用户名: 密码: 验证码:
β-环糊精改性沸石吸附水中有机污染物和重金属的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文依据不同的改性机理和方法,以β-环糊精作为改性剂,对天然沸石进行改性,制备了两种具有特殊结构与性能的改性沸石。采用FTIR光谱、元素分析、扫描电镜以及X射线能量色散谱仪等现代分析测试手段对改性沸石进行了表征。研究了改性沸石分别吸附处理水中有机污染物、重金属和复合污染物的能力,初步探讨了改性沸石吸附污染物的作用机理,为拓展沸石的功能与应用提供了理论依据,为改性沸石在水处理中的应用提供了技术基础,也为安全、无毒、环保的高效吸附剂的开发提供了信息。
     主要研究内容和结论归纳如下:
     提出了利用β-环糊精改性沸石的新方法。以2,3-环氧丙基三甲基氯化铵(ETMAC)和β-环糊精合成的阳离子化β-环糊精对沸石进行改性,制得改性沸石CCDMZ;利用环氧氯丙烷(EPI)作为交联剂,通过醚化作用,使β-环糊精固载到沸石表面,制得改性沸石ECDMZ。以吸附量(qe)为指标,分别考察了两种改性沸石的制备条件对所得产物吸附污染物量的影响,确定了两种改性沸石的最佳制备条件。结果表明,阳离子化β-环糊精的制备条件(初始β-环糊精的浓度、合成溶液的pH值、摩尔比METMAC:Mβ-CD)、天然沸石的预处理、阳离子化β-环糊精的浓度、改性时间等制备条件均对CCDMZ及附污染物的qe产生影响,其中尤以阳离子化β-环糊精的制备条件影响最大;天然沸石的预处理、摩尔比MEPI:Mβ-CD、改性时间、溶液的pH值以及溶液中NaOH百分含量等均对ECDMZ吸附污染物的qe产生影响。对两种改性沸石分别进行FTIR光谱、元素分析、扫描电镜以及X射线能量色散谱等方面的表征,结果显示β-环糊精可以较稳定地固载于沸石表面,形成具有优良吸附性能的新型吸附剂。
     研究了改性沸石对水中硝基苯酚(NPs)、重金属离子和对-硝基苯酚(p-NP)-重金属离子复合污染物体系的吸附能力。结果表明,CCDMZ和ECDMZ吸附NPs、重金属离子时,qe受粒径、吸附时间、溶液初始浓度和溶液pH值等的影响。在粒径0.45~0.9mm范围内,CCDMZ和ECDMZ对NPs和重金属离子均具有较高的qe。CCDMZ和ECDMZ吸附NPs的平衡时间分别为60min和100min、Cu2+的吸附平衡时间均为120min、Ni2+的吸附平衡时间分别为120min和140min。NPs和重金属离子初始浓度的升高有利于CCDMZ和ECDMZ对NPs和重金属离子的吸附。当NPs浓度为300mg/L时,CCDMZ吸附p-NP、间-硝基苯酚(m-NP)和邻-硝基苯酚(o-NP)的qe分别为335、220和324μg/g;ECDMZ对p-NP、m-NP和o-NP的qe分别为902、766和855μg/g。当Cu2+和Ni2+的浓度为100mg/L时,CCDMZ和ECDMZ对Cu2+和Ni2+的qe分别为1267、1148μg/g和3751、3811μg/g。溶液pH值对CCDMZ和ECDMZ的qe影响非常明显,因为pH值的变化不但影响了NPs、Cu2+和Ni2+在溶液中的形态,同时也影响了CCDMZ和ECDMZ表面的荷电性。对比ECDMZ、CCDMZ和NZ对NPs和重金属离子的吸附,其吸附效果是ECDMZ>CCDMZ>NZ。吸附动力学和等温线研究表明,CCDMZ和ECDMZ吸附NPs、Cu2+和Ni2+的过程符合二级动力学模型,吸附等温线符合Langmuir型,说明吸附过程是以单分子层吸附为主,既存在化学吸附又存在物理吸附,且吸附过程的主控速率是化学吸附。Freundlich型吸附等温线拟合结果n值表明CCDMZ和ECDMZ对NPs、Cu2+和Ni2+的吸附均为优先吸附。低浓度下的高分离因子(r)值表明CCDMZ和ECDMZ对NPs、Cu2+和Ni2+的吸附更适合于微污染水处理。如:对100mg/L的NPs、CCDMZ和ECDMZ对p-NP、o-NP和m-NP的qe分别较NZ提高了8、5、13和23、14、37倍。吸附热力学研究表明对NPs的吸附是自发的放热过程,吸附过程是焓推动作用,而对Cu2+和Ni2+的吸附过程是自发的吸热过程,吸附过程是熵推动作用。对于p-NP和重金属离子复合污染物体系的研究表明,CCDMZ和ECDMZ因共存污染物的相互影响而使得qe下降。
Two modification zeolites with special structure and performance were synthesized by modifying natural zeolite (NZ) using beta-cyclodextrin (β-CD) as modifying agent through the two different mechanisms and methodes. The modified zeolites were characterized with the modern analytical techniques such as fourier transform infrared spectroscopy (FTIR), elemental analysis, scanning electronic microscope (SEM), and Energy dispersive X-ray spectrometry (EDS) etc.. Through studying the adsorption capacity of modified zeolites on organic pollutant, heavy metal, and compound pollutants, the related mechanisms in adsorption of pollutants in water were investigated. This dissertation aimed to sumbit a theoretical basis in function and application of zeolites in order to provide a techno-basic in application of zeolites in water treatment, and to expend information for development of high-efficiency absorbents of safety, avirulence and environmental protection.
     The main contents and results were as follows:
     The novel modification methods of zeolites was presented using β-cyclodextrin (β-CD) as modifying agent. CCDMZ was obtained by modification zeolite using cationic β-CD (CCD) which was synthesized by2,3-expoxypropyl trimethylammonium chloride (ETMAC), and ECDMZ was obtained using epoxy chloropropane (EPI) as cross-linking agent through etherification to locate β-CD on NZ surface. The optimal preparation conditions of two modification zeolites were determined by studying the effects of preparaction condition on adsorption capacity (qe) of CCDMZ and ECDMZ, respectively. The results indicated that qe of CCDMZ was affected by the preparaction conditions of CCD (the concentration of β-CD, pH of solution, and METMAC:Mβ-CD), pretreament of NZ, concentration of CCD, and modification time etc.. The qe of ECDMZ was affected by pretreament of NZ, MEPT:Mβ-CD, reaction time, pH of solution, and percent of NaOH in solution etc.. The modern analytical techniques of FTIR, elemental analysis, SEM, and EDS were used to characterize the surface modification. The characterization results showed that β-CD could successfully be located on the surface of zeolites.
     The qe of CCDMZ and ECDMZ were investigated dealing with nitrophenols (NPs), heavy metals, para-nitrophenol (p-NP) and heavy metal ion of composite pollution system. The results indicated that the qe of CCDMZ and ECDMZ were affected by partical size, contact time, concentration and pH of solution etc.. The high qe of CCDMZ and ECDMZ on NPs and heavy metals was found at size fraction of0.45-0.9mm. Adsorption equilibrium times of CCDMZ and ECDMZ on NPs were60min and100min, respectively. The equilibrium times of Cu2+were120min, and that of Ni2+were120min and140min, respectively. The increas of concentration of NPs and heavy metals were favorable to the increas of qe. At an initial solute concentration of NPs of300mg/L, the qe of CCDMZ on p-NP,mid-nitrophenol (m-NP) and ortho-nitrophenol (o-NP) were335,220and324μg/g, and the qe of ECDMZ onp-NP, m-NP and o-NP were902,766and855μg/g, respectively. At an initial solute concentration of Cu2+and Ni2+of100mg/L, the qe of CCDMZ and ECDMZ on Cu2+and Ni2+were1267,1148μg/g and3751,3811μg/g, respectively. The effects of pH on qe of CCDMZ and ECDMZ were greatly visible because of the effect of changed pH on both morphological structure of NPs, Cu2+and Ni2+in solution and electrical charge structure of CCDMZ and ECDMZ. The adsorption effect of NPs and heavy metal ions on NZ, CCDMZ and ECDMZ was ECDMZ>CCDMZ>NZ. The adsorption process of CCDMZ and ECDMZ for NPs, Cu2+and Ni2+followed Langmuir isotherm and fitted with pseudo-second order. The results indicated that the adsorption process was physical absorption and chemical adsorption when the chemical adsorption mainly controlled the process. The n of Freundlich isotherm indicated that the adsorption of CCDMZ and ECDMZ for NPs, Cu2+and Ni2+were preferential, and the r of Langmuir showed that CCDMZ and ECDMZ were beneficial to treat low concentration water. For example, at an initial solute concentration of NPs of100mg/L, the qe of CCDMZ and ECDMZ on p-NP, o-NP and m-NP were increased8,5,13and23,14,37times than NZ. Thermodynamic study showed that the adsorption of NPs was a spontaneous and exothermic process, and the adsorption of Cu2+and Ni2+was a spontaneous and endothermic process. The adsorption results of mixed pollutants in the aqueous solutions indicated that the qe was decreased because of the mutual effects of β-NP and metal ions.
引文
[1]赵振国.吸附作用应用原理.北京:化学工业出版社.2005.
    [2]杨国华,黄统琳,姚忠亮,刘明华.吸附剂的应用研究现状和进展.化学工程与装备,2009,6,84-90。
    [3]Wartelle L H, Lima I M, Marshall W E, Akin D E, Klasson K T. Activated carbons from flax shive and cotton gin waste as environmental adsorbents for the chlorinated hydrocarbon trichloroethylene. Bioresource Technology,2009,100(21),5045-5050.
    [4]Sergio L C, Heloysa M C, Hilda C. Characterization and determination of the thermodynamic and kinetic properties of the adsorption of the molybdenum (Ⅵ)-calmagite complex onto active carbon. Journal of Colloid and Interface Science,2004,270,276-280.
    [5]Chern J M, Chien Y W. Competitive adsorption of benzoic acid and p-nitrophenol onto activated carbon:isotherm and breakthrough curves. Water Research,2003,37,2347-2356.
    [6]Alvarez P M, Garcia-Araya J F, Beltran F J, Masa F J, Medina F. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions. Journal of Colloid and Interface Science,2005,283,503-512.
    [7]Ihara Y. Adsorption of anionic surfactants and related compounds from aqueous solution onto activated carbon and synthetic adsorbent. Journal of Applied Polymer Science,1992,44,1837-1840.
    [8]张政朴,钱庭宝,徐国勋.氨基膦酸树脂的合成及其对氟离子的吸附.离子交换与吸附,1998,4(1),42-48.
    [9]Cao L Q, Xu S M, Feng S, Peng G, Wang J D. Adsorption of Zn (Ⅱ) Ion onto crosslinked amphoteric starch in aqueous solutions. Journal of Polymer Research,2004,11,105-108.
    [10]Chen Y X, Wang G Y. Adsorption properties of oxidized carboxymethyl starch and cross-linked carboxymethyl starch for calcium ion. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,289,75-83.
    [11]Alouloua F, Boufi S, Labidi M. Modified cellulose fibres for adsorption of organic compound in aqueous solution. Separation and Purification Technology,2006,52 (2),332-342.
    [12]Wojnarovits L, Foldvary C M, Takacs E. Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants:A review. Radiation Physics and Chemistry,2010,79(8),848-862.
    [13]Guo X Y, Zhang S Z, Shan X Q. Adsorption of metal ions on lignin. Journal of Hazardous Materials, 2008,151 (1),134-142
    [14]Suteu D, Malutan T, Bilba D. Removal of reactive dye Brilliant Red HE-3B from aqueous solutions by industrial lignin:Equilibrium and kinetics modeling. Desalination,2010,255 (1/3),84-90.
    [15]Li J M, Meng X G, Hu C W, Du J. Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresource Technology,2009,100 (3),1168-1173.
    [16]Graciela R, Jorge S, Jaime A. F, Angelica R, Martha L, Holger M. Adsorption of chromium onto cross-linked chitosan. Separation and Purification Technology,2005,44,31-36.
    [17]Wan Ngah W S, Fatinathan S. Chitosan flakes and chitosan-GLA beads for adsorption of p-nitrophenol in aqueous solution. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,277,214-222.
    [18]Monique A M L, Ravi K K, Stephen A B. Adsorption of phenol and chlorinated phenols from aqueous solution by tetramethylammonium and tetramethylphosphonium-exchanged montmorillonite. Applied Clay Science,1998,13,13-20.
    [19]Wibke Markgraf, Rainer Horn, Stephan Peth. An approach to rheometry in soil mechanics-Structural changes in bentonite, clay and silty soils. Soil & Tillage Research,2006,91,1-14.
    [20]Zahir Rawajfih, Najwa Nsour. Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. Journal of Colloid and Interface Science,2006,298,39-49.
    [21]Sayilkan H, Erdemoglu S, Sener S, Sayilkan F, Akarsu M, Erdemoglu M. Surface modification of pyrophyllite with amino silane coupling agent for the removal of 4-nitrophenol from aqueous solutions. Journal of Colloid and Interface Science,2004,275,530-538.
    [22]Tuel A. Modification of mesoporous silicas by incorporation of heteroelements in the framework. Microporous and Mesoporous Materials,1999,27,151-169.
    [23]朱利中,王晴,陈宝梁.阴-阳离子有机膨润土吸附水中苯胺、苯酚的性能.环境科学,2000,21(4),42-46.
    [24]Alzaydien A S. Adsorption of methylene blue from aqueous solution onto a low-cost natural Jordanian tripoli. American Journal of Environmental Sciences,2009,5 (3),197-208.
    [25]蔡玉曼,姬辰.天然沸石改性应用研究进展.地质学刊,2008,32(3),244-248.
    [26]崔丹.沸石在水处理中的应用与展望.市政技术,2008,26(1),36-38.
    [27]卢莉娟,李端琴,马建.改性沸石净化微污染水中有机物的研究.安徽农业科学,2010,38(7),3704-3706.
    [28]熊宁.合成沸石分子筛处理有机物废水的应用前景.中国地质大学学报,2000,25,564-565.
    [29]何少华,黄仕元,金必慧.沸石在水和废水处理中的应用.矿业工程,2004,2(1),24-27.
    [30]陈小龙,袁凤英.沸石在废水处理中的应用与展望.科技情报开发与经济,2005,15(14),123-124.
    [31]程明,袁凤英.改性沸石在废水处理中的应用.工业水处理,2004,24(12),6-9.
    [32]丁锐,刘曙光,王厚德.用沸石吸附分离水中有机物的研究进展.中国非金属矿工业导刊,2003,36(5),36-39.
    [33]葛学贵,太玉明,李大好.沸石在环境治理工程中的应用.环境科学与技术,2001,98(6),21-24.
    [34]朱俊,王宁.天然沸石在环保中的应用.矿物学报,2003,23(3),250-254.
    [35]曲燕,张超杰,周琪.有机改性沸石去除有机污染物的研究.工业水处理,2008,3(28),17-19.
    [36]Sylvie C, Bouffard J, Sheldon B. Uptake of dehydroabietic acid using organically-tailored zeolites. Water Research,2000,34 (9),2469-2476.
    [37]Li Z H, Burt T, Robert S. Sorption of benzene, phenol, and aniline by surfactant-modified zeolite. 1998 Joint Conference on the Environment,1998, Albuquerque,277-281.
    [38]Li Z H, Robert S, Bowman. Sorption of perchloroethylene by Surfactant-modified zeolite as controlled by surfactant loading. Environmental Science and Technology,1998,32 (15),2278-2282.
    [39]Michael Ranck J, Robert S, Jeffrey L. Removal from produced water using surfactant-modified zeolite. Environmental Engineering,2005,131 (3),434-442.
    [40]Ghiaci M, Abbaspur A, Kia R. Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41. Separation and Purification Technology, 2004,40,217-229.
    [41]Ersoy B, Celik M S. Uptake of aniline and nitrobenzene from aqueous solution by organo-zeolite. Environmental Technology,2004,25,341-348.
    [42]Wang S G, Gong W X, Liu X W. Removal of fulvic acids using the surfactant modified zeolite in a fixed-bed reactor. Separation and Purification Technology,2006,51,367-373.
    [43]Wang S G, Gong W X, Liu X W. Removal of Nvic Acids from Aqueous Solutions via Surfactant Modified Zeolite. Chemical Research in Chinese Universities,2006,22 (5),566-570.
    [44]Magdalena T C, Aleksandra D, George R, Srdan M, Mirjana D. Surfactant modified zeolites-new efficient adsorbents for mycotoxins. Microporous and Mesoporous Materials,2003,61,173-180.
    [45]Jovan L, Divna K, Magdalena T C. Removal of atrazine lindane and diazinone from water by organo-zeolites. Water Research,2006,40 (5),1079-1085.
    [46]Jovanovic V, Dondur V, Damjanovic L. Improved materials for environmental application:surfactant-modified zeolites. Materials Science Forum,2006,518,223-228.
    [47]Hrissi K, Karapanagioti, David A. Partitioning of hydrophobic organic chemicals (HOC) into anionic and cationic surfactant-modified sorbents. Water Research,2005,39,699-709.
    [48]Sang-Mo Koh, Joe Boris Dixon. Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene. Applied Clay Science,2001,18,111-122.
    [49]Li Z H, Burt T, Robert S. Sorption of ionizable organic solutes by surfactant modified zeolite. Environmental Science and Technology,2000,34,3756-3760.
    [50]Li Z H, Roy S J, Zou Y Q. Long-term chemical and biological stability of surfactant modified zeolite. Environmental Science and Technology,1998,32 (17),2628-2632.
    [51]Sevgi K, Yuksel O, Tanil A. Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite. Desalination,2007,214,1-10.
    [52]Zavvar M H, Asghari A. Removal of heavy metal ions in wastewater by semnan natural zeolite. Asian Journal of chemistry,2009,21 (4),2881-2886.
    [53]Cabrera C, Gabaldon C, Marzal P. Sorption characteristics of heavy metal ions by a natural zeolite. Journal of Chemical Technology and Biotechnology,2005,80 (4),477-481.
    [54]Minceva M, Fajgar R, Markovska L, Meshko V. Comparative study of Zn2+, Cd2+, and Pb2+ removal from water solution using natural Clonoptilolitic zeolite and commercial granulated activated carbon. Separation Science and Technology,2008,43,2117-2143.
    [55]Motsi T, Rowson N A, Simmons M J H. Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing,2009,92,42-48.
    [56]Mier M V, Gehr R, Cisneros B E J, Alvarez P J J, Callejas R L. Heavy metal removal with mexican clinoptilolite:multi-component ionic exchange. Water Research,2001,35 (2),373-378.
    [57]Inglezakis V J, Loizidou M D. Ion exchange of some heavy metal ions from polar organic solvents into zeolite. Desalination,2007,211 (1/3),238-248.
    [58]Marek M, Stanislaw P, Monika K T, Agnieszka G P, Piotr S, Leon F, Henryk S. Equilibrium study of selected divalented-electron metals adsorption on A-type zeolite. Journal of Colloid and Interface Science,2003,262,321-330.
    [59]Wang S B, Ariyanto E. Competitive of malachite green and Pb ions on natural zeolite. Journal of Colloid and Intrface Science,2007,314,25-31.
    [60]Wang S B, Terdkiatburana T, Tade M O. Adsorption of Cu (Ⅱ, Pb (Ⅱ) and humic acid on natural zeolite tuff in single and binary systems. Separation and Purification Technology,2008,62,64-70.
    [61]Oren A H, Kaya A. Factors affecting adsorption characteristics of Zn2+ n two natural zeolites. Journal of Hazardous Materials B,2006,131,59-65.
    [62]罗道成,易平贵,陈安国.改性沸石对电镀废水中pb2+、Zn2+、Ni2+的吸附.材料保护,2002,35(7),13-16.
    [63]许秀云,蔡玉曼.改性沸石对重金属离子竞争吸附特性研究.地质学刊,2010,34(1),92-97.
    [64]湛毅,徐芳,徐实,蔡伟民Zeolite-A沸石分子筛去除水体中重金属污染物.理化检验(化学分册),2008,1,55-58.
    [65]Rolando M, Roque M, Jose J, Hernandez D. Lead, copper, cobalt and nickel removal from water solutions by dynamic ionic exchange in LECA zeolite beds. International Journal of Environment and Pollution,2007,31 (3/4),292-303.
    [66]Sprynskyy M, Buszewski B, Terzyk A P, Namiesnik J. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+ and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 2006,304 (1),21-28.
    [67]Nah I W, Hwang K Y, Jeon C, Choi H B. Removal of Pb ion from water by magnetically modified zeolite. Minerals Engineering,2006,19,1452-1455.
    [68]Ok Y S, Yang J E, Zhang Y S, Kim S J, Chung D Y. Heavy metal adsorption by a formulated zeolite-portland cement mixture. Journal of Hazardous Materials,2007,147,91-96.
    [69]Thanet T, Wang S B, Moses O T. Adsorption of heavy metal ions by natural and synthesised zeolites for wastewater treatment. International Journal of Environment and Waste Management,2009,3 (3/4), 354-365.
    [70]Krishna B S, Murty D S R, Jai Prakash B S. Thermodynamics of chromium (Ⅵ) anionic species sorption onto surfactant-modified montmorillonite clay. Colloid and Interface Science,2000,229, 230-236.
    [71]Su Y H, Zhu Y G, Sheng G Y. Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals:silica and alumina. Environmental Science and Technology,2006,40,6949-6954.
    [72]Chen H, Zhou W J, Zhu K. Sorption of ionizable organic compounds on HDTMA-modified loess soil. Science of the Total Environment,2004,326,217-223.
    [73]余振宝,宋乃忠.沸石的加工与应用.北京:化学工业出版社,2005.
    [74]Wingenfelder U, Furrer G, Schulin R. Sorption of antimonate by HDTMA-modified zeolite. Microporous and Mesoporous Materials,2006,95,265-271.
    [75]Sullivan E J, Carey J W, Bowman R S. Thermodynamics of cationic surfactant sorption onto natural clinoptilolite. Colloid and Interface Science,1998,206,369-380.
    [76]Ghiaci M, Kia R, Kalbasi R J. Investigation of thermodynamic parameters of cetyl pyridinium bromide sorption onto ZSM-5 and natural clinoptilolite. Journal of Chemical Thermodynamics,2004, 36,95-100.
    [77]Sismanoglu T, Pura S. Adsorption of aqueous nitrophenols on clinoptilolite. Physico-chemical and Engineering Aspects,2006,18,1-6.
    [78]Heper M, Tiirker L, Kincal N S. Sodium, ammonium, calcium and magnesium forms of zeolite Y for the adsorption of glucose and fructose from aqueous solutions. Collid and Interface Science,2007, 306,11-15.
    [79]Martin Del Valle E M. Cyclodextrins and their uses:a review. Process Biochemistry,2004,39,1033-1046.
    [80]Celine G, Veronique W, Catherine A. A reversible polyelectrolyte involving a β-cyclodextrin polymer and a cationic surfactant. Macromolecules,2005,38,5243-5253.
    [81]Ismail A, Adil D, Erhan B, Bekir S. Removal and pre-concentration of phenolic species onto β-cyclodextrin modified poly (hydroxyethylmethacrylate-ethyleneglycoldimeth-acrylate) microbeads. Chemosphere,2005,61,1263-1272.
    [82]何炳林.新型β-环糊精固载高分子对内、外源性毒物的包络吸附研究.高等学校化学学报,1992,13(7),1006-1007.
    [83]Li J M, Meng X G, Hu C W, Du J. Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresource Technology,2009,100 (3),1168-1173.
    [84]Zha F, Li S G, Chang Y. Preparation and adsorption property of chitosan beads bearing β-cyclodextrin cross-linked by 1,6-hexamethylene diisocyanate. Carbohydrate Polymers,2008,72 (3),456-461.
    [85]Crini G, Morcellet M, Lekchiri Y. Separation of structural isomers using cyclodextrin-polymers coated on silica beads. Chromatographia,1995,40 (5/6),296-302.
    [86]Motomitsu K, Kiyoshi H. Adsorption of bisphenol A by cross-linked β-cyclodextrin polymer. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2002,44,429-431.
    [87]Crini G, Bertini S, Torrl G, Naggi A, Sforzini D. Vecchi C, Janus L, Lekchiri Y, Morcellet M. Sorption of aromatic compounds in water using insoluble cyclodextrin polymers. Journal of Applied Polymer Science,1998,68,1973-1978.
    [88]Crini G. Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresource Technology.2003, 90(2),193-198.
    [89]Crini G. Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes and Pigments,2008,77,415-426.
    [90]Ricardo O, Christopher H E. Polymer-immobilized cyclodextrin trapping of model organic pollutants in flowing water streams. Journal of Applied Polymer Science,2003,90,2103-2110.
    [91]Zhao D, Zhao L, Zhu C S, Huang W Q, Hu J L. Water-insoluble β-cyclodextrin polymer crosslinked by citric acid:synthesis and adsorption properties toward phenol and methylene blue. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry,2009,63,195-201.
    [92]Janus L, Crini G, Veronique E R. New sorbents containing beta-cyclodextrin Synthesis, characteri-zation and sorption properties. Reactive & Functional Polymers,1999,42,173-180.
    [93]Mhlanga S D, Marnba B B, Krause R I, Malefetse T J. Removal of organic contaminants from water using nanosponge cyclodextrin polyurethanes. Journal of Chemical Technology & Biotechnology, 2007,82(4),382-388.
    [94]Ana R, Francisco J P, Jose R I, Inigo X, Garcia Z, Gustavo G G. Extraction of phenols from aqueous solutions by β-cyclodextrin polymers:Comparison of sorptive capacities with other sorbents. Reactive & Functional Polymers,2008,68,406-413.
    [95]Belyakova L A, Kazdobin K A, Belyakov V N, Ryabov S V, Danil A F. Synthesis and properties of supramolecular systems based on silica. Journal of Colloid and Interface Science,2005,283, 488-494.
    [96]Belyakov V N, Belyakova L A, Varvarin A M, Khora O V, Vasilyuk S L, Kazdobin K A, Maltseva T V, Kotvitskyy A G, Namor A F D. Supramolecular structures on silica surfaces and their adsorptive properties. Journal of Colloid and Interface Science,2005,285 (1),18-26.
    [97]Li F Y, Sun X M, Zhang H, Li B H, Gan F X. Pyromellitic dianhydride-modified beta-cyclodextrin microspheres for Pb (Ⅱ) and Cd (Ⅱ) adsorption. Journal of Applied Polymer Science,2007,105 (6), 3418-3425
    [98]Zha F, Lu R H, Chang Y. Preparation and adsorption property of chitosan derivative bearing β-cyclodextrin and schiff-base. Journal of Macromolecular Science Part A:Pure and Applied Chemistry,2007,44,413-415.
    [99]Wang X, Brusseau M L. Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin. Environmental Science and Technology,1995,29,2632-2635.
    [100]Brusseau M L, Wang X, Wang W Z. Simultaneous elution of heavy metals and organic compounds from soil by cyclodextrin. Environmental Science and Technology,1997,31,1087-1092.
    [101]Magnus E, Skold G D, Thyne. J W, Drexler J E, McCray. Solubility enhancement of seven metal contaminants using carboxymethyl-β-cyclodextrin (CMCD). Journal of Contaminant Hydrology, 2009,107,108-113.
    [102]Magnus E, Skold G D, Thyne. J W, Drexler. Enhanced Solubilization of a metal-organic contaminant mixture (Pb, Sr, Zn, and perchloroethylene) by cyclodextrin. Environmental Science & Technology, 2008,42(23),8930-8934.
    [103]Chatain V, Hanna K, Brauer C, Bayard R, Germain P. Enhanced solubilization of arsenic and 2,3,4, 6-tetrachlorophenol from soils by a cyclodextrin derivative. Chemosphere,2004,57,197-206.
    [104]Wang X, Yolcubal I, Wang W, Artiola J, Maier R, Brusseau M. Use of cyclodextrin and calcium chloride for enhanced removal of mercury from soil. Environmental Toxicology and Chemistry,2004, 23(8),1888-1892.
    [105]Kozlowski C A, Walkowiak W, Girek T. Modified cyclodextrin polymers as selective ion carriers for Pb (Ⅱ) separation across plasticized membranes. Journal of Membrane Science,2008,310 (1/2), 312-320.
    [106]Cezary A K, Tomasz G, Wladyslaw W, Jacek K. Application of hydrophobic β-cyclodextrin polymer in separation of metal ions by plasticized membranes. Separation and Purification Technology,2005, 46,136-144.
    [107]Loftsson T, Brewster M E. Pharmaceutical applications of cyclodextrins:1 Drug solubilisation and stabilization. Journal of Pharmaceutical Sciences,1996,85,1017-25.
    [108]Szetjli J. Introduction and general overview of cyclodextrin chemistry. Chemical Reviews,1998,98, 1743-53.
    [109]Schneiderman E, Stalcup A M. Cyclodextrins:a versatile tool in separation science. Journal of Chromatography B,2000,745,83-102.
    [110]顾新波,鲁晓明.环糊精金属配合物研究进展.化学通报,2006,69,73-78.
    [111]万军民,胡智文,陈文兴,陈海相.环糊精及其衍生物功能性能研究进展.化学试剂,2004,26(1),15-20.
    [112]蔡玉曼,姬辰.天然沸石改性应用研究进展,地质学刊,2008,32(3),244-248,
    [113]李海鹏,王志芳,武其学.不同酸改性沸石吸附水中氨氮的试验研究,山东建筑大学学报,2009,3(24),195-198.
    [114]赵玉华,常启雷,李妍NaOH改性沸石吸附地下水中铁锰效能研究.辽宁化工,2009,12(38),857-860.
    [115]Bowman R S, Haggerty G M, Hudleston R G. Sorption of nonpolarorganic compounds, inorganic cations and inorganic oxyanions by surfactant-modified zeolite. Americal Chemical Sciety,1995,8, 54-64.
    [116]袁凤英,秦清风.表面活性剂改性沸石及其处理废水研究.太原科技大学学报,2005,26(2),157-160.
    [117]郑礼胜,王士龙,彭贵山.用活化沸石处理含铅废水的试验.中国环境监测,1998,14(6),52-53.
    [118]张志华,窦涛,张瑛.沸石的碱溶液处理改性.工业催化,2004,12(10),49-53.
    [119]王萍,严子春,邱熔处.氯化钠改性沸石吸附水中苯酚的研究.中国给水排水,2000,16(4),11-13.
    [120]梁起,康定学.斜发沸石的改性及应用.化学世界,1997,38(12),631-633.
    [121]范树景,王春梅,封孝信.天然及改性沸石对水中Cr6+的吸附研究.非金属,2006,29(2),56-57.
    [122]林建伟,朱志良,赵建夫.HCl改性沸石和方解石复合覆盖层控制底泥氮磷释放的效果及机理研究.环境科学,2007,28(3),551-555.
    [123]丁磊,王萍.天然沸石活化方法研究.西安工程科技学院学报,2005,4(19),463-466.
    [124]梁晓芳,王银叶,张晓艳,张洋.氯化钠改性沸石对饮用水中低浓度氨氮的吸附性能分析.天津城市建设学院学报,2009,15(4),285-300.
    [125]范树景,封孝信,魏庆敏.天然沸石及其改性沸石对甲醛的吸附.河北理工学院学报,2006,28(2),83-86.
    [126]卢莉娟,李端琴,马建.改性沸石净化微污染水中有机物的研究.安徽农业科学,2010,38(7),3704-3706.
    [127]Shu H T, Li D Y, Scala A, Ma Y H. Adsorption of small organic pollutants from aqueous streams by aluminosilicate-based microporous materials. Separation and Purification Technology,1997,11, 27-36.
    [128]Zhao M G, Hao A Y, Li J, Lin X L.6-o-(Hydroxypropyltrimethylammonia)-β-cyclodextrin with Low Degree of Substitution:Convenient Preparation and its Application as a Chiral Selector in Capillary Electrophoresis. Chinese Chemical Letters,2006,17 (3),407-410.
    [129]易英,汪玉庭.壳聚糖-g-β-环糊精的制备与表征.合成化学,2005,13(2),180-182.
    [130]Xiao H N, Cezar N. Cationic-modified cyclodextrin nanosphere/anionic polymer as flocculation/ sorption systems. Journal of Colloid and Interface Science,2005,283,406-413.
    [131]Wang S B, Peng Y L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal,2010,156,11-24.
    [132]Aleksandra D V, Magdalena R. The adsorption of sulphate, hydrogenchromate and dihydrogen-phosphate anions on surfactant-modified clinoptilolite. Applied Clay Science,2000,17,265-277.
    [133]Khalil M S, Cairo F D. Preparation of some cationic starches using the dry process. Starch/Stdrke, 1998,50,267-271.
    [134]李润卿,范国梁,渠荣遴.有机结构波谱分析.天津:天津大学出版社,2002.
    [135]谢晶曦.红外光谱在有机化学和药物化学中的应用.北京:科学出版社,1987.
    [136]中西香尔,P.H.索罗曼.红外光谱分析100例.北京:科学出版社,1984.
    [137]荆煦瑛,陈式棣,么恩云.红外光谱实用指南.天津:科学技术出版社,1992.
    [138]赵家政,徐洮.分析电子显微实用手册.宁夏:宁夏人民教育出版社,1996.
    [139]Hao X K, Chang Q, Duan L L, ZhangY Z. Synergetically Acting new Floccuants on the Basis of Starch-graft-Poly (acrylamide)-co-Sodium Xanthate. Starch/Stdrke,2007,59,251-257.
    [140]Chen R Z, Du Y, Xing W H, Xu N P. Effect of alumina particle size on Ni/Al2O3 catalysts for p-Nitrophenol hydrogenation. Chinese Journal of Chemical Engineering,2007,15 (6),884-888.
    [141]Ozbelge T A, Ozbelge O H, Baskaya S Z. Removal of phenolic compounds from rubber-textile wastewaters by physicochemical methods, Chemical Engineering Processing,2002,41,719-730.
    [142]Haghighi-Podeh M R, Bhattacharya S K. Fate and toxic effects of nitrophenols on anaerobic treatment systems. Water Science and Technology,1996,34 (5/6),345-350.
    [143]Uberoi V, Bhattacharya S K. Toxicity and degradability of nitrophenols in anaerobic systems. Water Environment Research,1997,69,146-156.
    [144]Karim K, Gupta S K. Effects of alternative carbon sources on biological transformation of nitrophenols. Biodegradation,2002,13 (5),353-360.
    [145]王菊思,赵丽辉.合成有机物的生物降解性研究.环境化学,1993,12(3),161-172
    [146]Milner C R, Goulder R. The abundance, heterotrophic activity and taxonomy of bacteria in a stream subject to pollution by chlorophenols, nitrophenols and phenoxyalkanoic acids. Water Research, 1986,20,85-90.
    [147]Egerton T A, Christensen P A, Harrison R W, Wang J W. The effect of UV absorption on the photocatalytic oxidation of 2-nitrophenol and 4-nitrophenol. Journal of Applied Electrochemistry, 2005,35,799-813.
    [148]Priya M H, Madras G. Kinetics of photocatalytic degradation of phenols with multiple substituent groups. Journal of Photochemistry and Photobiology A,2006,179,256-262.
    [149]Sivakumar M, Prashant A, Tatake B, Aniruddha P. Kinetics of p-nitrophenol degradation:effect of reaction conditions and cavitational parameters for a multiple frequency system. Chemical Engineering Journal,2002,85 (2/3),327-338.
    [150]Baeza A, Ortiz J, Gonzalez I. Control of the electrochemical reduction of o-nitrophenol by pH imposition in acetonitrile. Journal of Electroanalytical Chemistry,1997,429,121-127.
    [151]Liu H L, Liu Y, Zhang C, Shen R S. Electrocatalytic oxidation of nitrophenols in aqueous solution using modified PbO2 electrodes. Journal of Applied Electrochemistry,2008,38,101-108.
    [152]佘宗莲,饶兵,樊玉清,姜丽娜.废水中硝基酚类化合物生物降解的研究进展.环境工程学报,2007,1(7),1-9.
    [153]Sismanoglu T, Pura S. Adsorption of aqueous nitrophenols on clinoptilolite. Colloids and Surfaces A, 2001,180,1-6.
    [154]Koubaissy B, Joly G, Magnoux P. Adsorption and competitive adsorption on zeolites of nitrophenol compounds present in wastewater. Industrial and Engineering Chemistry Research,2008,47,9558-9565.
    [155]Abel E N, Norma A C, Rosario F P, Bertha P L. Adsorptive removal of 2-nitrophenol and 2-chloro-phenol by cross-linked algae from aqueous solutions. Separation Science and Technology,2008,43, 3183-3199.
    [156]Li X H, Zhu K, Hao X K. Surface modification of zeolite with beta-cyclodextrin for removal of p-nitrophenol from aqueous solution. Water Science and Technology,2009,60 (2),329-337.
    [157]Crini G, Lekchiri Y, Morcellet M. Separation of structural isomers using cyclodextrin-polymer coated on silica beads. Chromatographia,1995,40,296-302.
    [158]李仲谨,杨威,刘艳,韩春鹏,赵燕.β-环糊精微球吸附对硝基苯酚的动力学及热力学.化工进展,2010,29(11),2134-2138.
    [159]谢红梅,张丽,许尊炼,王瑜珑,翟洺剑.活性炭脱除废水中对硝基苯酚的研究.安徽农业科学,2009,37(19),9107-9109.
    [160]Tang D Y, Zheng Z, Lin K, Luan J F, Zhang J B. Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber. Journal of Hazardous Materials,2007,143,49-56.
    [161]Crini G, Peindy H N, Gimbert F, Robert C. Removal of C.I. basic green 4 (malachite green) from aqueous solutions by adsorption using cyclodetrin-based adsorbent:Kinetic and Equilibrium studies. Separation and Purification Technology,2007,53,97-110.
    [162]Oliveira C R, Rubio J. New basis for adsorption of ionic pollutants onto modified zeolites. Minerals Engineering,2007,20,552-558.
    [163]Gucek A, Sener S, Bilgen S, Mazmanci M A. Adsorption and kinetic studies of cationic and anionic dyes on pyrophllite from aqueous solutions. Journal of Colloid and Interface Science,2005,286, 53-60.
    [164]Chiou M S, Li H Y. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere,2003,50,1095-1105.
    [165]Ozkan D, Alkan M, Dogan M. The removal of Vietoriablue from aqueous solution by adsorption on a low-cost material. Adsorption,2002, (8),341-349.
    [166]Miehael G S, Donald L S, Steven K D. Sorption of Pentachlorophenol to HDTMA-clay as a function of ionic strength and PH. Environmental Science & Technology,1994,28,2330-2335.
    [167]Kilislioglu A, Bilgin B. Thermodynamic and kinetic investigation of uranium adsorption on amberlite IR-118H resin. Applied Radiation and Isotopes,2003,58(2),155-160.
    [168]Chiou M S, Li H Y. Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. Journal of Hazardous Materials,2002,93,233-248.
    [169]查飞,常玥,吕学谦,魏玉娟.坡缕石-活性炭-壳聚糖负载环糊精对硝基苯酚的吸附性质.精细化工,2007,24(3),209-212.
    [170]孟祥和,胡国飞.重金属废水处理.北京:化学工业出版社,2000.
    [171]Dragan E S, Dinu M V, Timpu D. Preparation and Characterization of nival composites based on chitosan and clinoptilolite with enhanced adsorption properties for Cu+. Bioresource Technology, 2010,101,812-817.
    [172]Biserka B, Boris S. Removal of heavy metal ions from solutions by means of zeolites I. Thermo-dynamics of the exchange processes between cadmium ions from solution and sodium ions from zeolite A. Separation Science and Technology,1998,33 (4),449-466.
    [173]Kesraoui O S, Cheeseman C, Perry E R. Effects of conditioning and treatment of chabazite and clinoptilolite prior to lead and cadmium removal. Environmental Science & Technology,1993,27 (6), 1108-1116.
    [174]Evanko C R, Dzombak D A. Remediation of metals contaminated soils and groundwater. Technology Evaluation Report TE-97-01, Groundwater Remediation Technologies Analysis Center.1997.
    [175]Sengupta A K, lifford D C, Important process variables in chromate ion exchange. Environmental Science & Technology,1986,20,149-155.
    [176]Huang C P, Blankenship D W. The removal of mercury (Ⅱ) from dilute aqueous solution by activated carbon. Water Research,1984,18,37-46.
    [177]Panday K K, Parsed G, Singh V N. Copper (Ⅱ) removal from aqueous solutions by fly ash. Water Research,1985,19,869-873.
    [178]Knocke W R, Hemphill L H. Mercury (Ⅱ) sorption by waste rubber. Water Research,1981,15, 275-282.
    [179]Khan S, Reham R, Khan M. Adsorption of Cr (Ⅲ), Cr (Ⅵ) and Ag (Ⅰ) on bentonite. Water Management,1995,15 (4),271-282.
    [180]国家环境保护总局.水和废水监测分析方法编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    [181]Weller M T, Dann S E. Hydrothermal synthesis of zeolites. Solid State Mater Science,1998,3, 137-143.
    [182]Choi C L, Park M, Lee D H, Kim J E, Park B Y, Choi J. Salt-thermal zeolization of fly ash, Environmental Science & Technology,2001,35 (13),2812-2816.
    [183]Wu P, Zhou Yu S. Simultaneous removal of coexistent heavy metals fromsimulated urban storm-water using four sorbents:A porous iron sorbent and its mixtures with zeolite and crystal gravel. Joural of Hazardous Materials,2009,168,674-680.
    [184]Myroslav S, Boguslaw B, Artur P T, Jacek N. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science,2006, 304,21-28.
    [185]Ouki S K, Kavannagh M. Treatment of metal-contaminated waste waters by use of natural zeolites. Water Science and Technology,1999,39,115-122.
    [186]胡克伟,贾冬艳,查春梅,张昀,关连珠.天然沸石对重金属离子的竞争性吸附研究.中国土壤与肥料,2008,3,66-69.
    [187]McBride M B. Environmental chemistry of soils. New York:Oxford University Press,1994.
    [188]周玉燕,陈盛,项生昌,郑瑛.水溶性β-环糊精交联聚合物的合成及其络合性能研究.合成化学,2002,10,561-563.
    [189]Eugenijus N, Giedre G, Tapani V, Eugenijus B, Rimantas V. Stability of a dinuclear Cu (Ⅱ)-β-cyclodextrin complex. Supramolecular Chemistry,2003,15 (6),425-431.
    [190]Eugenijus N. Metal ion complexes with native cyclodextrins. An overview. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2009,65,237-248.
    [191]Panayotova M. Kinetics and thermodynamics of removal of nickel ions from wastewater by use of natural and modified zeolite. Fresenius Environmental Bulletin,2001,10,267-272.
    [192]Zou W H, Han R P, Chen Z Z, Zhang J H, Jie S. Kinetic study of Cu (Ⅱ) and Pb (Ⅱ) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,279,238-246.
    [193]Barakat M A. Adsorption of heavy metals from aqueous solutions on synthetic zeolite. Research Journal of Environmental Sciences,2008,2 (1),13-22.
    [194]Ho Y S, Mckay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research,2000,34,735-742.
    [195]Zhang H, Zhao D, Chen L, Yu X J. Investigation of Cu (II) adsorption from aqueous solutions by NKF-6 zeolite. Water Science and Technology,2011,63 (3),395-402.
    [196]Sljivic M, Smiciklas I, Pejanovic S, Plecas I. Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Applied Clay Science,2009,43,33-40.
    [197]李见云,郑宾国,化全县,刘军坛,冉桂花.沸石粉对溶液中铜的吸附性能研究.中国农学通报,2011,27(14),240-243.
    [198]Andini S, Cioffi R, Montagnaro F, Pisciotta F, Santoro L. Simultaneous adsorption of chlorophenol and heavy metal ions on organophilic bentonite. Appled Clay Science,2006,31,126-133.
    [199]Jiang J Q, Zeng Z. Comparison of modified montmorillonite absorbents. Part Ⅱ:The effects of the type of raw clays and modification conditions on the adsorption performance. Chemosphere,2003, 53,53-62.
    [200]Abollino O, Aceto M, Malandrino M, Sarzanini C. Adsorption of heavy metals on Na-montmo-rillonite. Effect of pH and organic substances. Water Research,2003,37,1619-1627.
    [201]Oyanedel C V A, Smith J A. Effect of quaternary ammonium cation loading and pll on heavy metal sorption to Ca bentonite and two organobentonites. Journal of Hazard Mater,2006, B137, 1102-1114.
    [202]Lee J J, Choi J, Park J W. Simultaneous sorption of lead and chlombenzene by organob-entonite. Chemosphere,2002,49 (14),1309-1315.
    [203]Sheng G Y, Xu S H, Boyd S A. A dual function organoclay sorbent for lead and chlorobenzene. Soil Science Society of America Journal,1999,63,73-78.
    [204]Shamil J C, Amie B, Alison O, Andre D. Treatment of mixed contamination in water using cyclodextrin-based materials. Remediation,2006,16 (4),16-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700