用户名: 密码: 验证码:
应用表面活性剂强化石油污染土壤及地下水的生物修复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油是一类具有致癌、致畸和致突变性的有机污染物,随着其在国防、航天、工业等重要领域的广泛应用,大量的石油及其制品由于各种途径进入土壤和水环境并对生态与人类健康造成严重危害。微生物修复技术因其经济及有效性而成为一种最具发展潜力的治理石油烃污染的技术,它是微生物催化降解有机污染物从而去除或消除环境中石油类有机污染的一个受控或自发进行的过程。由于石油烃的疏水性和环境的复杂性等原因,自然条件下微生物降解速度较慢,可采取多种措施强化生物修复这一过程。本文考察了生物表面活性剂鼠李糖脂溶液的表面张力在极端环境下的稳定性及粘土、壤土及砂土三种不同土壤类型对其的吸附作用。本文证明鼠李糖脂对原油饱和烃(SAT)和多环芳烃(PAH)组分具有明显的增溶作用,并能有效促进污染物质的解吸。本文在实验基础上采用投加表面活性剂、提供微生物生长繁殖所需条件(O2、营养元素)和投加外源微生物等方式对石油类污染土壤及地下水进行修复。本文其次分析了表面活性剂及各环境因子对石油类有机污染土壤的生物降解过程的影响,并对微生物降解进行一级动力学分析,为高盐度的含油土壤修复提供了理论依据和数据支持。最后通过地下水原位修复中试装置,结合基础实验数据和中试实验数据,建立了地下水饱和带石油类污染物的迁移及微生物修复模拟模型。本文主要结论如下:
     1.生物表面活性剂鼠李糖脂具有优良的表而活性,并显示出良好的环境适应性。其具有较低的临界胶束浓度和极低的表面张力。通过对不同盐度和pH条件下鼠李糖脂溶液浓度和表面张力变化关系的拟合,结果表明该表面活性剂在不同盐度和酸碱度环境下其溶液的表面活性不易受盐度和pH的影响,因此在含盐量高、含油量高、酸碱性不同的土壤及地下水污染场地修复中具有较好的稳定性和较强的实用性。另外,鼠李糖脂施用环境中土样粒径越大,土壤有机质含量越小,鼠李糖脂损失量就越小(鼠李糖脂在壤土、砂质壤土和砂土中的损失量分别为75.0%、66.7%和50.0%)。
     2.原油组分SAT和PAH在生物表面活性剂鼠李糖脂溶液中有显著的增溶作用,与水中SAT和PAH的溶解量相比分别提高了20倍和84.6%。对鼠李糖脂浓度-液相SAT浓度进行线性拟合,发现表面活性剂鼠李糖脂对SAT各组分的溶解限为0.04%左右。鼠李糖脂溶液浓度增加对石油中PAH组分的增溶能力影响趋势与SAT组分相同。由于多环芳烃强烈的疏水性,鼠李糖脂溶液对其增溶能力远低于对饱和烃组分的增溶能力。对环境因素盐度和酸碱度的正交实验考查结果显示鼠李糖脂浓度是影响SAT和PAH溶解效果的主要因素。正交实验还表明,鼠李糖脂浓度、pH值和盐度在SAT和PAH的溶解过程中存在两两交互作用,且盐度的增加削弱了SAT的溶解,而碱性的增加有利于SAT和PAH的增溶。
     3.大于临界胶束浓度的生物表面活性剂鼠李糖脂溶液有效促进了原油组分SAT和PAH的解吸,土样类型不同,两种,组分的解吸率也不同,砂土有机含量低且颗粒比表面积小从而导致吸附的石油组分会更易被解吸。当鼠李糖脂浓度为0.02%和0.04%时SAT和PAH的解吸率甚至低于去离子水中两种组分的洗脱率,经分析这种现象是由于溶液中的鼠李糖脂优先被土壤颗粒吸附,吸附相的鼠李糖脂影响了SAT和PAH在土壤上吸附及分配过程,从而导致石油在土壤上的吸附量增加。鼠李糖脂的存在对两种土样中石油饱和烃的去除率均有一定积极作用,且当鼠李糖脂浓度达到0.08-0.1%时其解吸效果较好。相较于SAT来说,PAH疏水性更强,且环数越高结构越复杂的PAH疏水性和吸附能力越强。pH值的变化通过改变土壤物化性质从而改变土壤-石油-鼠李糖脂系统中石油污染物的吸附状态,且呈弱酸性的鼠李糖脂溶液有利于促进SAT和PAH的解吸。盐度的增加对土壤中SAT和PAH的解吸有一定的影响,且因土壤成分不同其解吸规律不同。
     4.通过控制微生物降解石油污染土壤实验过程中的温度、湿度及氧气等重要因素,利用正交方法设计实验,考察了土壤类型、表面活性剂和石油初始浓度等因素间交互作用对土著微生物降解土壤中石油烃的影响。正交试验中所有样品的石油烃降解率达到66.21-94.00%,比添加HgCl2以控制微生物活性的空白对照样品高出了28.44-56.23%,说明石油烃在土壤中的减少主要是由微生物降解引起。通过气相色谱-质谱联用仪的测定,确定了与重质烷烃相比,轻质烷烃更容易被微生物降解。实验结果表明土壤类型是微生物降解过程中的最重要因素,土壤颗粒对石油分子的吸附是微生物降解石油烃的瓶颈。表面活性剂的加入有利于改善油-水-微生物细胞界面的接触行为,通过增强细胞膜疏水性、增强疏水性有机物的亲水性等方式加快了微生物对油类污染物的利用速度及降解速率
     5.土壤-油-微生物系统中,表面活性剂添加浓度为两倍临界胶束浓度的土壤样品中微生物对石油烃的降解速率最大,达到0.0866d-1,说明适量的生物表面活性剂鼠李糖脂的添加会促进石油烃的微生物降解,但表面活性剂浓度过高反而会影响其使用效率。盐度的增加使得石油类有机物在水相中溶解度减小,从而增大其在土壤颗粒上的吸附量,且.盐度越高越会对微生物产生毒性,从而降低其对有机污染物的降解能力。本实验证明盐度的增加对微生物降解石油烃污染物具有抑制作用,系统中NaCl浓度分别为0.2、0.4mol/L时,微生物降解速率约为不加盐样品的1/2、1/4。值得肯定的是,添加生物表面活性剂鼠李糖脂能有效促进含盐量高的土壤中有机污染物的降解。
     6.设计了砂箱土壤及地下水物理实验模型,并构建了一套微生物处理系统,利用Visual MODFLOW进行了数值模拟,对实验数据和预测数据进行拟合且拟合结果较好。实验证明生物表面活性剂鼠李糖脂能有效改进地下水饱和带有机污染生物修复技术,对柴油等有机污染去除率较高,修复效果显著。
Crude oil can enter the soil and groundwater system through a variety of pathways, such as leakage of underground storage tanks and accidental spill during the exploration, production, and transportation process. Due to the carcinogenicity, teratogenicity and mutagenicity of petroleum hydrocarbons, crude oil contamination can result in serious ecological and human health problems. Therefore, the effective remediation of crude oil contaminated soil and groundwater is of critical importance. Bioremediation has been proved to be an effective and low-cost treatment option for the cleanup of organic pollution. However, the low bioavailability of petroleum hydrocarbons in crude oil and the environmental complexity can lead to slow biodegradation rate. Various measures can be taken to enhance the bioremediation of crude oil contaminated soil and groundwater. This study was aimed to investigate the surfactant enhanced bioremediation of crude oil contaminated soil and groundwater system. The influence of environmental factors on the surface property of bio-surfactant rhamnolipid and its sorption onto different soils, such as clay, loam and sand, were examined. The impacts of bio-surfactant on the solubility of saturated and polycylic aromatic fractions in crude oil, and on the desorption of these fractions from soil, were investigated. The effects of surfactant and various environmental factors on the bioremediation of petroleum hydrocarbons in crude oil were analyzed. The impact of salinity on the bioremediation of crude oil contaminated soil was also examined in order to provide theoretical basis and data support for the remediation of soil contaminated with both salt and crude oil, which is a common problem in the oil and gas industry. A simulation model was lastly developed to investigate the bioremediation of crude oil contaminated groundwater based on the experimental data obtained from a sand box model. The main results of this thesis were summarized as follows:
     (1) Impact of environmental factors on the surface property of biosurfactant:a series of experiments were conducted to test the effect of pH, salinity and soil adsorption on the surface property of rhamnolipid. The results indicated that pH showed no obvious effect on the surface tension change of rhmnolipid, but salinity had a positive effect on changing the surface tension of rhamnolipid. The pH and salinity didn't affect the critical micelle concentration (CMC) of bio-surfactant solution. The sorption loss of rhamnolipid was calculated as75.0%,66.7%, and50.0%for loam, sandy loam, and sand, respectively, indicating that soil properties such as particle size and organic matter had significant impact on bio-surfactant sorption which may generate negative effect on remediating oil contaminated soil.
     (2) Impact of biosurfactant on the solubility enhancement of saturated aromatic fractions (SAT) and polycyclic aromatic fractions (PAH) in crude oil:It was found that the bio-surfactant can remarkably enhace the solubility of SAT and PAH in crude oil. However, when the biosurfactant concentration approached a certain level (i.e. mass-0.04%), the solubilization effect of these crude oil components was weakened. The solubility of PAH was much lower than that of SAT because of its strong hydrophobic feature. Based on the Taguchi experimental design method, a series of laboratory experiments were conducted to examine the impact of rhamonipid concentration, pH, and salinity on the solubility of SAT and PAH fractions. The results showed that the rhamnolipid concentration was the most important factor influencing SAT and PAH solubility. The results also showed that these three factors and their interactions had obvious effect on solubility of SAT and PAH In this study, the SAT solubility decreased with increasing salinity, while the variation of salinity had little influence on PAH solubility. And the increasing pH in the alkaline range had a positive impact on solubility of SAT as weli as PAH.
     (3) Impact of biosurfactant on the desorption of saturated aromatic fraction (SAT) and polycyclic aromatic fraction (PAH) from crude oil contaminated soil: adding rhamnolipid to the crude oil-water-soil system at concentration above its critical micelle concentration (CMC) value, can benefit the desorption of SAT and PAH fractions from soil. The sandy soil was associated with less amount of rhamnolipid adsorption. The desorption of these two fractions were much lower when rhamnolipid solution concentrations were mass-0.02and0.04%. The desorption of both fractions were most significant when rhamnolipid concentration increased to mass-0.08~0.1%. The change of pH can have distinct effect on rhamnolipid performance concerning its own micelle structure and soil properties. With the increase of salinity, the solubilization and desorption of petroleum hydrocarbon fractions were more significant due to the difference of soil physical and chemical properties.
     (4) Impact of environmental factors on the bioremediation of crude oil contaminated soil:based on the Taguchi experimental design method, a series of laboratory experiments were conducted to investigate the impacts of five environmnetal factors on the remediation efficiency of crude oil contaminated soil. They include the soil type, the type of surfactant, the surfactant concentration, the initial petroleum hydrocarbon concentration in soil, and the soil salinity. It was found that there was a distinct decline of soil total petroleum hydrocarbons (TPH) concentration when using surfactant during the bioremediation period of30days. TPH degradation efficiencies of Taguchi experiment were66.21-94.00%which was much higher than the control of28.44-56.23%. The analysis of variance (ANOVA) indicated that the five study factors had little effect on the soil TPH biodegradation except for soil type on day20and day30. The interaction effect between the five factors was not significant. The soil type was observed to be the most important factor affecting the bioremediation efficiency, but the impacts of other four factors were enhanced in the later stage of bioremediation.
     (5) Impact of biosurfactant concentration and soil salinity on the bioremediation of crude oil contaminated soil:a series of laboratory experiments were conducted to further examine the impact of biosurfactant concentration and salinity on TPH removal from crude oil contaminated soil. Rhmnolipid was selected as the study biosurfactant. It was found that the remediation was more effective with the concentration of bio-surfactant just slightly above or below its CMC (i.e.,0.5,1,2CMC). The most effective remediation that occurred was with rhamnolipid concentration in soil solution of2CMC, and the TPH biodegradation rate constant was0.0866d-1. Salts had a negative impact on soil TPH degradation. Consequently, the rhamnolipid can significantly increase bioavailability of TPH to soil microorganisms, and salts should be removed first before applying bio-surfactant for the remediation of soils contaminated with both crude oil and salts.
     (6). Experiments and simulation of bioremediation for diesel contaminated groundwater:a sand tank box model was established to conduct experiments on the bioremediation of diesel contaminated groundwater so that a numerical model can be developed to simulate the remediation process. The Visual MODFLOW was applied to simulate and calculate the diesel concentration distribution in the saturated zone. It was found that the experimental data obtained from the sand box modeling matched very well with the prediction values obtained form the Visual MODFLOW model. The results proved that bio-biosurfactant enhanced bioremediation system can quickly and effectively remove the organic pollution from the groundwater zone.
引文
[1]支银芳.表面活性剂冲洗治理土壤轻油污染多相流实验研究[D].北京:北京师范大学,2006
    [2]国家科技部.863计划资源环境技术领域“油田区石油污染土壤生态修复技术与示范重点项目申请指南[R].2007
    [3]林力,杨惠芳.石油污染土壤的生物整治研究[J].上海环境科学,2000,19(7):325-329
    [4]付新建,张修田,苗长军.中原油田石油污染地下水现状分析[J].地下水,2008.30(3):48-49
    [5]赵章元.地下水污染威胁群众健康[EB/OL]. http://www.cigem.gov.cn/
    [6]周迅.苏南地区加油站地下储油罐渗漏污染研究[D].北京:中国地质科学院,2007
    [7]Kaoa C. M., Prosser J. Evaluation of natural attenuation rate at a gasoline spill site [J]. Journal of Hazardous Materials,2001,82(3):275-289
    [8]王云伟,孙卫克,韩瑞萍.我国城市地下水水质污染状况研究进展[j].昆明医学院学报,2003,24(2):106-109
    [9]徐玉林.石油污染土壤降解与土壤环境关系[J].农机化研究,2006(6):86-88
    [10]张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000,246-273
    [11]许华夏,姚德明.石油污染土壤生物修复过程中微生物生态研究[J].生态学杂志,2002(21):26-28
    [12]李宝明.石油降解细菌的分离与筛选研究[D].沈阳:中国科学院沈阳应用生态研究所,2005
    [13]李慧.石油烃污染对稻田土壤微生物生态系统的影响[D].沈阳:中国科学院沈阳应用生态研究所,2005
    [14]毛利华.石油污染土壤生物通风堆肥修复研究[D].北京:中国地质大学,2006
    [15]孙铁珩,李培军,周启星,等.土壤污染形成机理与修复技术[M].北京:科学出版社,2005,53-118
    [16]地下水污染治理专题[EB/OL]. http://www.hjxf.net/zt/groundwater.html.
    [17]陈双扣,彭雪梅,朱建芳.石油污染物对土壤昀破坏及环壤修复技术研究[EB/OL]. http://www.hjxf.net/2011/0808/6748.htm
    [18]史继诚.石油污染物的微生物降解及其生产生物表面活性剂的初步研究[D]. 大连:大连理工大学,2005
    [19]Elucidation I. I., Surfactants I. V., Glycolipids A., et al. Structure and Properties of Biosurfactants[J]. Biosurfactants and biotechnology.1987,25:21
    [20]Hayes L A, Nevin K P, Lovley D R. Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments[J]. Organic Geochemistry,1999,30(8):937-945
    [21]巩宗强,李培军,郭书海,等.多环芳烃污染土壤的生物泥浆法修复[J].环境科学,2001,22(5):112-116
    [22]张建,史德青,桂召龙,等.预制床法生物修复胜利油田含油污泥的研究[J].环境污染与防治,2008,29(12):912-915
    [23]姜昌亮,孙铁珩,李培军,等.石油污染土壤长料堆式异位生物修复技术研究[J].应用生态学报,2001,12(2):279-282
    [24]宋玉芳,许华夏,任丽萍.两种植物条件下土壤中矿物油和多环芳烃(PAH)的生物修复研究[J].应用生态学报,2001,12(1):108-112
    [25]孙铁珩,宋玉芳,许华夏,等.植物法生物修复PAH和矿物油污染土壤的调控研究[J].应用生态学报,1999,10(2):225-229
    [26]Mpfer K. A., Steiof M., Becker P. M., et al. Characterization of chemoheterotrophic bacteria associated with the in situ bioremediation of a waste-oil contaminated site[J]. Microbial ecology,1993,26(2):161-188
    [27]段云霞.生物通风修复石油污染土壤的研究进展[J].环境保护科学,200329(6):25-28
    [28]尹国勋,李振山.地下水污染与防治——焦作市实证研究[M].中国环境科学出版社,2005:13-49
    [29]陈秀成,曹瑞钰.地下水污染治理技术的进展[J].中国给水排水,2001,17(4):23-26
    [30]钟佐燊.地下水有机污染控制及就地恢复技术研究进展(一)[J].水文地质工程地质,2001,28(3):1-3
    [31]钟佐燊,刘菲.地下水有机污染控制及就地恢复技术研究进展(三)[J].水文地质工程地质,2001,28(5):76-79
    [32]钟佐燊,刘菲.地下水有机污染控制及就地恢复技术研究进展(二)[J].水文地质工程地质,2001,28(4):26-31
    [33]张宝良.油田土壤石油污染与原位生物修复技术研究[D].大庆:大庆石油学院,2007.
    [34]丁克强,骆永明.生物修复石油污染土壤[J].土壤,2001,33(4):179-184
    [35]张海荣,李培军,四种石油污染土壤生物修复技术研究[J].农业环境保护, 2001,20(2):78-80
    [36]Dibble J. T., Bartha R. Effect of environmental parameters on the biodegradation of oil sludge[J]. Applied and Environmental Microbiology, 1979,37(4):729-739
    [37]薄涛,白健,桂召龙.油田含油污泥中烃类污染物的微生物降解[J].山东环境,2003,4:45-46
    [38]宋玉芳,宋雪英,张薇,等.污染土壤生物修复中存在问题的探讨[J].环境科学,2004,25(2):129-133
    [39]郭娟.强化微生物修复石油污染沉积物实验研究[D].西安:西安建筑科技大学,2008
    [40]Ward D. M., Atlas R. M., Boehm P. D., et al. Microbial biodegradation and chemical evolution of oil from the Amoco spill[J]. Ambio,1980:277-283
    [41]刘五星,骆永明,滕应,等.石油污染土壤的生物修复研究进展[J].土壤,2006,38(5):634-639
    [42]任南琪,马放.污染控制微生物学原理与应用[M].北京:化学工业出版社,2003:235-270
    [43]赵世民.表面活性剂:原理,合成,测定及应用[M].北京:中国石化出版社,2005:38-82
    [44]Mulligan C. N., Gibbs B. F. Types, production and applications of biosurfactants[J]. Indian National Science Academy Part B,2004,70(1):31-56
    [45]王宏光,郑连伟.表面活性剂在多环芳烃污染土壤修复中的应用[J].化工环保,2006,26(6):471-474
    [46]Song G., Lu C., Lin J. M. Application of surfactants and microemulsions to the extraction of pyrene and phenanthrene from soil with three different extraction methods[J]. Analytica chimica acta,2007,596(2):312-318
    [47]赵淑梅,郑西来,高增文,等.生物表面活性剂及其在油污染生物修复技术中的应用[J].海洋科学进展,2005,23(2):234-238
    [48]Lin S. C. Biosurfactant:recent advances[J]. Journal of Chemical Technology and Biotechnology,1996,66(2):109-120
    [49]Mulligan C N. Environmental applications for biosurfactants[J]. Environmental pollution,2005,133(2):183-198
    [50]梅建凤,王普.生物表面活性剂[J].精细与专用化学品,2002,10(10):11-12
    [51]时进钢,袁兴中,曾光明,等.生物表面活性剂的台成与提取研究进展[J].微生物学通报,2003,30(1):68-72
    [52]丁立孝,何国庆,刘晔,等.脂肽生物表面活性剂产生菌的筛选[J].农业生物技术学报,2004,12(3):330-333
    [53]Kosaric N. Biosurfactants and their application for soil bioremediation[J]. Food Technology and Biotechnology,2001,39(4):295-304
    [54]Deshpande S., Shiau B. J., Wade. D., et al. Surfactant selection for enhancing ex situ soil washing[J]. Water Research,1999,33(2):351-360
    [55]Urum K., Pekdemir T., Gopur M. Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions[J]. Process Safety and Environmental Protection,2003,81(3):203-209
    [56]Kuyukina M. S., Ivshina I. B., Makarov S. O., et al. Effect of biosurfactants on crude oil desorption and mobilization in a soil system[J]. Environment international,2005,31(2):155-161
    [57]Lee M., Kang H., Do W. Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site[J]. Water research,2005,39(1):139-146
    [58]Pekdemir T., Copur M., Urum K. Emulsification of crude oil--water systems using biosurfactants[J]. Process Safety and Environmental Protection,2005, 83(1):38-46
    [59]Sabate J., Vinas M., Solanas A. M. Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils[J]. International biodeterioration & biodegradation,2004,54(1):19-25
    [60]Saeki H., Sasaki M.. Komatsu K., et al. Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058[J]. Bioresource Technology,2009,100(2):572-577
    [61]王洋,王秋玉.生物表面活性剂在生物修复石油污染中的应用[J].中国农学通报,2009,25(24):455-458
    [62]Das K. Mukherjee A. K. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India[J]. Bioresource Technology,2007,98(7):1339-1345
    [63]沈薇.生物修复环境污染的微生物筛选及其性能研究[D].南京:南京理工大学,2006.
    [64]吴剑锋,朱学愚.由MODFLOW浅谈地下水流数值模拟软件的发展趋势[J].工程勘察,2000,2:12-15
    [65]薛禹群,谢春红.地下水数值模拟[M].北京:科学出版社,2007:112-185
    [66]童彦钊,吴平,韩强强.地下水数值模拟软件简述[J].科技信息,2011,29:48
    [67]祝晓彬.地下水模拟系统(GMS)软件[J].水文地质工程地质,2003,30(5):53-55
    [68]杨树青.基于Visual-MODFLOW和SWAP耦合模型干旱区微咸水灌溉的水-土环境效应预测研究[D].呼和浩特:内蒙古农业大学,2005
    [69]高柏史维浚孙占学PHREEQC在研究地浸入溶质迁移过程中的应用[J].华东地质学院学报,2006,25:132-134
    [70]Christofi N., Ivshina I. B. Microbial surfactants and their use in field studies of soil remediation[J]. Journal of applied microbiology,2002,93(6):915-929
    [71]杨玉楠,韩冬.嗜盐菌强化石油污染土壤生物修复的可行性研究[J].农业环境科学学报,2007,26(B03):121-126
    [72]Abouseoud M., Yataghene A., Amrane A., et al. Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a bio-surfactant produced by Pseudomonas fluorescens[J]. Journal of Hazardous Material,2010,180(1-3): 131-136
    [73]Whang L.M., Liu P.G., Ma C.C., et al. Application of biosurfactants, rhamonolipid, and surfactin for enhanced biodegradation of diesel-contaminated water and soil[J]. Journal of Hazardous Materials,2008, 151(1):155-163
    [74]Champion J. T., Gilkey J. C., Lamparski H., et al. Electron microscopy of rhamnolipid (biosurfactant) morphology:effects of pH, cadmium, and octadecane[J]. Journal of colloid and interface science,1995,170(2):569-574
    [75]Shin K. H., Kim K. W., Seagren E. A. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene[J]. Applied microbiology and biotechnology,2004,65(3):336-343
    [76]Wang Q., Fang X., Bai B., et al. Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery[J]. Biotechnology and bioengineering,2007,98(4):842-853
    [77]Mulligan C. N., Yong R. N., Gibbs B. F. Surfactant-enhanced remediation of contaminated soil:a review[J]. Engineering Geology,2001,60(1):371-380
    [78]张永,廖柏寒,曾敏,等.表面活性剂在污染土壤修复中的应用[J].湖南农业大学学报:自然科学版,2007,33(3):348-352
    [79]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2008:32-45
    [80]Amellal N., Portal J. M., Berthelin J. Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil[J]. Applied Geochemistry,2001,16(14):1611-1619
    [81]工世荣,李祥高,刘东志.表面活性剂化学[M].北京:化学工业出版社,2007:59-77
    [82]蔡智明,张俊勇,杨科峰,等.色谱-质谱测定市售0号柴油成分[J].同济大学学报:自然科学版,2002,30(1):124-126
    [83]Du X. Y., Liu J. L., Xin J., et al. Ultrasonic-extraction and separation of petroleum hydrocarbons (PHs) and polycyclic aromatic hydrocarbons (PAH) from heavy oil-polluted soil based on Gas Chromatography/Mass Spectrometry (GC-MS) Analysis[A]. The Fourth International Conference on Bioinformatics and Biomedical Engineering (iCBBE2010):Environmental Pollution and Public Health Track[C], Chengdu, China,2010
    [84]霍姆博格K,琼森B,科隆博格B,等.水溶液中的表面活性剂和聚合物[M].北京:化学工业出版社,2005.
    [85]Zhang W., Li J. B., Huang G. H., et al. Impact of environmental factors on bio-surfactant surface property and its sorption onto soils[A]. Proceedings of the IASTED International Conference[C], Calgary, AB,2011:25-31
    [86]Paria S. Surfactant-enhanced remediation of organic contaminated soil and water[J]. Advances in colloid and interface science,2008,138(1):24-58
    [87]Pieper D. H., Reineke W. Engineering bacteria for bioremediation[J]. Current opinion in Biotechnology,2000,11(3):262-270
    [88]Salmon C., Crabos J. L., Sambuco J. P., et al. Artificial wetland performances in the purification efficiency of hydrocarbon wastewater[J]. Water, Air, & Soil Pollution,1998,104(3):313-329
    [89]Ishigami Y., Gama Y., Nagahora H., et al. The pH-sensitive conversion of molecular aggregates of rhamnolipid biosurfactant[J]. Chemistry Letters, 1987(5):763-766
    [90]Champion J. T., Gilkey J. C., Lamparski H., et al. Electron microscopy of rhamnolipid (biosurfactant) morphology:effects of pH, cadmium, and octadecane[J]. Journal of colloid and interface science,1995,170(2):569-574
    [91]Artiola J. F., Ochoa-Loza F. J., Maier R. M. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant[J]. Journal of environmental quality,2001,30(2):479-485
    [92]陈宝梁.表面活性剂在土壤有机污染修复中的作用及机理[D].杭州:浙江大学,2004
    [93]张景环,曾溅辉.表面活性剂在北京碱性土壤中的吸附行为研究[J].环境污染与防治,2007,29(8):571-574
    [94]Xu S., Boyd S. A. Cationic surfactant adsorption by swelling and nonswelling layer silicates[J]. Langmuir,1995,11(7):2508-2514
    [95]Boyd S. A., Jaynes W. F. Clay mineral type and organic compound sorption by hexadecyltrimethlyammonium-exchanged clays[J]. Soil Science Society of America Journal,1991,55(1):43-48
    [96]Lewis M. A. Chronic and sublethal toxicities of surfactants to aquatic animals: a review and risk assessment[J]. Water Research,1991,25(1):101-113
    [97]Talmage S. S. Environmental and Human Safety of Major Surfactants:Alcohol Ethoxylates and Alklphenol Ethoxylates[M]. Lewis Publisher, USA,1994: 235-356
    [98]Sun S., Inskeep W. P., Boyd S. A. Sorption of nonionic organic compounds in soil-water systems containing a micelle-forming surfactant[J]. Environmental science & technology,1995,29(4):903-913
    [99]Shimotori T., Arnold W. A. Measurement and estimation of Henry's law constants of chlorinated ethylenes in aqueous surfactant solutions[J]. Journal of Chemical & Engineering Data,2003,48(2):253-261
    [100]Liu Z., Edwards D. A., Luthy R. G. Sorption of non-ionic surfactants onto soil[J]. Water Research,1992,26(10):1337-1345
    [101]Wang S., Mulligan C. N. An evaluation of surfactant foam technology in remediation of contaminated soil[J]. Chemosphere,2004,57(9):1079-1089
    [102]Ochoa-Loza F. J., Noordman W. H., Jannsen D. B., et al. Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil[J]. Chemosphere,2007,66(9):1634-1642
    [103]Pornsunthorntawee O., Wongpanit P., Rujiravanit R. Rhamnolipid biosurfactants:Production and their potential in environmental biotechnology[J]. Biosurfactants,2010,627(Ⅲ):211-221
    [104]Mata-Sandoval J. C., Karns J., Torrents A. Influence of rhamnolipids and Triton X-100 on the desorption of pesticides from soils[J]. Environmental science & technology,2002,36(21):4669-4675
    [105]支银芳,陈家军,杨官光,等.表面活性剂溶液清洗油污土壤试验研究[J].土壤,2007,39(2):252-256
    [106]Ou S., Zheng J., Zheng J., et al. Petroleum hydrocarbons and polycyclic aromatic hydrocarbons in the surficial sediments of Xiamen Harbour and Yuan Dan Lake, China[J]. Chemosphere,2004,56(2):107-112
    [107]Khamehchiyan M, Hossein Charkhabi A, Tajik M. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils[J]. Engineering geology,2007,89(3):220-229.
    [108]刘继朝,张燕平,邹树增.土壤石油污染对植物种子萌发和幼苗生长的影响[J].水土保持通报,2009,3:123-126
    [109]Kuyukina M. S., Ivshina I. B., Makarov S. O., et al. Effect of biosurfactants on crude oil desorption and mobilization in a soil system [J]. Environment international,2005,31(2):155-161
    [110]李玉瑛.土-水系统石油污染物挥发和生物降解过程研究[D].青岛:中国海洋大学,2005
    [111]Aronstein B. N., Calvillo Y. M., Alexander M. Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil[J]. Environmental science & technology,1991,25(10): 1728-1731
    [112]杨坤.表面活性剂对有机污染物在土壤/沉积物上吸附行为的调控机制[D].杭州:浙江大学,2004
    [113]牛明芬,李凤梅,韩晓日,等.生物表面活性剂产生菌的筛选及表面活性剂稳定性研究[J].生态学杂志,2005,24(6):631-634
    [114]Ghojavand H., Vahabzadeh F., Mehranian M., et al. Isolation of thermotolerant, halotolerant, facultative biosurfactant-producing bacteria[J]. Applied microbiology and biotechnology,2008,80(6):1073-1085
    [115]Yin H., Qiang J., Jia Y., et al. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater[J]. Process Biochemistry,2009,44(3):302-308
    [116]Vipulanandan C., Ren X. Enhanced solubility and biodegradation of naphthalene with biosurfactant[J]. Journal of environmental engineering,2000, 126(7):629-634
    [117]Shin K. H., Kim K. W., Ahn Y. Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization-biodegradation process[J]. Journal of hazardous materials,2006,137(3): 1831-1837
    [118]Laha S., Luthy R. G. Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems[J]. Environmental science & technology,1991, 25(11):1920-1930
    [119]Roch F., Alexander M. Biodegradation of hydrophobic compounds in the presence of surfactants[J]. Environmental toxicology and chemistry,1995, 14(7):1151-1158
    [120]Tsomides H. J., Hughes J. B., Thomas J. M., et al. Effect of surfactant addition on phenanthrene biodegradation in sediments[J]. Environmental toxicology and chemistry,1995,14(6):953-959
    [121]Guha S., Jaffe P. R. Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants[J]. Environmental science & technology,1996,30(4):1382-1391
    [122]Volkering F., Breure A. M., van Andel J. G., et al. Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons[J]. Applied and Environmental Microbiology,1995,61(5): 1699-1705
    [123]田燕春,杨林,杨振宇,等.表面活性剂同系物体系对原油界面张力的影响[J].日用化学品科学,2000,S1:1-4
    [124]Du X. Y., Liu J. L., Xin J., et al. Polycyclic aromatic hydrocarbons (PAH) in soils Ssampled from an oilfield:analytical method by GC-MS, distribution, pofile, sources and impacts[A]. The Fourth International Conference on Bioinforrnatics and Biomedical Engineering (iCBBE2010):Environmental Pollution and Public Health Track[C], Chengdu, China,2010
    [125]Bojes H. K., Pope P. G. Characterization of EPA's 16 priority pollutant polycyclic aromatic hydrocarbons (PAH) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas[J]. Regulatory Toxicology and Pharmacology,2007,47(3):288-295
    [126]刘晓艳,毛国成,戴春雷,等.土壤中石油类有机污染物检测方法研究进展[J].中国环境监测,2006,22(2):75-80
    [127]Urum K., Pekdemir T., Copur M. Surfactants treatment of crude oil contaminated soils[J]. Journal of Colloid and Interface Science,2004,276(2): 456-464
    [128]Mackay D., Shiu W. Y., Ma K. C., et al. Handbook of physical chemical properties and environmental fate for organic chemicals:Introduction and hydrocarbons[M]. London, Taylor & Francis,2006
    [129]Pasam V. K., Battula S. B., Madar Valli P., et al. Optimizing surface finish in WEDM using the taguchi parameter design method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2010,32(2):107-113
    [130]Ross P. J. Taguchi techniques for quality engineering:loss function, orthogonal experiments, parameter and tolerance design[M]. Atlanta, McGraw-Hill Professional,1996
    [131]Taguchi G., Chowdhury S., Wu Y. Taguchi's quality engineering handbook[M]. Hoboken, New Jersey, John Wiley & Sons, Inc,2005
    [132]楚伟华.石油污染物在土壤中迁移及转化研究[D].大庆:大庆石油学院,2006
    [133]王洪涛,罗剑.大庆宋芳屯油田开发对周围草原羊草群落的影响[J].农村生态环境,2000,16(2):20-23
    [134]菲利普B贝迪恩特,哈纳迪S.里法尔,查尔斯J.纽厄尔.地下水污染—迁移与修复[M].北京:中国建筑工业出版社,2010.
    [135]工海涛,朱琨,魏翔,等.腐殖酸钠和表面活性剂对黄土中石油污染物解吸增溶作用[J].安全与环境学报,2004,4(4):52-55
    [136]Canadian Council of Ministers of the Environment, Reference method for the Canada-wide standard for petroleum hydrocarbons in soil-tier 1 method[S]. Winnipeg, Manitoba. Canadian Council of Ministers of the Environment Inc., 2001
    [137]刘凤枝,刘潇威.土壤和固体废弃物监测分析技术[M].北京:化学工业出版社,2007:266-398
    [138]Zhou W., Zhu L. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant-PAH system[J]. Environmental Pollution,2007,147(1):66-73
    [139]赵东风,王联社.石油类污染物在土壤中的迁移渗透规律[J].石油大学学报自然科学版,2000,24(3):64-66
    [140]刘亚琼,王营章,刘志强,等.胜利油田土壤对原油吸附过程的试验研究[J].青岛理工大学学报,2008,29(5):94-98
    [141]李崇明,赵文谦.河流泥沙对石油的吸附/解吸规律及影响因素的研究[J].中国环境科学,1997,17(1):23-26
    [142]Li W. S., Yang Q. X., Xu J. Y. Adsorption of petroleum hydrocarbon on mineralgrain and influencing factors[J]. Marine Environmental Science,1991, 10(2):42-45
    [143]Torrens J. L. Herman D. C. Miller-Maier R.M. Bio-surfactant (rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of cadmium from various soils[J]. Environmental Science and Technology,1998,32(6):776-781
    [144]堵国成,陈坚,陈燕,等.石油污染水体的生物修复[J].水处理技术,2003,29(5):249-252
    [145]Jones W. R. Practical applications of marine bioremediation[J]. Current opinion in biotechnology,1998,9(3):300-304
    [146]Amatya P. L., Hettiaratchi J. P. A., Joshi R.C. Bio-treatment of flare pit waste[J]. Journal of Canadian Petroleum Technology,2002,41(9):30-36
    [147]Rahman K. S. M., Rahman T. J., Kourkoutas Y., et al. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients[J]. Bioresource Technology, 2003,9(2):159-168
    [148]Singh A., Van Hamme J. D, Ward O. P. Surfactants in microbiology and biotechnology:Part 2. Application aspects[J]. Biotechnology advances,2007, 25(1):99-121
    [149]冯少良.混合表面活性剂对多环芳烃的增济作用机理及影响因素[D].杭州:浙江大学,2003
    [150]王宏光,郑连伟.表面活性剂在多环芳烃污染土壤修复中的应用[J].化工环保,2006,26(6):471-474
    [151]梁生康.鼠李糖脂生物表而活性剂对石油烃污染物生物降解影响的研究[D].青岛:中国海洋大学,2005
    [152]欧阳科,张甲耀,戚琪,等.生物表面活性剂和化学表面活性剂对多环芳烃蒽的生物降解作用研究[J].农业环境科学学报,2004,23(4):806-809
    [153]郑金秀,彭祺,张甲耀,等.产表面活性剂的石油降解菌降解特性研究[J].环境科学与技术,2007,30(001):5-7.
    [154]周素蕾,王红武,马鲁铭.生物表面活性剂及其在环境工程中的应用[J].水处理技术,2009,11:33-36
    [155]Kosaric N. Biosurfactants and their application for soil bioremediation[J]. Food Technology and Biotechnology,2001,39(4):295-304
    [156]Garcia-Junco M., Gomez-Lahoz C., Niqui-Arroyo J. L., et al. Biosurfactant-and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids[J]. Environmental science & technology,2003, 37(13):2988-2996
    [157]Van Hamme J. D, Singh A., Ward O. P. Physiological aspects:Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology[J]. Biotechnology advances,2006,24(6):604-620
    [158]Singh A., Van Hamme J. D., Ward O. P. Surfactants in microbiology and biotechnology:Part 2. Application aspects[J]. Biotechnology advances,2007, 25(1):99-121
    [159]韩有定.石油污染土壤超声波净化实验研究[D].北京:华北电力大学,2008.
    [160]Altenbach B., Giger W. Determination of benzene-and naphthalenesulfonates in wastewater by solid-phase extraction with graphitized carbon black and ion-pair liquid chromatography with UV detection[J]. Analytical Chemistry, 1995,67(14):2325-2333
    [161]党志,黄伟林,肖保华.环境有机地球化学,有机污染物-土壤/沉积物吸附作用研究回顾[J].矿物岩石地球化学通报,1999,18(3):20-27
    [162]Cecchi A. M., Koskinen W. C., Cheng H. H., et al. Sorption--desorption of phenolic acids as affected by soil properties[J]. Biology and Fertility of Soils, 2004,39(4):235-242
    [163]周岩梅,刘瑞霞,汤鸿霄.溶解有机质在土壤及沉积物吸附多环芳烃类有机污染物过程中的作用研究[J].环境科学学报,2003,23(2):216-223
    [164]王红旗,刘敬奇,齐永强.上壤石油污染物中正构烷烃降解特性研究[J].上海环境科学,2008,23(3):93-95
    [165]郭伟,李培军.阴离子表面活性剂(LAS)环境行为与环境效应[J].安全与环境学报,2004,4(6):37-42
    [166]赵选民.试验设计方法[M].北京:科学出版社,2006:55-78
    [167]Urum K., Pekdemir T., Gopur M. Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions[J]. Process Safety and Environmental Protection,2003,81(3):203-209
    [168]Wang T. Y., Huang C. Y. Improving forecasting performance by employing the Taguchi method[J]. European journal of operational research,2007,176(2): 1052-1065
    [169]Jiang M., Komanduri R. Application of Taguchi method for optimization of finishing conditions in magnetic float polishing (MFP)[J]. Wear,1997,213(1-2): 59-71
    [170]李颖.石油污染土壤的生物修复[D].北京:北京化工大学,2004
    [171]金文标,宋莉晖,董晓利.盐度对油污土壤生物治理的影响研究[J].钻采工艺,1998,21(4):71-72
    [172]刘继朝.中原油田石油污染土壤生物修复技术研究[D].北京:中国地质科学院,2009
    [173]Hamoda M. F., Al-Attar I. Effects of high sodium chloride concentrations on activated sludge treatment[J]. Water science and technology,1995,31 (9):61-72
    [174]吴小红.鼠李糖脂在石油废水处理中的应用研究[D].长沙:湖南大学,2006
    [175]唐智新.西北黄土地区石油污染土壤生物修复研究[D].西安:西安建筑科技大学,2007.
    [176]Autry A. R., Ellis G. M. Bioremediation:An effective remedial alternative for petroleum hydrocarbon-contaminated soil[J]. Environmental progress,1992, 11(4):318-323
    [177]Scherr K., Aichberger H., Braun R., et al. Influence of soil fractions on microbial degradation behavior of mineral hydrocarbons[J]. European Journal of Soil Biology,2007,43(5-6):341-350
    [178]齐永强,王红旗,郭淼.土壤石油生物降解影响因子正交实验分析[J].重庆环境科学,2002,24(2):29-32
    [179]刘晓艳,李英丽,朱谦雅,等.石油类污染物在土壤中的吸附/解吸机理研究及展望[J].矿物岩石地球化学通报,2007,26(1):82-87
    [180]李崇明,赵文谦.泥沙吸附石油的实验研究[J].四川联合大学学报:工程科学版,1997,1(4):34-40
    [181]廉景燕,杜永亮,郭敏,等.土壤中石油污染物的脱附过程[J].生态环境学报,2009,18(3):939-943
    [182]Luthy R. G., Aiken G. R., Brusseau M. L., et al. Sequestration of hydrophobic organic contaminants by geosorbents[J]. Environmental Science & Technology, 1997,31(12):3341-3347
    [183]Wang X. C., Zhang Y. X., Chen R. F. Distribution and partitioning of polycyclic aromatic hydrocarbons (PAH) in different size fractions in sediments from Boston Harbor, United States[J]. Marine Pollution Bulletin,2001,42(11): 1139-1149
    [184]Chung N., Alexander M. Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils[J]. Environmental Science & Technology,1998,32(7):855-860
    [185]Talley J. W, Ghosh U., Tucker S. G., et al. Particle-scale understanding of the bioavailability of PAH in sediment[J]. Environmental science & technology, 2002,36(3):477-483
    [186]Cecchi A. M., Koskinen W. C., Cheng H. H., et al. Sorption--desorption of phenolic acids as affected by soil properties[J]. Biology and Fertility of Soils, 2004,39(4):235-242
    [187]高士祥.环糊精和表面活性剂对有机污染物的增溶及在土壤修复中的应用研究[D].南京:南京大学,1999
    [188]吴小红,曾光明,袁兴中,等.生物表面活性剂鼠李糖脂对水体中石油烃降解的促进作用[J].应用与环境生物学报,2006,12(4):570-573
    [189]Gawel D. A guide for remediation of salt/hydrocarbon impacted soil[Z]. Dakota Industrial Commission, Department of Mineral Resources.
    [190]陈建秋.中国近海石油污染现状,影响和防治[J].节能与环保,2002,3:15-17
    [191]刘文霞,孟祥远.中原油田耕地污染分析[J].农业环境保护,2002,21(1):56-59
    [192]潘文利,于雷.辽河三角洲盐碱地防护林体系建设技术研究[J].应用生态学报,1998,9(3):231-236
    [193]杨玉楠,韩冬.嗜盐菌强化石油污染土壤生物修复的可行性研究[J].农业环境科学学报,2007,26(B03):121-126
    [194]姜明,吕宪国,许林书,等.松嫩平原湿地生态系统扰动因子及其反馈[J].资源科学,2006,27(6):125-131
    [195]姜吉生,王勇,祁敏,等.大庆市主要环境地质问题及其综合治理[J].黑龙江水专学报,2004,31(4):86-89
    [196]董同武,张廷山,霍进,等.克拉玛依油田九区南低电阻率油层研究[J].天然气勘探与开发,2005,28(3):30-33
    [197]张鹏新,Per A土壤中污染物迁移模型在油田环境影响评价中的应用[J].油气田环境保护,2006,15(4):49-51
    [198]王黎波,宁淑香,王亮,等.微生物处理含油海水影响因素的研究[J].辽宁师范大学学报:自然科学版,2008,30(4):503-505
    [199]王瑞军.大连湾船舶溢油损害评估及索赔系统[D].大连:大连海事大学, 2001
    [200]于晓丽.SBR法处理含盐采油废水研究[D].北京:中国地质大学,2003
    [201]Amatya P. L., Hettiaratchi J. P. A., Joshi R. C. Biotreatment of flare pit waste[J]. Journal of Canadian Petroleum Technology,2002,41(9):30-36
    [202]Schwarzenbach R. P., Gschwend P. M., Imboden D. M. Environmental Organic Chemistry (2nd ed.)[M]. New Jersey:John Wiley & Sons, Inc.,2002: 229-448
    [203]何小路.表面活性剂对多氯联苯污染土壤的修复研究[D].长沙:湖南大学,2005
    [204]Makkar R. S., Rockne K. J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons[J]. Environmental toxicology and chemistry,2003,22(10): 2280-2292
    [205]Whyte L. G., Slagman S. J., Pietrantonio F., et al. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15[J]. Applied and environmental microbiology,1999,65(7):2961-2968
    [206]Brownawell B. J., Chen H., Zhang W., et al. Sorption of nonionic surfactants on sediment materials[J]. Environmental science & technology,1997,31(6): 1735-1741
    [207]马战宇.表而活性剂对有机污染物在多介质环境中迁移的影响[D].杭州:浙江大学,2004
    [208]姜妍.红平红球菌产生的生物表面活性剂及其在石油污染土壤修复中的作用[D].长春:东北师范大学,2007
    [209]Sheng X., He L., Gong J. The hydrophobicity of two strains of pseudomonas and their degradation of phenanthrene[J]. Acta Scientiae Circumstantiae,2004, 24(5):942-944
    [210]Al-Tahhan R. A., Sandrin T. R., Bodour A. A., et al. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa:effect on cell surface properties and interaction with hydrophobic substrates[J]. Applied and environmental microbiology,2000,66(8):3262-3268
    [211]Rapp P., Bock H., Wray V., et al. Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes [J]. Journal of General Microbiology,1979,115(2):491-503
    [212]Ramsay B., McCarthy J., Guerra-Santos L., et al. Biosurfactant production and diauxic growth of Rhodococcus aurantiacus when using n-alkanes as the carbon source[J]. Canadian Journal of Microbiology,1988,34(11):1209-1212
    [213]梁生康,苏荣国,王修林,等.生物表面活性剂对铜绿假单胞菌摄取烷烃的强 化机制[J].应用与环境生物学报,2006,12(4):566-569
    [214]Zhang Y., Miller R. M. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane[J]. Applied and environmental microbiology,1994,60(6):2101-2106
    [215]Zhang X., Li J., Huang Y., et al. Surfactant enhanced biodegradation of petroleum hydrocarbons in oil refinery tank bottom sludge[J]. Journal of Canadian Petroleum Technology,2010.49(5):34-39
    [216]Shin K. H., Ahn Y., Kim K. W. Toxic effect of biosurfactant addition on the biodegradation of phenanthrene[J]. Environmental toxicology and chemistry, 2005,24(11):2768-2774
    [217]郑西来,王秉忱,佘宗莲,等.土壤-地下水系统石油污染原理与应用研究[M].北京:地质出版社,2004:20-89
    [218]Bekins B. A., Warren E., Godsy E. M. A Comparison of Zero-Order, First-Order, and Monod Biotransformation Models[J]. Ground water,1998, 36(2):261-268
    [219]Ito S., Inoue S. Sophorolipids from Torulopsis bombicola:possible relation to alkane uptake[J]. Applied and environmental microbiology.1982,43(6): 1278-1283
    [220]Zhang Y., Miller R. M. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane[J]. Applied and environmental microbiology,1994,60(6):2101-2106
    [221]Rosenberg E., Mitchell R. Microbial surfactants[J]. Critical reviews in biotechnology,1985,3(2):109-132
    [222]Schmid A., Kollmer A., Witholt B.. Effects of biosurfactant and emulsification on two-liquid phase Pseudomonas oleovorans cultures and cell-free emulsions containing n-decane[J]. Enzyme and microbial technology, 1998,22(6):487-493
    [223]Zhang Y., Miller R. M. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant)[J]. Applied and Environmental Microbiology,1992,58(10):3276-3282
    [224]Scott C. C. L., Finnerty W. R. A comparative analysis of the ultrastructure of hydrocarbon-oxidizing micro-organisms[J]. Journal of General Microbiology, 1976,94(2):342-350
    [225]Bar-Ness R., Avrahamy N., Matsuyama T., et al. Increased cell surface hydrophobicity of a Serratia marcescens NS 38 mutant lacking wetting activity[J]. Journal of bacteriology,1988,170(9):4361-4364
    [226]Neu T. R. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces[J]. Microbiological reviews,1996,60(1):151-166
    [227]王玉琦,芦连鑫.对石油企业实施清洁生产的策划和思考[J].陕西环境,2003,10(3):36-38
    [228]陈梅梅,范俊欣,岳勇,等.嗜盐菌在油田含盐采出废水处理中的应用[J].油气田环境保护,2010,20(1):52-55
    [229]万里平,赵立志,孟英峰.清洁生产工艺在油田生产过程中的应用[J].油气田环境保护,2004,14(1):3-6
    [230]魏立安.清洁生产审核与评价[M].北京:中国环境科学出版社,2005:67-112
    [231]熊汉辉,易绍金.极端环境下的石油烃生物降解及其在生物修复中的应用[J].油气田环境保护,2005,15(3):21-24
    [232]Kastner M., Breuer-Jammali M., Mahro B. Impact of inoculation protocols, salinity and pH on the degradation of polycyclic aromatic hydrocarbons (PAH) and survival of PAH-degrading bacteria introduced into soil ultrastructure[J]. Applied and Environmental Micorbiology,1998,64(1):359-362
    [233]Rhykerd R. L., Weaver R. W., McInnes K. J. Influence of salinity on bioremediation of oil in soil[J]. Environmental Pollution,1995,90(1):127-130
    [234]钱欣平.生物表而活性剂的合成及其促进有机物降解的研究[D].杭州:浙江大学,2002
    [235]秦传玉.阿特拉津在包气带和地下水迁移转化规律研究[D].长春:吉林大学,2007
    [236]王益伟,邱熠晨,詹新武Visual modflow在模拟实验室含水砂槽中乙醇运移特征中的应用[J].水利科技与经济,2009,15(2):161-162
    [237]鞠晓明.地下水污染场地水力控制优化方案研究[D].北京:中国地质大学,2011
    [238]Leglize P., Saada A., Berthelin J., et al. Evaluation of matrices for the sorption and biodegradation of phenanthrene[J]. Water research,2006,40(12): 2397-2404
    [239]Muller S., Totsche K. U., Kogel-Knabner I. Sorption of polycyclic aromatic hydrocarbons to mineral surfaces[J]. European journal of soil science,2007, 58(4):918-931
    [240]Khodadoust A. P., Lei L., Antia J. E., et al. Adsorption of polycyclic aromatic hydrocarbons in aged harbor sediments[J]. Journal of environmental engineering,2005,131(3):403-409
    [241]Hwang S., Cutright T. J.. Biodegradability of aged pyrene and phenanthrene in a natural soil[J]. Chemosphere,2002,47(9):891-899
    [242]Blanc P., Saada A., Baranger P.. A nonlinear parametric model for phenanthrene sorption[J]. Journal of colloid and interface science,2006,299(1): 14-21
    [243]Zhao X. K., Yang G. P., Wu P., et al. Study on adsorption of chlorobenzene on marine sediment[J]. Journal of colloid and interface science,2001,243(2): 273-279
    [244]林玉锁. Langmuir, Temkin和Freundlich方程应用于土壤吸附锌的比较[J].土壤,1994,26(5):269-272
    [245]Vadi M., Abbasi M., Zakeri M., et al. Application of the Freundlich, Langmuir, Temkin and Harkins-Jura Adsorption Isotherms for Some Amino Acids and Amino Acids Complexation with Manganese Ion (Ⅱ) on Carbon Nanotube[A]. International Conference on Nanotechnology and Biosensors[C], Singapore, 2010
    [246]杨金凤.生物通风修复柴油污染土壤实验及柴油降解菌的降解性能研究[D].北京:中国地质大学,2009
    [247]沈铁孟,黄国强.石油污染土壤生物通风修复及其强化技术[J].环境污染治理技术与设备,2002,3(7):67-69
    [248]郑春苗,Bennett G. D地下水污染物迁移模拟(第二版)[M].北京:高等教育出版社,2009:50-198
    [249]李佩成.地下水非稳定流渗流解吸法[M].北京:科学出版社,1990:36-59
    [250]朱学愚,钱孝星.地下水文学[M].北京:中国环境科学出版社,2005:30-85
    [251]薛禹群,谢春红.地下水数值模拟[M].北京:科学出版社,2007:97-138
    [252]牛少凤.ZVI还原技术用于地下水污染物的同步修复及评估预测模拟研究[D].杭州:浙江大学,2006
    [253]胡轶,谢水波,蒋明,等Visual Modflow及其在地下水模拟中的应用[J].南华大学学报(自然科学版),2006,20(2):1-5
    [254]王洪涛,罗剑,李雨松,等.石油污染物在土壤中运移的数值模拟初探[J].环境科学学报,2000,20(6):755-760
    [255]孙清,陆秀君,梁成华.土壤的石油污染研究进展[J].沈阳农业大学学报,2002,33(5):390-393
    [256]李兴伟.石油类有机污染物在土壤中迁移数值模拟[D].大庆:大庆石油学院,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700