王山川.联合多方式划分/交通分配模型的研究[D].北京工业大学,2006
    [81]Beckmann.J.and C.B. Mcguire.and C.B. Winsten. Studies in the Economics of Transportation [M].Yale Uiversiy Press.New Haven.Conn.1956
    [82]刘寅东,苏绍娟.长江散货运输组织方式优化及船型论证[J].大连海事大学学报,2009(11).
    [83]李得伟.城市轨道交通枢纽乘客集散模型及微观仿真理论[D].北京交通大学,2007.
    [84]吕鹏.地铁车站乘客集散仿真研究及其在设施协调设计中的应用[D]北京交通大学,2008.
    [85]张建勋.城市轨道交通枢纽动态仿真设计方法研究[D]北京交通大学,2008.
    [86]吕涛.综合客运枢纽功能与结构数值实验系统设计[D]吉林大学,2008.
    [87]秦硕.综合交通客运枢纽功能与结构数值实验系统三维模块设计与实现[D]吉林大学,2008.
    [88]许婷.城市轨道交通枢纽行人微观行为机理及组织方案研究[D]北京交通大学,2008.
    [89]魏召.基于空当搜索的客运交通枢纽行人交通仿真建模研究[D].北京交通大学,2008.
    [90]耿美君.综合客运枢纽服务水平评价研究[D].吉林大学,2009.
    [91]王琳虹.综合交通客运枢纽内各方式间的协调调度研究[D].吉林大学,2009.
    [92]高晶鑫.基于流线分析的客运枢纽内部设施布置优化研究[D].吉林大学,2009.
    [93]乔路.综合交通客运枢纽换乘量预测方法研究[D].吉林大学,2009.
    [94]Lam S K,Srikanthan T. Accelerating the K-shortest Paths Computation in Multimodal Transportation Networks[A]. The IEEE 5thInternational Conference on Intelligent Transportation Systems[C].Singapore:2002.
    [95]Athanasios Ziliaskopoulos, Whitney Wardell. An intermodal optimum path algorithm for multimodal networks with dynamic arc travel times and switching delays[J].European Journal of Operational Research,2000,125 (3):486-502.
    [96]Spiess H,Florian M. Optimum strategies:a new assignment model for transit networks[J]. Transportation Research Part B,1989,23 (2):83-102.
    [97]Nguyen S,Pallotinao S,Malucelli F.A modeling framework for the passenger assignment on a transport network with timetables [R]. Quebec, CA:CRT-94-47 University of Montreal, 1995.
    [98]Boussedjra M,Bloch C,EI Moudni A. An exact method to find the Intermodal Shortest Path[A].Proceedings of the 2004 IEEE International Conference on Networking, Sensing & Control[C].Taiwan,China:2004.
    [99]梁雪玲,靳文舟.运输方式选择的模型及算法研究[J].交通与计算机,2008,26(3)
    [100]井祥鹤,魏冬峰,周献中.运输方式选择多目标优化问题的混合遗传算法[J].计算机工程与应用.2008,44(6)
    [101]董洁霜.港口集疏运系统优化模型[J].上海理工大学学报,2007,29(5)
    [102]刘建军,杨浩.港口枢纽集装箱运输的组织优化研究[J].土木工程学报,2004,37(10)
    [103]黄芳,陶杰.港口物流集疏运系统网络结构优化分析[J].交通运输工程与信息学报,2007,5(2)
    [104]Angelica Lozano, Giovanni storehi (2001). Shortest viable path algorithm in multimodal networks, Transportation Research PartA,35:225-241.
    [105]金志伟.上海港集装箱集疏运系统优化研究[D].上海海事大学,2007.
    [106]喻翔,毛敏,刘建兵.城市交通需求预测组合模型的研究[J].西南交通大学学报,2003,38(1)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700