用户名: 密码: 验证码:
非一致地震激励下高架连续梁桥动力响应与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高架桥是公路和城市交通的重要组成部分,其结构体系以连续梁和简支梁居多,但目前对于多点地震激励下高架连续梁桥动力响应的研究还较少,有关桥梁抗震规程和细则也未就地震动空间性对高架桥动力响应的影响给出明确规定。然而,在汶川等国内外强烈地震中,高架桥的破坏却较多,说明高架桥的抗震性能尚有待深入的研究和提高。同时,历史震害也为高架桥的抗震设计理念带来了一些新的启示。另一方面,近年来结构减隔震技术的不断发展,为新桥的抗震设计和旧桥的抗震加固均带来了新的理念和方法,且已有较多长大桥梁应用减震技术的工程实例。但是,关于采用减震技术提高高架桥抗震性能的研究及工程实例还很少。有鉴于此,本文将以双柱式桥墩直线连续梁桥这一高架桥常见的结构体系为主要研究对象,立足于国内外结构抗震减震研究领域前沿,对高架桥的多点地震响应规律和减震控制对策进行系统深入的理论与试验研究。主要的研究工作及成果包括如下几个方面:
     1.大质量法与绝对位移法的关系和计算精度及高架动力响应对地震动空间特性和结构参数的敏感性分析。分别基于绝对位移法、相对运动法和大质量法,推导了多点地震激励下结构运动方程,证明了大质量法和基底绝对位移法的结构运动方程是基本一致的;利用SAP2000软件,分析了基底附加质量和阻尼比对大质量法、阻尼比对基底绝对位移法计算精度的影响。数值模拟结果表明,对于大质量法,以高架桥墩底反力的104倍作为对应墩底的附加重量即可获得较高的计算精度,且阻尼比的影响较小,但是对于基底绝对位移法,阻尼比的变化则会对其精度产生一定的影响;利用ANSYS软件,分析了跨数、跨度、墩高等结构参数以及视波速、相干效应和局部场地效应等地震动相关参数对双柱式桥墩高架连续梁桥多点地震响应的影响,初步得出了几点定性结论。
     2.地震作用下高架桥的梁台碰撞响应与控制对策研究。基于ANSYS软件,完成了线性碰撞、Kelvin、Hertz和Hertz-Damp模型的二次开发;分析了梁台碰撞对双柱式桥墩高架连续梁桥地震响应的影响,结果表明,梁台碰撞可以防止活动支座位移失效、降低固定墩内力及变形,但增大了固定支座剪力;探讨了多点地震激励和近断层地震激励对高架桥梁台碰撞响应的影响,得出了多点地震激励和近断层地震激励将会增大碰撞力等结论;研究了具有两阶段出力特性复合式金属阻尼器及粘滞阻尼器作为防撞和减撞措施的适用性,结果表明,前者具有小震下耗能、大震下‘锁死’的功能,可有效地避免或降低多点地震激励和近断层地震激励下高架桥的碰撞响应,而后者近断层激励下高架桥的减撞效果则更佳。
     3.振动台台阵试验模型设计及其有限元模型修正。根据模拟地震振动台台阵的能力,以某双柱式桥墩高架连续梁桥为背景,设计、制作了几何相似比为1:10的缩尺模型;通过自由振动和振动台台阵白噪声激励试验,识别了试验模型的动力特性参数,并修正了其有限元模型,包括单向滑动支座的横向力学模型。有限元模型修正结果表明,将单向滑动支座的横向刚度视为刚性可能带来明显的计算误差,以双线性模拟为宜。
     4.一致与非一致地震激励下高架桥动力响应的试验研究。根据规范设计反应谱拟合了四类场地人工地震波,并选择了符合四类场地天然地震波,分别进行了水平一维和多维一致激励振动台台阵试验。结果表明,高架桥地震反应对于场地因素较为敏感,不同场地地震动激励下的响应相差较大;选取两条天然地震波和一条人工波,按照不同视波速进行了水平一维行波激励试验,并与一致输入下的试验结果进行了对比分析,研究了行波效应对高架桥地震响应的影响;分别生成考虑相干效应和局部场地效应的多点地震人工波,进行水平一维多点激励试验,分析了相干效应和局部场地效应对于高架桥地震反应的影响。
     5.粘滞阻尼器性能与减震效果的振动台台试验。设计并制作了四个粘滞阻尼器,测试了其在不同频率简谐激励下力-位移和力-速度关系曲线。测试结果显示,激励频率越高阻尼器出力与速度越接近线性关系;将粘滞阻尼器安装在高架桥模型的主梁与边墩之间,选取两条天然地震波和一条人工地震波分别进行了纵向一致输入、行波输入和多点输入下的振动台试验,考察了粘滞阻尼器对高架桥动力响应的减震效果。
     6.基于增量时程分析的一致与非一致地震激励下高架桥抗震性能研究。介绍了增量时程分析(IDA)的相关理论,对一致激励下典型高架桥的抗震性能进行了IDA分析,探讨了适用于高架桥抗震性能IDA分析的评价指标和强度指标。分析结果表明,与结构基本周期对应的、阻尼比为5%的加速度反应谱谱值Sa(T1,5%)和地震动峰值加速度PGA均可作为地震动强度指标,而桥墩塑性转角、支座位移及支座剪力均应该作为高架桥抗震性能IDA分析的评价指标。分析结果还表明,按现行盆式支座规程设计的桥梁支座横向抗剪承载力是偏低的,这可能是汶川地震中这类桥梁支座破坏的主要原因;对高架桥模型进行了水平单维逐步增大激励加速度峰值的振动台试验,并与有限元模拟结果进行了对比分析;考虑地震动的空间相关性,分别进行了行波激励、考虑相干效应的多点激励和考虑局部场地效应的多点激励下高架桥抗震性能的IDA分析,并与一致激励下的IDA分析结果进行了对比,初步的结论是,地震激励强度越大,高架桥一致激励响应与多点激励响应差别越大。
Viaducts play an important role in modern highway transportation and citytransportation, and continuous girder bridges shares a high proportion, but the multi-point seismic response of them has been seldom taken into consideration. Some newaseismatic design principles of viaducts should be abtained according to the largequantity and various destructional forms of destroyed viaducts during Wenchuanearthquake, while the effect of seismic response under spatial earthquakes excitationsis not ruled in detail. On the other hand, the improved energy-dissipation technologyis more and more used in large-span bridges, while there is few study and applicationof the technology on the continuous viaducts. Therefore, this paper takes the two-column pier continuous girder bridge, the common type of viaducts, as the majorobject of study, and conducts some research in multi-point seismic response andenergy-dissipation theory. The main research and conclutions are as follows.
     1. The dynamic equations, separately based on the Base Absolute DisplacementMethod (BADM), relative motion method (RMM) and large mass method (LMM) arededuced. As a matter of fact, the ultimate equations of BADM and LMM are mainlythe same ones. The effects of additional base mass and damping ratio on the LMMprecision are discussed in use of SAP2000, and it is recommended that the additionalbase mass can be set the104times of base reaction force and the damping ratio affectsa little the LMM precision. Meanwhile, the damping ratio can affects a little on theBADM. The FE model of typical viaduct is established and the effects of the multi-point seismic response is analyzed considering some factors, including span, spannumber, pier height, travelling wave velocity, coherency and local site effect. Somequalitative conclusions are obtained.
     2. The calculation module of the pounding models in common, including linearmodel, Kelvin model, Hertz model and Hertz-damp model, are developed based onANSYS. The effects on the seismic response on of pounding is analyzed, and it isclearly can be deduced that the pounding can lead to the bearings’ damage andaggravate the plastic hinge damage near the bottom of pier. The seismic response ofviaduct under multi-point and near-fault earthquake excitations are calculated, whichconfirms that the multi-point and near-fault earthquake excitations can severelyenlarge the pounding force and response. A type of damper, Metal Alloy Brace (MAB),which possesses the characteristics of two stages of damping force, is recommendedto reduce even remove the pounding force and decrease the dynamic response of theviaduct. However, the seismic control of pounding response is more superior undernear-fault earthquake inputs.
     3. A1:10scaled bridge model of a typical viaduct designed and manufactured, andthe model bridge is placed on the shaking table array. The dynamic characteristic parameters are identified according to the artificial excitations and white noiseexcitations, and compared with the calculation value of FE model, which reveals thatthe parameters values match each other perfectly. Furthermore, it is verified that abilinear model should be used to simulate the traverse rigidity of the sliding bearings.
     4. The shaking table tests of the scaled viaduct are conduct under differentearthquake excitations. Four artificial earthquake records witch fitted the designedfour site types and four earthquake records which accord with the four site types areused to be as the one dimensional and two dimensional uniform excitations, whichreveal the impact on the viaduct’s seismic response of site factor. It is confirmed thatthere is a great deal of difference of the viaduct under different earthquake excitationsaccording to different sites. Besides two earthquake records and one artificialearthquake record are chosen to conduct the one dimensional travelling waveexcitations considering different travelling velocity, and the results are compared withthe seismic response under uniform excitations. At last, the artificial earthquakerecords which considering the incoherence effect and local site effect are generated toconduct the one dimensional shaking table tests to explore the seismic response ofviaducts under multi-point earthquake excitations.
     5. Four viscous dampers are designed and manufactured, and the damping force-displacement curves and damping force-velocity curves are gained under differentfrequency sine excitations. It is demonstrated that the relationship between thedamping force and velocity is closed to linear under high frequency sine excitation.Further, the Maxwell model is suitable to simulate the viscous dampers, while thetested hysterrisis curve is plumper than the calculated curve. Fit the dampers betweenthe side piers and the girder, and the damping effect of the viscous dampers is testedunder longitudinal uniform and multi-point excitations. The test dynamic responsecomparison of the viaduct between with dampers and without dampers shows that theviscous dampers play a part in energy dissipation.
     6. The Incremental Dynamic Analysis (IDA) theory is introduced and the IDAanalysis of the viaduct is conducted under uniform excitations. Meanwhile thedamage measure and intensity measure indexes are discussed during the analysis. It isrecommended that the plastic hinge rotation, the bearing displacement and the bearingshear force all should be taken as the DM indexes and the traverse bearings’ shearforce is not sufficient to resist the earthquake excitations. An artificial earthquakerecord is selected to conduct the IDA shaking table test and the tested results arecompared with the FE model analysis. The IDA is also conducted on the viaductunder the travelling wave excitations and multipoint excitations consideringcoherency and local site effect, and the results are also compared with the resultsunder uniform excitations. It is deduced that the distinction of the dynamic responseof the viaduct under multi-point dynamic response and uniform excitation of the viaduct changes along with the intensity of the earthquake excitations.
引文
[1] Kiureghian A D, Neuenhofer A. Response spectrum method for multi-supportseismic excitations. EESD,1992,21:713~740.
    [2] Kiureghian A D, Neuenhofer A. A coherency model for spatially varying groundmotions. EESD,1996,25:99~111.
    [3]李忠献,黄健,丁阳.不同地震激励下大跨度斜拉桥的地震反应分析.中国公路学报,2005,18(3):48-53.
    [4]柳国环,李宏男,田利.九江长江大桥在多点多维地震激励下的反应分析.振动与冲击,2009,28(9):204~209.
    [5] SOYLU K K, DUMANOGLU A A, TUNA M E. Random vibration anddeterministic analysis of cable-stayed bridges to asynchronous ground motion. Structural Engineering and Mechanics,2004,18(2):231~246.
    [6]刘春城,张哲,石磊.多支承激励下自锚式悬索桥空间地震反应分析.哈尔滨工业大学学报,2004,36(11):1568~1570.
    [7]刘春城,郭丽波,李福军.非一致激励下自锚式悬索桥的非线性地震反应分析.武汉理工大学学报,2007,31(5):864-867.
    [8] Abdel-Ghaffar A M. Suspension bridge response to multiple-support excitations.Journal of the Engineering Mechanics Division, ASCE,1982,108(2):417~435.
    [9] Hao H. Arch response to correlated multiple excitations. EESD,1993,22(5):389~404.
    [10]赵灿晖,周志祥.大跨度钢管混凝土拱桥在多维多点地震激励作用下的平稳随机响应.世界地震工程,2007,23(4):66~71.
    [11]王成博,史志利,李忠献.随机地震动场多点激励下大跨度连续刚构桥的地震反应分析.地震工程与工程振动,2003,23(6):57~62.
    [12]王蕾,赵成刚,王智峰.考虑地形影响和多点激励的大跨高墩桥地震响应分析.土木工程学报,2006,39(1):50~53.
    [13]Wilson E, et al. A clarification of the orthogonal effects in a three-dimensionalseismic analysis. Earthquake Spectra,1995,11(4):659~666.
    [14]Lopez O A, Torrez R. Discussion of “A Clarification of the Orthogonal Effects ina Three-dimensional Seismic Analysis” by E. L. Wilson, I. Suharwardy, and A.Habibullah. Earthquake Spectra,1996,12(2):357~361.
    [15]Kim SH, FengM Q. Fragility analysis of bridges under ground motion withspatial variation. Journal of Nonlinear Mechanics,2003,38(5):705~721.
    [16]Lou L, ZervaA. Effects of spatially variable ground motions on the seismicresponse of a skewed, multi-span, RC highway bridge. Soil Dynamics andEarthquake Engineering,2005,25(10):729~740.
    [17]刘延芳,叶爱军,王斌斌.现行桥梁抗震设计规范对超长多跨连续梁桥的适用性分析.工程抗震与加固改造,2006,29(3):104~108.
    [18]Aspasia Zerva1, Alfredo H-S. Ang, Y. K. Wen. Lifeline response to spatiallyvariable ground motions. Earthquake Engineering&Structural Dynamics,1988,16(3):361~379.
    [19]Aspasia Zerva. Response of multi-span beams to spatially incoherent seismicground motions. Earthquake Engineering&Structural Dynamics,1990,19(6):819~832.
    [20]N. Chouw, H. Hao. Significance of SSI and non-uniform near-fault groundmotions in bridge response I: Effect on response with conventional expansionjoint. Engineering Structures,2008,30:141~153.
    [21]Tzanetos N., Elnashai A S., Hamdan F.H., et al. Inelastic dynamic response of RCbridges subjected to spatial non-synchronous earthquake motion. Advances instructural engineering,2000,3(3):191~214.
    [22]李宏男.结构多维抗震理论与设计方法.科学出版社,1998.
    [23]邱法维,钱稼茹.结构在多维多点地震输入下的拟动力实验方法.土木工程学报,1999,32(5):28~34.
    [24]李睿,叶燎原,杨忠恒等.高烈度地震区梁桥高墩的选型和设计.昆明理工大学学报(理工版),2008,33(1):52~55.
    [25]范立础.桥梁延性抗震设计.北京:人民交通出版社,1998.
    [26]全伟,李宏男.多点激励下LRB隔震桥梁地震反应分析.世界地震工程,2007,23(4):187~193.
    [27]全伟.大跨桥梁多维多点地震反应分析研究.大连:大连理工大学,2008.
    [28]Lupoi A., Franchin P., Pinto P.E., et al. Seismic design of bridges accounting forspatial variability of ground motion. Earthquake Engineering and StructuralDynamics,2005,34:327~348.
    [29]Sextos A.g., Pitilakis K.D., Kappos A.J. Inelastic dynamic analysis of RC bridgesaccounting for spatial variability of ground motion, site effects and soil-structureinteraction phenomena. Part2: parametric study. Earthquake Engineering andStructural Dynamics,2003,32:629~652.
    [30]Ohsaki M. Sensitivity of optimum designs for spatially varying ground motions.Journal of Structural Engineering.2001,127:1324~1329.
    [31]周国良,鲍叶欣,李小军.结构动力分析中多点激励问题的研究综述.世界地震工程,2009,25(4):2~32.
    [32]K. T. Chau, X. X. Wei. Pounding of structures modelled as non-linear impacts oftwo oscillators. Earthquake Engineering and Structural Dynamics,2001,30:633~651.
    [33]Robert Jankowski. Analytical expression between the impact damping ratio andthe coecient of restitution in the non-linear viscoelastic model of structuralpounding. Earthquake Engng Struct. Dyn.2006,35:517~524.
    [34]Elias Dimitrakopoulos, Nicos Makris2, Andreas J. Kappos. Dimensional analysisof the earthquake-induced pounding between adjacent structures. EarthquakeEngng Struct. Dyn.2009,38:867~886.
    [35]Praveen K. Malhotra. Dynamics of seismic pounding at expansion joints ofconcrete bridges. Journal of engineering mechanics,1988,124(7):794~802.
    [36]Kazuhiko Kasai, Anil R. Jagiasi, Van Jeng. Inelastic vibration phase theory forseismic pounding mitigation. Journal of Structural Engineering,1996,122(10):1136~1146.
    [37]Susendar Muthukumar. A contact element approach with hysteresis damping forthe analysis and design of pounding in bridges. Georgia Institute of Technology,2003.
    [38]Susendar Muthukumar,Reginald DesRoches. A Hertz contact model with non-linear damping for pounding simulation. Earthquake Engng Struct. Dyn.,2006;35:811~828.
    [39]Jaime Vega, Ignacio del Rey, Enrique Alarcon. Pounding force assessment inperformance-based design of bridges. Earthquake Engineering and StructuralDynamics,2009,38:1525~1544.
    [40]Robert Jankowski, Krzysztof Wilde, Yozo Fujino. Pounding of superstructuresegments in isolated elevated bridge during earthquakes. Earthquake Engineeringand Structural Dynamics,1998,27:487-502.
    [41]Sang-Hoon Kim, Masanobu Shinozuka. Effects of seismically induced poundingat expansion joints of concrete bridges. Journal of Engineering Mechanics,2003,129:1225~1234.
    [42]Stavros A. Anagnostopoulos. Equivalent viscous damping for modeling inelasticimpacts in earthquake pounding problems. Earthquake Engng Struct. Dyn.2004,33:897~902.
    [43]Ping Zhu, Masato Abe, Yozo Fujino. Modelling three-dimensional non-linearseismic performance of elevated bridges with emphasis on pounding of girders.Earthquake Engng Struct. Dyn.2002,31:1891~1913.
    [44]Robert Jankowski. Non-linear viscoelastic modelling of earthquake-inducedstructural pounding. Earthquake Engng Struct. Dyn.2005,34:595~611.
    [45]邢誉峰.有限长Timoshenko梁弹性碰撞接触瞬间的动态特性.力学学报,1999,31(1):68-74.
    [46]王东升,冯启民,王国新.基于直杆共轴碰撞理论的桥梁地震反应邻梁碰撞分析模型.工程力学,2004,21(2):157-166.
    [47]金栋平,胡海岩,吴志强.基于Hertz接触模型的柔性梁碰撞振动分析.振动工程学报,1998,11(1):47-51.
    [48]刘鹏,郑凯锋,杨雷.地震作用下的桥梁碰撞分析改进求解方法.公路交通科技,2011,28(3):76-81.
    [49]穆翠玲,王文俊, HuiminMu.非线性地震荷载作用下桥梁碰撞的等效位移阻尼法.中山大学学报,2006,45(5):42~46.
    [50]李忠献,岳福青,周莉.地震时桥梁碰撞分析的等效Kelvin撞击模型.工程力学,2008,25(4):128~133.
    [51]李忠献,岳福青.城市桥梁地震碰撞反应研究与发展.地震工程与工程振动,25(4):91~97.
    [52]丁文胜,陈振伟.地震作用下相邻结构碰撞对结构性能影响研究.江苏科技大学学报,2008,22(3):17~22.
    [53]郭维,沈映红.高架简支梁桥非线性碰撞地震反应分析.地震工程与工程振动,2002,(4):108~113.
    [54]于海龙,朱睎.地震作用下简支梁桥梁间碰撞的反应性能.北方交通大学学报,2004,28(1):43~46.
    [55]于海龙,朱睎.地震作用下梁式桥碰撞反应分析.中国铁道科学,2004,25(1):95-99.
    [56]王东升,杨海红,王国新.考虑邻梁碰撞的多跨长简支梁桥落梁震害分析.中国公路学报,2005,18(3):54~59.
    [57]Giovanna Zanardo, Hong Hao, Claudio Modena. Seismic response of multi-spansimply supported bridges to a spatially varying earthquake ground motion.Earthquake Engineering and Structural Dynamics,2002,31:1325~1345.
    [58]李忠献,岳福青,周莉等.考虑地震动空间效应的城市高架桥梁地震碰撞响应分析.天津大学学报,2006,39(8):938~943.
    [59]Chouw N., Hao H. Study of SSI and non-uniform ground motion effect onpounding between bridge girders. Soil Dynamics and Earthquake Engineering,2005,25:717~728.
    [60]林华东,王强.近场地震下简支梁桥的碰撞响应研究.广东公路交通,2008,19~21.
    [61]孟宪锋,朱睎.近场地震作用下高速铁路简支梁桥的碰撞行为.北方交通大学学报,2006,30(4):73~76.
    [62]Nawawi Chouw. Significance of soil-structure interaction and near-sourceearthquakes in causing pounding of bridge girders. Structures—Building on thePast: Securing the Future Proceedings of Structures Congress2004, StructuralEngineering,2004.
    [63]孟宪锋,朱睎.梁式桥防止地震碰撞及落梁装置与措施的研究进展.工程抗震与加固改造,2005,(2):71~75.
    [64]王军文,李建中,范立础.桥梁结构地震碰撞效应及防落梁措施研究现状.公路交通科技,2007,24(5):71~75.
    [65]Anxin Guo, Zhongjun Li, Hui Li, et al. Experimental and analytical study onpounding reduction of base-isolated highway bridges using MR dampers.Earthquake Engng Struct. Dyn.,2009,38:1307~1333.
    [66]A.X. Guo, Zh.J. Lia, H. Lia. Semi-active control of highway bridges withpounding effect by using magneto rheological dampers under earthquakeexcitations. International Conference on Smart Materials and Nanotechnology inEngineering,2007.
    [67]Kaiming Bi, Hong Hao, Nawawi Chouw. Required separation distance betweendecks and at abutments of a bridge crossing a canyon site to avoid seismicpounding. Earthquake engineering and Structural Dynamics,2009.
    [68]Robert Jankowski, Krzysztof Wilde, Yozo Fujino. Reduction of pounding effectsin elevated bridges during earthquakes. Earthquake engineering and StructuralDynamics,2000,29:195~212.
    [69]Robert Jankowski, Krzysztof Wilde, Yozo Fujino. Pounding of superstructuralsegments in isolated elevated bridge during earthquakes. Earthquake engineeringand Structural Dynamics,1998,27:487~502.
    [70]Masanobu Shinozuka, Maria Q. Feng, Jae-Min Kim, et al. Mitigation of seismicpounding effect on bridges using dynamic restrainers. Newport Beach,2000,3989:377~387.
    [71]Reginald DesRoches, Susendar Muthukumar. Effect of Pounding and Restrainerson Seismic Response of Multiple-Frame Bridges. Journal of StructuralEngineering,2002,128(7):860~869.
    [72]郭磊.强震作用下桥梁的碰撞效应及对应措施.湖南:湖南大学,2010,36~56.
    [73]岳福青.地震作用下隔震高架桥梁的碰撞反应及控制.天津:天津大学,2007,16~26.
    [74]高玉峰,李晓斌,杨永清.桥梁结构地震碰撞问题理论分析模型及试验研究进展.应用力学学报,2010,27(4):809~816.
    [75]Robert Jankowski. Experimental study on earthquake-induced pounding betweenstructural elements made of different building materials. Earthquake Engng Struct.Dyn.,2010,39(3):343~354.
    [76]李忠献,张勇,岳福青.地震作用下隔震简支梁桥碰撞反应的振动台试验.地震工程与工程振动,27(2):152~157.
    [77]FengM Q, Kim JM, ShinozukaM, et al. Viscoelastic dampers at expansion jointsfor seismic protection of bridges. Journal of Bridge Engineering,2000,15(1):67~74.
    [78]LinW H, ChopraAK. Earthquake response of elastic SDF systems with non-linearfluid viscous dampers. EarthquakeEgineering and Structural Dynamics,2002,31(9):1623~1642.
    [79]A. Ruangrassameea, K. Kawashimab.Control of nonlinear bridge response withpounding effect by variable dampers.2003,25(5):593~606.
    [80]方海,李升玉,王曙光,刘伟庆.高烈度区连续梁桥的减震设计方法研究.地震工程与工程振动,2005,25(6):178~182.
    [81]陈永祁,马良喆.苏通长江大桥限位阻尼器的设计和测试.现代交通技术,2008,5(4):20~24.
    [82]Berton S, StrandgaardH, Bolander JE. Effect of nonlinear fluid viscous damperson the size of expansion joints of multi-span prestressed concrete segmental box-girder bridges. Proc. of13thWorld Conference on Earthquake Engineering.Canada: Vancouver, B.C,2004.
    [83]Nicos Makris, Jian Zhang. Seismic Response Analysis of a HighwayOvercrossing Equipped with Elastomeric Bearings and Fluid Dampers. Journal ofStructural Engineering,2004,130(6):830~845.
    [84]Tzu-Ying LEE, Kazuhiko KAWASHIMA. Control of seismic-excited nonlinearisolated bridges with variable viscous dampers. Journal of EarthquakeEngineering,2005,1~7.
    [85]蒋建军,李建中,范立础.桥梁板式橡胶支座与粘滞阻尼器组合使用的减震性能研究.公路交通科技,2005,22(8):44~48.
    [86]崔志刚,李林,袁涌.城市高架桥粘滞流体阻尼器减震理论分析研究.土木工程与管理学报,2011,28(3):332~335.
    [87]吴斌暄,王磊,王歧峰.使用非线性粘滞阻尼器的桥梁在地震反应中的响应分析.公路交通科技.2007,24(10):76~80.
    [88]李忠献,周莉,岳福青.城市桥梁粘滞阻尼器防地震碰撞分析与参数设计.地震工程与工程振动,2006,26(5):195~200.
    [89]王志强,葛继平.粘滞阻尼器和Lock-up装置在连续梁桥抗震中应用.石家庄铁道学院学报,2006,19(1):5~9.
    [90]王曙光,刘伟庆,徐秀丽等.大跨连续梁桥纵向消能减震振动台模型试验.中国公路学报,2009,(5):54~59.
    [91]Robinson, W. H. and Greenbank, L. R. An extrusion energy absorber suitable forthe protection of structures during an earthquake. Earthq. Eng. Struct. Dyn.,1976,4:251~259.
    [92]Monti M D, RobinsonW H. A lead shear damper suitable for reducing the motioninduced by wind and earthquake. Proc.11th WCEE,1996.
    [93]杨军,李黎,叶昆.铅挤压阻尼器的研究.华中科技大学学报(自然科学版),2006,34(6):115~117.
    [94]Raul Oscar Curadelli, Jorge Daniel Riera. Reliability based assessment of theeffectiveness of metallic dampers in buildings under seismic excitations.Engineering Structures.2004,(26):1931~1938.
    [95]李冀龙,欧进萍.铅剪切阻尼器的阻尼力模型与设计.工程力学,23(4):67~73.
    [96]方海,刘伟,王仁贵等.铅阻尼器在自锚式悬索桥横向减震设计中的应用研究.地震工程与工程振动,2006,26(4):221~225.
    [97]闫维明,李勇,陈彦江等.铅挤压阻尼器在高架桥减震控制中的应用研究.公路交通科技,2011,28(4):46~52.
    [98]李勇,闫维明,陈彦江等.近断层地震作用下大跨斜拉桥地震响应及减震控制.防灾减灾工程学报,479~486.
    [99]王洪涛,陈彦江,闫维明等.复合式金属型阻尼器在高架桥减震控制中的应用研究.土木建筑与环境工程,2010,32(增2):404~407.
    [100] Liu Changpeng, Zhang Xigang, Zhou Daxing, et al. Energy dissipation of super-long-span cable-stayed bridge using metal alloy brace. Advanced MaterialsResearch,243~249:1947~1951.
    [101] Yan Weiming, Xu Weibing, Chen Yanjiang, et al. Study on the application ofMetal Alloy Brace on the seismic control of curved bridges.2011InternationalConference on Remote Sensing, Environment and Transportation Engineering,2011,8570-8574.
    [102] Lyan-Ywan Lu, Ging-Long Lin, Ming-Hsiang Shih. An experimental study on ageneralized Maxwell model for nonlinear viscoelastic dampers used in seismicisolation. Engineering Structures,2012,34:111~123.
    [103]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状.同济大学学报,2001,29(10):1213~1219.
    [104]亓兴军,李小军,王京卫.行波效应对大跨斜拉桥减震控制的影响.交通运输工程学报,2008,8(6):70~76.
    [105] Introduction of Vibration Laboratory, Public Works Research Institute, Ministryof Construction, Tsukuba Science City, Japan.
    [106] H.Adachi. Dynamic Response of Structures Subjected to Multiple Excitations.Proc. of Ninth World Conference on Earthquake Engineering, August,1988, vol.V, Tokyo-Kyoto, Japan.
    [107]邱法维,钱稼茹.结构在多维多点地震输入下的拟动力实验方法.土木工程学报,1999,32(5):28~34.
    [108]叶爱君,袁万城,胡世德.高墩振动台试验研究.同济大学学报,1996,24(6):606~611.
    [109]司炳君,李宏男,王东升等.基于位移设计的钢筋混凝土桥墩抗震性能试验研究(I):拟静力试验.地震工程与工程振动,2008,28(1):123~129.
    [110]李加武,卢斌,刘健新.连续梁减震性能的振动台试验研究.桥梁建设,2002,(6):20~22.
    [111]彭天波,李建中,胡世德,范立础.上海市共和新路双层高架桥的抗震试验研究.结构工程师,2005,21(13):39~43.
    [112]李忠献,张勇,岳福青.地震作用下隔震简支梁桥碰撞反应的振动台试验.地震工程与工程振动,2007,27(2):152~157.
    [113]樊珂,李振宝,阎维明.拱桥多点动力响应振动台模型试验与理论分析.铁道科学与工程学报,2007,4(6):19~24.
    [114]瞿伟廉,孙五一,周强.万州长江大桥欠质量模型振动台试验研究.武汉理工大学学报,2005,27(8):45~48.
    [115]韦晓,范立础,王君杰.考虑桩-土-桥梁结构相互作用振动台试验研究.土木工程学报,2002,35(4):91~97.
    [116]徐鹏举,凌贤长,唐亮等.可液化场地桩基桥梁结构地震响应振动台试验.哈尔滨工业大学学报,2010,42(8):1189~1193.
    [117]宋波,张国明,李悦.桥墩与水相互作用的振动台试验.北京科技大学学报,2010,32(3):403~408.
    [118]张俊平,周福霖,廖蜀樵.桥梁隔震体系振动台试验研究(III)--测试结果分析.地震工程与工程振动,2002,22(2):136~142.
    [119]高文军,牛松山,兰海燕.单索面独塔斜拉桥振动台模型试验研究.公路交通技术,2010,(2):45~48.
    [120]唐光武,郑万山,郑罡等.重庆朝天门长江大桥动力模型试验研究.公路,2009,(5):146-150.
    [121] Weiming Yan, Yong Li, Yanjiang Chen. Seismic Testing of a Long-spanConcrete Filled Steel Tubular Arch Bridge. Key Engineering Materials,2011,456:99-112.
    [122]王蕾.大跨度刚构桥地震响应分析及振动台试验研究.北京:北京交通大学,2010,100-150.
    [123]王立辉.连续刚构桥振动台台阵试验研究.北京:北京工业大学,2011,31-45.
    [124] Nathan Johnson, Richard T. Ranf, M. Saiid Saiidi, et al. Seismic Testing of aTwo-Span Reinforced Concrete Bridge. Journal of Bridge Engineering,2008,13(2):173~182.
    [125] Dimitrios Vamvatsikos, C. Allin Cornell. Incremental dynamic analysis.Earthquake Engng Struct. Dyn.2002,31:491~514.
    [126] Vamvatsikos D, Cornell C A. Applied incremental dynamic analysis.Earthquake Spectra,2004,20(2):523-553.
    [127]陆新征,叶列平,谬志伟.建筑抗震弹塑性分析.北京:中国建筑工业出版社,2009.
    [128] Lupoi A, Franchin P, Schotanus M. Seismic risk evaluation of RC bridgestructure. Earthquake Engineering and Structural Dynamics,2003,32(8):1275~1290.
    [129] Sang Whan Han, Anil K. Chopra.Approximate incremental dynamic analysisusing the modal pushover analysis procedure. Earthquake Engineering&Structural Dynamics,2006,3(15):1853~1873.
    [130]陆新征,叶列平.基于IDA分析的结构抗地震倒塌能力研究.工程抗震与加固改造,2010,32(1):13~18.
    [131]孙文林.基于性能的钢框架结构非线性地震反应分析.湖南:湖南大学,2006.
    [132] Giorgio Lupoi, Paolo Franchin, Alessio Lupoi. Seismic fragility analysis ofstructural systems. Journal of Engineering Mechanics,2004,132(4):385~395.
    [133] P. Zarfam, M. Mofid. On the modal incremental dynamic analysis of reinforcedconcrete structures, using a trilinear idealization model. Engineering Structures,2011,33:1117-1122.
    [134] Chara Ch. Mitropoulou, Manolis Papadrakakis. Developing fragility curvesbased on neural network IDA predictions. Engineering Structures,2011,33:3409~3421.
    [135]汪梦甫,曹秀娟,孙文林.增量动力分析方法的改进及其在高层混合结构地震危害性评估中的应用.工程抗震与加固改造,2010,32(1):104~109.
    [136] Dimitrios Vamvatsikos, C. Allin Cornell. Direct estimation of seismic demandand capacity of multidegree-of-freedom systems through incremental dynamicanalysis of single degree of freedom approximation. Journal of StructuralEngineering,2002,131(4):589~597.
    [137] Aman Mwafy, Amr Elnashai, W.-H. Yen. Implications of Design Assumptionson Capacity Estimates and Demand Predictions of Multispan Curved Bridges.Journal of Bridge Engineering,2007,12(6):710~726.
    [138] KOWALSKY M J. Deformation limit states for circular reinforced concretebridge columns. Journal of Structural Engineering,2000,126(8):869~878.
    [139] LEHMAN D, MOEHLE J, MAHIN S, et al. Experimental evaluation of theseismic performance of reinforced concrete bridge columns. Journal of StructuralEngineering,2004,130(6):869~879.
    [140]李建中,宋晓东,范立础.桥梁高墩位移延性能力的探讨.地震工程与工程振动,2005,25(1):43-48.
    [141] John B. Mander, Rajesh P. Dhakal, Naoto Mashiko, et al. Incremental dynamicanalysis applied to seismic financial risk assessment of bridges.2007,29(10):2662~2672.
    [142]张凯,朱晞,倪永军,江辉.桥梁结构基于性能的地震经济风险评估.中国铁道科学,2011,32(1):68~74.
    [143] Vinita Saxena. Spatial variation of earthquake ground motion and developmentof bridge. Princeton University,2000,22~48.
    [144] Sang Hong Kim.Fragility analysis of bridges under ground motion with spatialvariation. University of California, Irvine,2002,120~150.
    [145] K. Solberg, N. Mashiko, J. B. Mander. Performance of a damage-protectedhighway bridge pier subjected to bidirectional earthquake attack. Journal ofStructural Engineering,2009,135(5):469~478.
    [146]刘新岗.基于IDA分析的城市轨道交通桥梁结构抗震性能研究.北京:北京交通大学,2009,39~56.
    [147]谷音,卓卫东.基于IDA和纤维模型的高墩大跨连续刚构桥梁地震反应分析.土木工程与管理学报,2011,28(3):235~240.
    [148]王建民,王国亮,聂建国等.基于概率的桥梁结构地震危害性分析.土木工程学报,2010,43(11):83~93.
    [149]冯清海,袁万城.基于IDA-MC的桥梁地震风险概率评估方法.长安大学学报,2010,30(3):60~65.
    [150]申彦利,杨庆山,田玉基.基于概率的多点激励地震场强度参数研究.工程力学,2010,27(1):202~208.
    [151] Thomas E.Price, Marc O. Eberhard. Effects of spatially varying ground motionson short bridges. Journal of Structure engineering,1998,124(8):948~955.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700