用户名: 密码: 验证码:
铝合金表面钛/锆转化膜的着色及性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以氟钛酸和氟锆酸为主要组分,以单宁酸为着色剂,以锰盐为成膜促进剂在铝合金表面制备出了耐蚀性能优异的金黄色转化膜,并对转化膜的耐蚀性能、成膜机理和显色原因进行了分析。具体研究工作主要包括以下五个方面:
     (1)以氟钛酸和氟锆酸为基础配方,添加成膜促进剂和着色剂,制备了金黄色的钛/锆系转化膜,对其进行粉末喷涂后的漆膜按照铝合金建筑型材国家标准《GB5237.4-2004第4部分粉末喷涂型材》进行测试,完全符合标准要求,具备了工业化应用的条件。
     (2)最优工艺条件制备的转化膜腐蚀电流密度由基体的5.894A·cm-2下降到0.083A·cm-2,盐雾实验160h时无腐蚀,360h的腐蚀面积约占总面积的60%,超过铬酸盐的耐蚀水平。电化学交流阻抗谱表明添加成膜促进剂锰盐,使得膜层更加致密、均匀,耐蚀性能提高。
     (3)对转化膜的组织结构进行了分析,结果表明,转化膜的主要成分均为Na_3AlF_6,其次是单宁酸水解产物与金属离子形成的络合物以及少量TiO_2、Al_2O_3·3H_2O等。转化膜具有双层结构,外层主要是单宁酸水解产物与金属离子形成的有机络合物,内层主要是Na_3AlF_6。
     (4)转化膜的形成可以分为Na_3AlF_6晶核形成、生长、金属有机络合物沉积三个阶段:在成核阶段,Na_3AlF_6晶核在铝基体表面形成,晶体的大小不一,零星分布在基体表面;在生长阶段,晶体不断长大并形成连续转化膜覆盖了整个基体;在金属有机络合物沉积阶段,溶液中由单宁酸水解得到的三羟基苯甲酸与金属离子反应形成金属络合物并逐渐覆盖在Na_3AlF_6晶体层表面,金属有机络合物的存在使转化膜呈现出了金黄色。
     (5)分析了F-和Mn~(2+)在成膜过程中的作用。由于F-的屏蔽作用,从基体上溶解下来的Al~(3+)来不及扩散到溶液中就和附近的F-反应生成配位离子AlF_6~(3-),阻碍了Al(OH)_3沉淀生成。Mn~(2+)的加入改变了转化膜的形貌,成膜速度加快,耐蚀性能进一步提高,但成膜机理以及膜层结构没有变化,在溶液中Mn~(2+)被氧化成MnOOH并沉积在基体表面为Na_3AlF_6形成提供晶核,加速Na_3AlF_6成核、生长,从而加快了成膜速度;同时由于MnOOH晶核的存在,改变了Na_3AlF_6晶体的取向,使转化膜的微观形貌发生了变化。
A golden conversion coating on the surface of aluminum alloy which has excellentcorrosion resisting property was prepared by using the treatment solution containing H2TiF6and H2ZrF6as essential component, tannic acid as the coloring agent, Mn~(2+)as thecoating-forming accelerators. The corrosion resistance, coating-forming mechanism andcolored reason had been investigated deeply. The related results were as follows:
     (1) The golden Ti/Zr conversion coating on the surface of aluminum alloy was obtainedthrough the treatment solutioin with H2TiF6and H2ZrF6as the main composites accompaniedwith the coloring agent and coating-forming accelerators. Powder spray experiment of thealuminium alloy after the treatment showed that the current prepared conversion coating metthe requirement of Part4of National Standard GB5237.4-2004of powder coating profiles,which means that the conversion coating technigue can be candidate for industrial application.
     (2) The corrosion current density of the optimized conversion coating decreased to0.083uA·cm-2from5.894uA·cm-2of the substrate alloy. The surface of conversion coating was stillintact after160h salt spray test and the corrosion area about60%after360h. The resistancecorrosion of this conversion coating was better than that of chromate conversion coating. Theelectrochemical impedance spectroscopy research showed that conversion coating was muchmore compact and uniform and the corrosion resistance wss significantly increased when thecoating-forming accelerator Mn~(2+)was introduced into the treatment solution.
     (3) Through the characterization to main components of the conversion coating, it wasshown that the main components of both conversion coating got in these two optimizedformulas was Na_3AlF_6, followed by the metal-organic complex, a little of Al_2O_3·3H_2O, TiO_2and so on. A double-layer structure was evidenced in the conversion coating. The outer layerconsists of the metal-organic complex which were formed by the reaction of gallic with Ti4+and Al~(3+), the inner layer was mainly made up of Na_3AlF_6.
     (4)The formation mechanism of the conversion coating can be divided into three stages:the nucleation and the growth of Na_3AlF_6crystals and the formation of metal-organic complex.First, Na_3AlF_6crystals preferentially nucleate on the surface of the substrate. The Na_3AlF_6crystals present as ellipsoidal globules with different size. Then, the Na_3AlF_6crystallinegrains grow in sizes and nearly cover all of the substrate surfaces. At last, the metal-organiccomplex formed and covered the Na_3AlF_6crystals which made the conversion coating golden.
     (5) The effect of Al~(3+)and F-had been analyzed. The Al~(3+)dissolved from the surface of thesubstrate and reacted with F-to form AlF_6~(3-)which prevented the precipitation of Al(OH)3. Mn~(2+)changed the morphology of conversion coating and accelerated the coating-forming andimproved the corrosion resistance further. However, the formation mechanism and coatingstructure was not changed. Mn~(2+)had a strong reducibility and was readily to be oxidized toMnOOH by O2in the solution,and the MnOOH deposited on the substrate surface as thenucleation for the Na_3AlF_6deposition, which accelerated the growth speed of thecoating-forming. MnOOH nucleation may change the orientation of Na_3AlF_6crystal and thuschange the morphology of conversion coating.
引文
[1]张高会,黄国青,徐鹏,等.铝及铝合金表面处理研究进展[J].中国计量学院学报,2010,21(02):174-178.
    [2]朱祖芳.铝材表面处理[M].长沙:中南大学出版社,2010:1-38
    [3]吴敏,孙勇.铝及其合金表面处理的研究现状[J].表面技术,2003,32(03):13-15.
    [4]李克杰,李全安.合金微弧氧化技术研究及应用进展[J].稀有金属材料与工程,2007,36(S3):199-203.
    [5]张荣发,单大勇,韩恩厚,等.镁合金阳极氧化的研究进展与展望[J].中国有色金属学报,2006,16(07):1136-1148.
    [6]孙衍乐,宣天鹏,徐少楠,等.铝合金的阳极氧化及其研发进展[J].电镀与精饰,2010,32(04):18-21.
    [7]袁海兵,黄承亚,谢刚.铝合金硬质阳极氧化工艺的研究[J].表面技术,2007,36(05):46-47+58.
    [8]宋蓓蓓,刘莹红,杜长海.铝阳极氧化材料的研究进展[J].化学工程师,2008,158(11):32-35.
    [9] Habazaki H, Shimizu K, Skeldon P, et al. Effects of alloying elements in anodizing ofaluminium[J]. Transactions of the Institute of Metal Finishing,1997,75(01):18-23.
    [10] Moon S M, Pyun S I. The formation and dissolution of anodic oxide films on purealuminium in alkaline solution[J]. Electrochimica Acta,1999,44(14):2445-2454.
    [11]周永璋,刘正宝,周桃玉,等.铸铝合金硫酸阳极氧化[J].电镀与环保,1999,19(02):22-25.
    [12]张瑞芝.氯离子对硫酸阳极氧化的影响[J].电镀与精饰,1992,14(04):27.
    [13]夏成宝,王东风,葛文军.铝合金硫酸阳极氧化对胶接性能的影响[J].表面技术,2009,38(03):8-9.
    [14]杨胜奇.稀土在金属表面处理工艺中的应用技术(7)——稀土铝及其合金宽温耐蚀耐磨硫酸阳极氧化工艺技术[J].材料保护,2008,41(09):72-74+87.
    [15] Xu J, Fu D, Lu S. The recovery of sulphuric acid from the waste anodic aluminumoxidation solution by diffusion dialysis[J]. Separation and Purification Technology,2009,69(02):168-173.
    [16] Muramaki T, Raub C J. Effect of pH-values on the anodic oxidation of aluminium insulphuric acid[J]. Surface Technology,1980,10(01):13-24
    [17] Grishina E P, Udalova A M, Rumyantsev E M. Anodic oxidation of silver alloys inconcentrated sulfuric acid solutions[J]. Russian Journal of Electrochemistry,2003,39(08):903-906.
    [18]吕建琴,陈代伟,赵甫良.铝及铝合金铬酸阳极氧化工艺研究[J].涂料涂装与电镀,2006,4(06):31-33+40.
    [19]熊劲松.草酸阳极氧化槽液中铝离子分析研究[J].航天制造技术,2003,(04):49-50.
    [20]宰学荣.草酸阳极氧化工艺对氧化铝模板孔径的影响[J].材料保护,2004,37(01):41-43+67.
    [21]吴申敏.草酸阳极氧化新工艺及其应用[J].上海航天,1996,(05):61-63.
    [22]唐春华.铝及铝合金电镀工艺的进展[J].电镀与涂饰,1988,(01):25-31.
    [23]夏扬,王吉会,王茂范.铝合金电镀的研究进展[J].材料导报,2005,19(12):60-63.
    [24]赵卓,李小斌,赵清杰.铝的电镀技术研究进展[J].轻金属,2007,(02):57-60.
    [25] Frazier A B, Allen M G. Uses of electroplated aluminum for the development ofmicrostructures and micromachining processes[J]. Journal of MicroelectromechanicalSystems,1997,6(02):91-98.
    [26] Zhu X W, Han J M, Cui S H, et al. Morphologies and properties of micro-arcoxidation on plate and cylinder2024Al alloy[J]. Journal of Rare Earths,2004,22(02):50-52.
    [27] Guo Q, Li J, Xia F, et al. Microstructure and properties of the ceramic coating formedby micro-arc oxidation on a cast hypereutectic aluminum alloy[J]. Special Casting&Nonferrous Alloys,2009,29(05):471-475.
    [28] Cui S, Han J, Li W, et al. A study of the corrosion resistance of a micro-arc oxidationcoating on a cast aluminum-copper alloy[J]. Journal of Ceramic Processing Research,2006,7(04):359-362.
    [29] Yan Y, Han Y, Huang J. Formation of Al2O3-ZrO2composite coating on zirconiumby micro-arc oxidation[J]. Scripta Materialia,2008,59(02):203-206.
    [30] Song W H, Ryu H S, Hong S H. Apatite induction on Ca-containing titania formed bymicro-arc oxidation[J]. Journal of the American Ceramic Society,2005,88(09):2642-2644.
    [31] Han Y, Xu K W. Structural characterization of micro-arc oxidation formed titaniumdioxide films containing Ca and P[J]. Journal of Inorganic Materials,2001,16(05):951-956.
    [32]段关文,高晓菊,满红,等.微弧氧化研究进展[J].兵器材料科学与工程,2010,33(05):102-106.
    [33] Xue W B, Wang C, Li Y L, et al. Effect of microarc discharge surface treatment on thetensile properties of Al-Cu-Mg alloy[J]. Materials Letters,2002,56(5):737-743.
    [34]金和喜,王日初,彭超群,等.镁合金表面化学转化膜研究进展[J].中国有色金属学报,2011,21(09):2049-2059.
    [35]曾荣昌,兰自栋,陈君,等.镁合金表面化学转化膜的研究进展[J].中国有色金属学报,2009,19(03):397-404.
    [36] M P. Atlas of Electro Chemical Equilibria in Aqueous solutions[M]. New York:Pergamon Press,1996:167-245
    [37]许越,陈湘,吕祖舜,等.金属表面稀土转化膜的研究进展[J].稀土,2002,23(03):58-62.
    [38]孙宝德,李克.铝及铝合金防腐蚀表面处理技术的研究现状与发展[J].腐蚀与防护,1998,19(05):195-198+206.
    [39] Brown G M, Shimizu K, Kobayashi K, et al. The growth of chromate conversioncoatings on high purity aluminium[J]. Corrosion Science,1993,34(07):1045-1054.
    [40] Xia L, Mccreery R L. Chemistry of a chromate conversion coating on aluminum alloyAA2024-T3probed by vibrational spectroscopy[J]. Journal of the ElectrochemicalSociety,1998,145(09):3083-3089.
    [41] Zhao J, Xia L, Sehgal A, et al. Effects of chromate and chromate conversion coatingson corrosion of aluminum alloy2024-T3[J]. Surface&Coatings Technology,2001,140(01):51-57.
    [42] Waldrop J R, Kendig M W. Nucleation of chromate conversion coating on aluminum2024-T3investigated by atomic force microscopy[J]. Journal of the ElectrochemicalSociety,1998,145(01):11-13.
    [43] Kendig M W, Davenport A J, Isaacs H S. The mechanism of corrosion inhibition bychromate conversion coatings from X-ray absorption near edge spectroscopy(XANES)[J]. Corrosion Science,1993,34(01):41-49.
    [44] Mcgovern W R, Schmutz P, Buchheit R G, et al. Formation of chromate conversioncoatings on Al-Cu-Mg intermetallic compounds and alloys[J]. Journal of theElectrochemical Society,2000,147(12):4494-4501.
    [45]高天柱,李久青. LY12铝合金稀土转化膜的成膜过程[J].北京科技大学学报,2002,24(05):525-528.
    [46]韩哲,熊金平,左禹.铝合金表面化学氧化工艺的研究进展[J].电镀与精饰,2008,30(11):15-18.
    [47] Bibber J. Conversion coating of aluminum[J]. Metal Finishing,2001,99(6):171-172.
    [48] Hamdy A S. Corrosion protection of aluminum composites by silicate/cerateconversion coating[J]. Surface&Coatings Technology,2006,200(12-13):3786-3792.
    [49]陈东初,李文芳,龚伟慧,等.铝合金表面无铬化学转化膜的制备及其性能[J].中国有色金属学报,2008,18(10):1839-1845.
    [50]张巍,李久青,许江涛,等. LC4铝合金稀土转化膜耐蚀性及影响因素[J].腐蚀科学与防护技术,1999,11(06):341-345.
    [51] Campestrini P, Terryn H, Hovestad A, et al. Formation of a cerium-based conversioncoating on AA2024: relationship with the microstructure[J]. Surface&CoatingsTechnology,2004,176(03):365-381.
    [52] Wendt R G, Moshier W C, Shaw B, et al. Corrosion-resistant aluminum matrix forgraphite-aluminum composites[J]. Corrosion,1994,50(11):819-826.
    [53]于兴文,曹楚南,林海潮,等.铝合金表面稀土转化膜研究进展[J].中国腐蚀与防护学报,2000,20(05):298-307.
    [54] Okido M, Ichino R, Kim S J, et al. Surface characteristics of chemical conversioncoating for Mg-Al alloy[J]. Transactions of Nonferrous Metals Society of China,2009,19(04):892-897.
    [55]张军军.铝合金表面Ce-Mn转化膜常温制备及表征[D].华南理工大学:华南理工大学,2010.
    [56] Gao L L, Zhang C H, Zhang M L, et al. Phytic acid conversion coating on Mg-Lialloy[J]. Journal of Alloys and Compounds,2009,485(01-02):789-793.
    [57] Wang J, Li D D, Yu X, et al. Hydrotalcite conversion coating on Mg alloy and itscorrosion resistance[J]. Journal of Alloys and Compounds,2010,494(01-02):271-274.
    [58] Mu S, Li N, Li D, et al. Corrosion behavior and composition analysis of chromatepassive film on electroless Ni-P coating[J]. Applied Surface Science,2010,256(13):4089-4094.
    [59]余会成,陈白珍,石西昌,等.6063铝合金三价铬化学转化膜的制备与电化学性能[J].物理化学学报,2008,24(08):1465-1470.
    [60] Hinton B R W. Corrosion inhibition with rare earth metal salts[J]. Journal of Alloysand Compounds,1992,180(01-02):15-25.
    [61] Papini M. Chemical, structural and optical characterization of Ni---P chemicalconversion coatings for photothermal absorption of solar energy[J]. Solar EnergyMaterials,1986,13(04):233-265.
    [62] Verdier S, Van Der Laak N, Delalande S, et al. The surface reactivity of amagnesium-aluminium alloy in acidic fluoride solutions studied by electrochemicaltechniques and XPS[J]. Applied Surface Science,2004,235(04):513-524.
    [63] Andreatta F, Turco A, De Graeve I, et al. SKPFM and SEM study of the depositionmechanism of Zr/Ti based pre-treatment on AA6016aluminum alloy[J]. Surface&Coatings Technology,2007,201(18):7668-7685.
    [64] Gao L L, Zhang C H, Zhang M L. Cerium chemical conversion coating on a novelMg-Li alloy[J]. Journal of Wuhan University of Technology-Materials Science Edition,2010,25(01):112-117.
    [65] Paloumpa I, Yfantis A, Hoffmann P, et al. Mechanisms to inhibit corrosion of Alalloys by polymeric conversion coatings[J]. Surface&Coatings Technology,2004,180:308-312.
    [66] Gonzalez-Nunez M A, Nunez-Lopez C A, Skeldon P, et al. A non-chromateconversion coating for magnesium alloys and magnesium-based metal matrixcomposites[J]. Corrosion Science,1995,37(11):1763-1772.
    [67] Dingfei Z, Xu Y, Fusheng P. Chemical nature of phytic acid conversion coating onAZ61magnesium alloy[J]. Applied Surface Science,2009,255(20):8363-8371.
    [68] Ming Z, Wu S, Jirong L, et al. A chromium-free conversion coating of magnesiumalloy by a phosphate-permanganate solution[J]. Surface&Coatings Technology,2006,200(18-19):5407-5412.
    [69] Tsuchiya T, Watanabe A, Imai Y, et al. Direct conversion of metal acetylacetonatesand metal organic acid salts into metal oxides thin films using coating photolysisprocess with an ArF excimer laser[J]. Japanese Journal of Applied Physics Part2-Letters,1999,38(10A): L1112-L1114.
    [70] Hughes A E, Gorman J D, Paterson P J K. The characterisation of Ce-Mo-basedconversion coatings on Al-alloys. I[J]. Corrosion Science,1996,38(11):1957-1976.
    [71] Ono S, Asami K, Masuko N. Mechanism of chemical conversion coating film growthon magnesium and magnesium alloys[J]. Materials Transactions,2001,42(07):1225-1231.
    [72] Chun-Hung H, Chia-Che W. Fabrication of lead zirconium titanium and silicacomposite films on copper/polyimide flexible substrates[J]. Smart Materials&Structures,2010,19(12):124005-124008.
    [73] Whitten M C, Lin C T. An in situ phosphatizing coating on2024T3aluminumcoupons[J]. Progress in Organic Coatings,2000,38(03-04):151-162.
    [74] Lin C T. Green chemistry in situ phosphatizing coatings[J]. Progress in OrganicCoatings,2001,42(03-04):226-235.
    [75] Chuang Y Y, Lin C H T. Effects of catalyst and pigment on polyester-melamine in situphosphatizing coating on a cold-rolled steel system[J]. Industrial&EngineeringChemistry Research,2002,41(21):5232-5239.
    [76] Neuder H, Lin C T. Chrome-free single-step in-situ phosphatizing coatings on aTi-6Al-4V titanium alloy[J]. Journal of Coatings Technology,2002,74(930):37-42.
    [77] Neuder H A, Sizemore C A, Whitten M C, et al. Enhanced paint adhesion to metalsusing in situ phosphatizing coatings[J]. Journal of Adhesion Science and Technology,2004,18(01):123-140.
    [78]王济奎,刘宝春,蔡璐,等. A3钢表面的单宁酸化学转化膜[J].南京化工大学学报,1997,18(03):54-57.
    [79] Frignani A, Grassi V, F Zucchi, et al. Mono-carboxylate conversion coatings for AZ31Mg alloy protection[J]. Materials and Corrosion-Werkstoffe Und Korrosion,2011,62(11):995-1002.
    [80] Ni J H, Shi Y L, Yan F Y, et al. Preparation of hydroxyapatite-containing titania coatingon titanium substrate by micro-arc oxidation[J]. Materials Research Bulletin,2008,43(01):45-53.
    [81] Beccaria A M, Chiaruttini L. The inhibitive action of metacryloxypropylmethoxysilane(MAOS) on aluminium corrosion in NaCl solutions[J]. Corrosion Science,1999,41(05):885-899.
    [82] Beccaria A M, Ghiazza M, Poggi G. The effect of change of pH on the inhibitory actionof3-(trimethoxysilyl)propanethiol-1on corrosion behaviour of carbon steel in NaClsolutions[J]. Corrosion Science,1994,36(08):1381–1393.
    [83] Salam Hamdy A, Beccaria A M, Temtchenko T. Corrosion protection of AA6061T6byfluoropolymer coatings in NaCl solution[J]. Surface&Coatings Technology,2002,155(02-03):176-183.
    [84]王双红,刘常升.有机磷酸在金属表面防护中的应用[J].世界钢铁,2009,(02):61-64.
    [85]王秀华,孙益民,刘守华,等.有机-无机杂化涂层制备及耐腐蚀性能研究[J].腐蚀科学与防护技术,2006,18(04):292-294.
    [86]苏红来,尤宏,姚杰,等. LY12铝合金表面有机-无机杂化膜特性研究[J].材料科学与工艺,2006,14(04):349-352.
    [87] Lin J X, Niu L Y, Gao G L. Study on the technology of the environment-friendlyconversion coating containing phytic acid for magnesium surface[J]. MaterialsScience Forum,2009,610(02):905-910.
    [88]赵立新,顾云飞,邵忠财,等.镁合金无铬化学转化膜的研究现状及发展趋势[J].电镀与涂饰,2009,28(01):33-36.
    [89] Liu J R, Guo Y N, Huang W D. Study on the corrosion resistance of phytic acidconversion coating for magnesium alloys[J]. Surface&Coatings Technology,2006,201(03-04):1536-1541.
    [90] Liang C H, Zheng R F, Huang N B, et al. Conversion coating treatment for AZ31magnesium alloys by a phytic acid bath[J]. Journal of Applied Electrochemistry,2009,39(10):1857-1862.
    [91] Pan F S, Yang X, Zhang D F. Chemical nature of phytic acid conversion coating onAZ61magnesium alloy[J]. Applied Surface Science,2009,255(20):8363-8371.
    [92]崔秀芳李庆芬.镁合金表面植酸转化膜研究I.植酸转化膜成膜机理与耐蚀性研究[J].腐蚀科学与防护技术,2007,19(04):203-206.
    [93]崔秀芳李庆芬.镁合金表面植酸转化膜研究Ⅱ.pH值对镁合金植酸转化膜的影响[J].腐蚀科学与防护技术,2007,19(04):275-277.
    [94]杨旭.镁合金表面有机转化膜的制备及性能研究[D].重庆大学:重庆大学,2009
    [95]丁红波,郑辅养,马廷椿,等.铝合金上锂盐转化层的制备及其性能[J].表面技术,1999,(06):13-25.
    [96]郑辅养,马廷春,温国谋.铝合金上锂盐转化膜的耐蚀性能[J].电镀与涂饰,1999,18(03):11-12+26.
    [97] Buchheit R G, Bode M D, Stoner G E. Corrosion-resistant, chromate-free talc coatingsfor aluminum[J]. Corrosion,1994,50(03):205-214.
    [98] Hinton B R W, Arnott D R, Ryan N E. Cerium conversion coatings for the corrosionprotection of aluminium[J]. Materials Forum,1986,9(03):162-173.
    [99] Hinton B R W, Arnott D R, Ryan N E. The inhibition of aluminium alloy corrosion bycerous cations[J]. Metals Forum,1984,7(04):211-217.
    [100] Hinton B R W, Wilson L. The corrosion inhibition of zinc with cerous chloride[J].Corrosion Science,1989,29(08):967–975+977–985.
    [101]张凯,李文芳,杜军.含HF2-盐对铝合金稀土转化膜耐蚀性能及膜层结构研究[J].功能材料,2010,41(03):512-514
    [102] Scholes F H, Soste C, Hughes A E, et al. The role of hydrogen peroxide in thedeposition of cerium-based conversion coatings[J]. Applied Surface Science,2006,253(04):1770-1780.
    [103] Johnson B Y, Edington J, O'keefe M J. Effect of coating parameters on themicrostructure of cerium oxide conversion coatings[J]. Materials Science andEngineering a-Structural Materials Properties Microstructure and Processing,2003,361(01-02):225-231.
    [104] Salman S A, Ichino R, Okido M. Development of cerium-based conversion coatingon AZ31magnesium alloy[J]. Chemistry Letters,2007,36(08):1024-1031.
    [105] Hu J, Tang S W, Zhang Z Y. Microstructure and formation mechanism of ceriumconversion coating on alumina borate whisker-reinforced AA6061composite[J].Corrosion Science,2008,50(11):3185-3192.
    [106] Yu S X, Cao J Y, Chen L, et al. Corrosion resistance, composition and structure ofRE chemical conversion coating on magnesium alloy[J]. Transactions of NonferrousMetals Society of China,2008,18(01): S349-S353.
    [107] Zhong L Y, Cao F H, Shi Y Y, et al. Preparation and corrosion electrochemistrybehavior of cerium-based chemical conversion coating on AZ91magnesium alloy[J].Acta Metallurgica Sinica,2008,44(08):979-985.
    [108] Zhang J J, Li W F, Du J, et al. Investigation of the Ce-Mn conversion coating on6063aluminium alloy[J]. Chinese Science Bulletin,2010,55(29):3345-3349.
    [109]王继徽,蒋忠锦,孙际琪.铝合金表面稀土转化膜成膜机理初探[J].湖南大学学报(自然科学版),2000,27(04):31-35.
    [110] Dabala M, Brunelli K, Napolitani E, et al. Cerium-based chemical conversioncoating on AZ63magnesium alloy[J]. Surface&Coatings Technology,2003,172(02-03):227-232.
    [111] Yu X W, Li G Q. XPS study of cerium conversion coating on the anodized2024aluminum alloy[J]. Journal of Alloys and Compounds,2004,364(01-02):193-198.
    [112] Wang C, Jiang F, Wang F H. The characterization and corrosion resistance of ceriumchemical conversion coatings for304stainless steel[J]. Corrosion Science,2004,46(01):75-89.
    [113] Rivera B E, Johnson B Y, O'keefe M J, et al. Deposition and characterization ofcerium oxide conversion coatings on aluminum alloy7075-T6[J]. Surface&CoatingsTechnology,2004,176(03):349-356.
    [114] Yang L, Li J, Yu X, et al. Lanthanum-based conversion coating on Mg–8Li alloy[J].Applied Surface Science,2008,255(05):2338-2341.
    [115] Mansfeld F, Wang Y. Corrosion protection of high copper aluminium alloys bysurface modification[J]. British Corrosion Journal,1994,29(03):194-200.
    [116] Mansfeld F, Perez F J. Surface modification of aluminum alloys in molten saltscontaining CeCl3[J]. Thin Solid Films,1995,270(01-02):417–421.
    [117] Mansfeld F, Lin S, Kim S, et al. Corrosion protection of Al alloys and Al-basedmetal matrix composites by chemical passivation[J]. Corrosion,1989,45(08):615-631.
    [118] Shih H, Mansfeld F. A fitting procedure for impedance data of systems with very lowcorrosion rates[J]. Corrosion Science,1989,29(10):1235–1240.
    [119]张军军,李文芳,杜军,等.6063铝合金铈锰转化膜的研究[J].科学通报,2010,55(17):1734-1737.
    [120]张军军,李文芳,杜军.室温下铝合金表面Ce-Mn转化膜的制备及性能[J].金属学报,2009,45(12):1466-1472.
    [121]张军军,李文芳,杜军.常温时添加剂对-转化膜的影响[J].华南理工大学学报(自然科学版),2010,38(04):76-82.
    [122]邵敏华,黄若双,付燕,等. Al合金表面Ce转化膜成膜机理研究[J].物理化学学报,2002,18(09):791-795.
    [123]于兴文,曹楚南,林海潮. LY12铝合金表面稀土转化膜腐蚀行为的研究[J].中国稀土学报,2000,18(03):243-247.
    [124]于兴文,周德瑞,尹钟大,等.2024铝合金表面三价稀土转化膜[J].中国有色金属学报,1999,9(01):73-78.
    [125] Joshi S, Treu B L, O'keefe M J, et al. Characterization of Cerium-Based ConversionCoatings on Al7075-T6Deposited from Chloride and Nitrate Salt Solutions[J].Journal of the Electrochemical Society,2011,158(03): C88-C93.
    [126]李久青,田虹,卢翠英.铝合金稀土转化膜的碱性成膜工艺[J].材料保护,1998,31(09):11-13.
    [127]张巍,李久青,许江涛,等. LC4铝合金稀土转化膜耐蚀性及影响因素[J].腐蚀科学与防护技术,1999,11(06):341-345.
    [128]李久青,田虹,卢翠英.铝合金稀土转化膜碱性成膜工艺T3/T7的研究[J].腐蚀科学与防护技术,1998,10(02):98-102.
    [129]李国强,李荻,李久青,等.新型铝合金Ce-Mo基转化膜[J].材料工程,2001,(04):6-9.
    [130]张圣麟,王绍领,张小麟.铝合金稀土磷化与铬磷化比较[J].腐蚀与防护,2008,29(04):192-194.
    [131] Wang C, Jiang F. Chromate-phosphate conversion coatings for LY12aluminumalloy[J]. Corrosion Science and Protection Technology,2002,14(02):82-83.
    [132] Tegehall P E, Vannerberg N G. Nucleation and formation of zinc phosphateconversion coating on cold-rolled steel[J]. Corrosion Science,1991,32(05-06):635-652.
    [133] Critchlow G W, Brewis D M. A comparison of chromate-phosphate and chromate-freeconversion coatings for adhesive bonding[J]. Journal of Adhesion,1997,61(01-04):213-230.
    [134]张圣麟,张小麟.铝合金无铬磷化处理[J].腐蚀科学与防护技术,2008,20(04):279-282.
    [135] Yong Z, Zhu J, Qiu C, et al. Molybdate/phosphate composite conversion coating onmagnesium alloy surface for corrosion protection[J]. Applied Surface Science,2008,255(05):1672-1680.
    [136]王双红,刘常升,单凤君.铝及其合金无铬钝化的研究进展[J].电镀与涂饰,2007,26(7):48-51.
    [137] Falcone F. New Generations of Chrome-Free Aluminum Pretreatment before PowderCoating[A].4th World Congress Aluminum [C],Italy
    [138]邹洪庆.铸铝合金错系非铬化学成膜处理工艺应用[J].材料保护,2001,34(02):29-31.
    [139]朱祖芳.铝合金化学转化处理技术的进展及工业应用[J].材料保护,2003,36(03):1-3.
    [140]王双红,刘常升,单凤君.铝及其合金无铬钝化的研究进展[J].电镀与涂饰,2007,26(07):48-51.
    [141]周谟银.铝及铝合金涂装前预处理[Ⅱ]-无铬转化膜综合介绍[J].腐蚀与防护,1996,(05):236-239.
    [142]郭瑞光,杨杰,康娟.铝合金表面钛酸盐化学转化膜研究[J].电镀与涂饰,2006,25(1):16-18.
    [143] Deck P D, M Moon, Sujdak R J. Investigation of fluoacid based conversion coatingson aluminum[J]. Progress in Organic Coatings,1998,34(01-04):39-48.
    [144] Fedrizzi L, Deflorian F, Bonora P L. Corrosion behaviour of fluotitanate pretreatedand painted aluminium sheets[J]. Electrochimica Acta,1997,42(06):969-978.
    [145] Smit M A, Hunter J A, Sharman J D B, et al. Effects of thermal and mechanicaltreatments on a titanium-based conversion coating for aluminium alloys[J]. CorrosionScience,2004,46(07):1713-1727.
    [146] Lunder O, Simensen C, Yu Y, et al. Formation and characterisation of layers onAA6060aluminium[J]. Surface&Coatings Technology,2004,184(02-03):278-290.
    [147]王春霞,杨晓燕.铝合金表面锆盐转化膜的制备及其性能[J].材料保护,2010,43(02):36-37.
    [148] Chen X M, Li G Y, Lian J S, et al. An organic chromium-free conversion coating onAZ91D magnesium alloy[J]. Applied Surface Science,2008,255(05):2322-2328.
    [149] Chen X M, Li G Y, Lian J S, et al. Study of the formation and growth of tannic acidbased conversion coating on AZ91D magnesium alloy[J]. Surface&CoatingsTechnology,2009,204(05):736-747.
    [150]郭瑞光,王晓昌,耿志良,等.环境友好型铝合金表面转化膜的制备及其耐蚀性能[J].材料保护,2008,41(12):14-16.
    [151]王双红,刘常升,刘传海.氨基三甲叉膦酸对铝合金钛锆钝化膜性能的影响[J].东北大学学报(自然科学版),2009,30(04):575-576.
    [152]黄绍华,严慧如,孙健.食用单宁酸的制备研究[J].中国食品添加剂,2003,(04):45-47+63.
    [153] Morcillo M, Feliu S, Simancas J, et al. Corrosion of rusted steel in aqueous solutionsof tannic acid[J]. Corrosion,1992,48(12):1032-1039.
    [154] Ocampo L M, Margarit I C P, Mattos O R, et al. Performance of rust converter basedin phosphoric and tannic acids[J]. Corrosion Science,2004,46(06):1515-1525.
    [155] Singh D D N, Yadav S. Role of tannic acid based rust converter on formation ofpassive film on zinc rich coating exposed in simulated concrete pore solution[J].Surface&Coatings Technology,2008,202(08):1526-1542.
    [156]马志红,陆忠兵,石碧.单宁酸的化学性质及应用[J].天然产物研究与开发,2003,15(01):87-91.
    [157]张凯,李文芳,杜军.含HF2盐对铝合金稀土转化膜耐蚀性能及膜层结构研究[J].功能材料,2010,41(03):512-519.
    [158] Song W J, So S K, Wong K W, et al. Study of lithiumfluoride/tris(8-hydroxyquinolino)-aluminum interfacial chemistry using XPS andToF-SIMS[J]. Applied Surface Science,2004,228(01-04):373-377.
    [159] Chidambaram D, Clayton C R, Halada G P. The role of hexafluorozirconate in theformation of chromate conversion coatings on aluminum alloys[J]. ElectrochimicaActa,2006,51(14):2862-2871.
    [160] Sun D M, Sun Z Q, Li A X, et al. XPS analysis of the oxidation of Ag-MgF2cermetfilm[J]. Vacuum,1999,52(04):383-386.
    [161] B se O, Kemnitz E, Lippitz A, et al. XPS analysis of [beta]-AlF3phases with Alsuccessively substituted by Mg to be used for heterogeneously catalyzed Cl/Fexchange reactions[J]. Applied Surface Science,1997,120(030-4):181-190.
    [162] Reddy B M, Chowdhury B, Smirniotis P G. An XPS study of the dispersion of MoO3on TiO2-ZrO2, TiO2-SiO2, TiO2-Al2O3, SiO2-ZrO2, and SiO2-TiO2-ZrO2mixedoxides[J]. Applied Catalysis A: General,2001,211(01):19-30.
    [163] Georgiev G L, Sultana T, Baird R J, et al. XPS study of laser fabricatedtitanium/KaptonFN interfaces[J]. Applied Surface Science,2008,254(22):7173-7177.
    [164] Martin H J, Schulz K H, Bumgardner J D, et al. An XPS study on the attachment oftriethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan[J].Applied Surface Science,2008,254(15):4599-4605.
    [165] Larichev Y V, Netskina O V, Komova O V, et al. Comparative XPS study ofRh/Al2O3and Rh/TiO2as catalysts for NaBH4hydrolysis[J]. International Journal ofHydrogen Energy,2010,35(13):6501-6507.
    [166] Sultana T, Georgiev G L, Auner G, et al. XPS analysis of laser transmissionmicro-joint between poly (vinylidene fluoride) and titanium[J]. Applied SurfaceScience,2008,255(05):2569-2573.
    [167] Lewis W K, Rosenberger A T, Gord J R, et al. Multispectroscopic (FTIR, XPS, andTOFMS-TPD) Investigation of the Core-Shell Bonding in Sonochemically PreparedAluminum Nanoparticles Capped with Oleic Acid[J]. Journal of Physical Chemistry C,2010,114(14):6377-6380.
    [168] Zheng D S, Li H R, Wang Y Y, et al. Surface and interface analysis oftris-(8-hydroxyquinoline) aluminum and indium-tin-oxide using atomic forcemicroscopy (AFM) and X-ray photoelectron spectroscopy (XPS)[J]. Applied SurfaceScience,2001,183(03-04):165-172.
    [169]陈荣,孙波,张启运.冰晶石类氟化物的红外光谱分析[J].光谱学与光谱分析,1996,16(05):50-53.
    [170] Tixhon E, Robert E, Gilbert B. The molten MF-AlF3-MCl system (M=K, Na): Astudy by Raman spectroscopy[J]. Vibrational Spectroscopy,1996,13(01):91-98.
    [171] Ardizzone S, Bianchi C L, Tirelli D. Mn3O4and gamma-MnOOH powders,preparation, phase composition and XPS characterisation[J]. Colloids and Surfacesa-Physicochemical and Engineering Aspects,1998,134(03):305-312.
    [172] Ramstedt M, Shchukarev A V, Sjoberg S. Characterization of hydrous manganite(gamma-MnOOH) surfaces-an XPS study[J]. Surface and Interface Analysis,2002,34(01):632-636.
    [173] Choi H C, Jung Y M, Kim S B. Size effects in the Raman spectra of TiO2nanoparticles[J]. Vibrational Spectroscopy,2005,37(01):33-38.
    [174] Ajito K, Sukamto J P H, Nagahara L A, et al. Combined Raman andphotoelectrochemical imaging system. Application to TiO2films grown anodically onTi-Ag alloy[J]. Journal of Electroanalytical Chemistry,1995,386(01-02):229-233.
    [175] Lu B M, Jin X Y, Tang J, et al. DFT studies of Al-O Raman vibrational frequencies foraquated aluminium species[J]. Journal of Molecular Structure,2010,982(01-03):9-15.
    [176] Nomoto T, Onishi H. Fourth-order Raman spectroscopy of adsorbed organic specieson TiO2surface[J]. Chemical Physics Letters,2008,455(04-06):343-347.
    [177] Pei K, Y Ma, Zheng X, et al. The Franck-Condon region structure dynamics ofp-nitrobenzoic acid from resonance Raman spectroscopy[J]. Chemical Physics Letters,2008,457(04-06):323-328.
    [178] Shultz A N, Hetherington Iii W M, Baer D R, et al. Comparative SHG and XPSstudies of interactions between defects and N2O on rutile TiO2(110) surfaces[J].Surface Science,1997,392(01-03):1-7.
    [179]耿秋菊,冯立明,夏祥华.低温氯化物电镀铁溶液的稳定剂研究[J].电镀与涂饰,2007,26(08):14-16.
    [180] Kulinich S A, Akhtar A S, Wong P C, et al. Growth of permanganate conversioncoating on2024-Al alloy[J]. Thin Solid Films,2007,515(23):8386-8392.
    [181]邵敏华,黄付,胡林. A1合金表面Ce转化膜成膜机理研究[J].物理化学学报,2003,18(09):791-795.
    [182]牛丽媛.镁合金锌系复合磷化膜成膜机理、微观结构及性能的研究[D].吉林大学:吉林大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700