用户名: 密码: 验证码:
微/纳米金及复合银盐的制备与拉曼增强和催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料因其独特的表面效应、体积效应和量子尺寸效应,有着与块体材料截然不同的光、电、力、磁等性能,在能源、化工、生物、医学等领域有着广阔的应用前景。金和银是两种重要的币族金属,相对于其它贵金属更为廉价易得。金纳米粒子催化活性高、抗毒化效果好、化学性质稳定且生物兼容,在催化、生物传感等方面应用广泛,银的卤化物和掺杂其它元素的银的氧化物目前更被证实是稳定高效的可见光响应光催化材料。银和金也是目前使用最多且活性最高的两种表面增强拉曼散射(SERS)基底。本学位论文发展了几种制备金微/纳米材料的方法,制备了几种新的SERS基底并研究了其SERS活性,将所制备的纳米多孔金膜电极用于葡萄糖的无酶检测和铂修饰的枝晶金双金属催化材料用于甲酸的电催化氧化,制备了几种银盐复合材料并考察了它们对罗丹明B的可见光降解性能。主要内容如下:
     1.系统地综述了金属和半导体微/纳米材料的制备方法和它们在表面增强拉曼光谱、有机小分子电催化氧化和无酶葡萄糖传感器、光催化方面的应用的相关文献。
     2.用阳极阶跃电势法制备了三维纳米多孔金膜电极,详细研究了制备条件对金纳米粒子的微观形貌及SERS活性的影响。结果表明H+对两个纳米粒子之间的纳米间隙有着微妙的影响:在HCl电解液中原位产生的亚纳米尺度的粒子间隙可引起较强的局域电磁场增强;在KCl电解液中制备的金膜电极经酸浸泡处理后产生的纳米粒子间隙较大因而局域电磁场增强相对较弱,但大的表面积可吸附更多的探针分子从而弥补了电磁场增强的不足,故其SERS活性与HC1中制备的金膜电极相当。该方法简单、快捷,金膜电极表面的拉曼信号分布均—,拉曼增强因子可达8.7×105。
     3.利用方波脉冲技术在空白的硫酸底液中通过表面重构将光滑金电极表面转变成枝晶金。该方法方便、绿色,在整个过程中没有任何添加物和Au(Ⅲ)物种。通过扫描电子显微镜(SEM)考察了方波电势、频率和时间及硫酸浓度的改变对光滑金电极表面形貌的影响,提出枝晶的生长是在方波作用下,硫酸溶液中溶解的微量金物种和电极表面沉积的金原子在扩散传质控制下通过纳米粒子的聚集自组装的表面重构形成的。以罗丹明B为探针分子考察了枝晶金不同发育阶段的形貌对SERS活性的影响,发现表面有一定“粗糙”的枝晶状金的SERS活性要好于表面光滑的枝晶状金和球状纳米金颗粒。
     4.以气/液界面为不对称工具,以自组装的单层聚苯乙烯(PS)微球为模板,利用Sn(Ⅱ)还原的Au溶胶中过量的Sn(Ⅱ)的还原、保护和敏化三重功能,一步组装了不对称的PS/Au复合粒子有序阵列。氧气诱导产生的配体交换和Sn(Ⅱ)对PS球的敏化是制备PS/Au复合粒子的关键,通过控制温度和反应时间可改变组装的Au纳米粒子的粒径和覆盖度。通过改变前驱体溶液制备了不对称的PS/Pd和PS/AuPd有序阵列。以罗丹明B为探针分子考察了不对称PS/Au复合粒子阵列的SERS性能。PS球上紧密堆积的网状金纳米粒子的纳米级或亚纳米级的粒子间距和聚集的每个PS/Au复合粒子间的空隙可产生强的局域电磁场增强,此外,激光透过不对称PS/Au复合粒子的上部在与纳米金接触部位形成的纳米光束流也能产生高度局域化电磁场,这都导致PS/Au复合粒子阵列的强SERS活性。不对称PS/Au复合粒子阵列可发展成为一种新的有序SERS基底。与文献报道的方法相比,该法没有对粒子进行任何表面修饰,且制备简单,可在任一标准实验室实现。
     5.用一步阳极阶跃电势法在KCl溶液中制备了高比表面积的纳米多孔金膜电极。讨论了该电极在有Cl-和没有C1-存在的条件下对不同浓度的葡萄糖分子的电催化氧化行为,并用计时安培法在磷酸缓冲溶液(PBS, pH7.4)中模拟生理条件成功地实现了对葡萄糖的无酶检测。在没有C1-存在的条件下,该电极的灵敏度是232μA mM-1cm-2,检测范围是1-14mM,检测限是53.2μM;在有Cl-存在的条件下,该电极的灵敏度是66.0μmM-1cm-2,检测范围是10μM-11mM,检测限是8.7μM。与文献报道的基于金电极的无酶葡萄糖传感器相比,此法制备更简便(5分钟内即可完成制备),检测电势和检测限更低,有效地避免了常见的抗坏血酸和尿酸等的干扰。
     6.通过控制电沉积时间,在用上述方法制备的枝晶金电极(DG)、纳米多孔金膜电极(NG)及光滑多晶金电极(SG)上沉积了不同量的Pt团簇,用SEM和X射线能谱色散光谱仪(EDX)分析了上述电极形貌和组成,比较了不同Pt负载量的Pt-DG、Pt-NG、Pt-SG和枝晶AuPt合金电极对甲酸的电催化氧化行为,讨论了基底形貌对电催化活性的影响:痕量Pt修饰的DG电极表现出更好的电催化性能,集合效应和电子效应是促进直接氧化途径发生的原因;DG表面存在诸多如台阶和边缘等低配位原子的缺陷点,沉积在这些点上的Pt催化活性更高。
     7.以AgNO3和8O2为主要原料,通过清洁的气液两相反应制备了Ag2SO3微粒,在此基础上经过离子交换反应制备了基于Ag2SO3的可见光活性的银盐复合材料ASO/Ag2S(ASO=Ag2SO3/Ag2SO4)和ASO/AgX(X=Cl, Br)。通过X射线衍射仪(XRD)、SEM、EDX和固体紫外-可见漫反射吸收光谱对这几种材料进行了结构、形貌、成分和光学性质的表征;通过对罗丹明B的可见光降解评价了这几种银盐复合材料的性能;重点探讨了这几种材料在水中经可见光光照前后的组成和光学性质的变化。实验结果表明,光照过程中生成了Ag纳米粒子从而构成了基于Ag的表面等离子体光催化剂,有效地抑制了光生电子-空穴的复合,提高了对罗丹明B的光降解活性。
     8.用计算化学软件Gaussian03,结合密度泛函理论(DFT)和概念密度泛函理论(概念DFT),研究了以异戊二烯和丙烯醛为代表的路易斯酸(LA)催化的不对称Diels-Alder(DA)反应。通过计算全局活性指标以及局域活性指标预测了LA的催化活性和DA反应主要区域选择性产物;通过分析丙烯醛-LA的稳定结构参数和二级微扰稳定化能E(2)深入理解LA的催化作用;评价了最大硬度原理、最小极化率原理和最小亲电原理在预测这类反应发生的方向和主要的区域选择性产物时有效性和适用性。
Due to the unique surface-dependent particle properties, size-dependent particle properties and size-dependent quantum effects of nanoparticles, the optical, electronic/electrical, magnetic, and catalytic properties of nanomaterials are different from those of the corresponding bulk materials, making nanomaterials very attractive in diverse fields including energy, electronic, medicine, chemical engineering and biological engineering. Au and Ag are two important noble metals. Au is the most stable metal and Au nanoparticles (NPs) are catalytically active, nontoxic and biological compatible, which have been widely applied in biosensing and catalysis. Silver halides and doped silver oxides were proven to be photocatalytic activity. Moreover, Ag and Au nanomaterials are the most used and effective surface enhanced Raman scattering (SERS) substrates. In this thesis, several novel and convenient approaches have been developed to fabricate gold or silver salts based functional micro/nanomaterials. We systemically investigated the SERS performance on several SERS-active Au substrates, the electrocatalytic oxidation of HCOOH on AuPt bimetallic electrocatalysts, the enzyme-free detection of glucose on nanoporous Au film and the photocatalytic activities of several Ag2SO3based composite particles. The main points of this thesis are summarized as follows:
     1. Literature about the preparation and application of micro-nanostructured materials, SERS effect, nonenzymatic glucose sensors, the electrocatalytic oxidation of HCOOH and semiconductor photocatalysis have been systematically reviewed.
     2. A unique one-step anodic potential step strategy has been developed to fabricate a three-dimensional (3D) nanoporous gold film (NPGF) within one minute as an efficient SERS active substrate. The SERS performances of the NPGFs fabricated in electrolytes of KCl and HCl were compared for the first time, using pyridine as a test molecule. Equivalent SERS intensities can be obtained on the3D NPGFs prepared in these two electrolytes under respectively optimum conditions. The results indicated that H+had subtle influences on the size of nanogaps between Au NPs. Subnanometer gaps between two NPs and crevices within fused NPs were produced in situ in HCl electrolyte due to the dissolution of protective gold oxide coatings, which significantly promoted the electromagnetic filed enhancement. For NPGF prepared in KCl electrolyte, wider nanogaps were presumably created in the follow-up acidic treatment. Accordingly, the electromagnetic filed enhancement effect was somewhat weaker than the former. However, NPGF prepared in1M KCl had larger surface area to adsorb more analyte molecules, which compensated the smaller electromagnetic filed enhancement in some extent, showing comparable SERS intensity as that of NPGF prepared in2M HCl.
     3. Clean dendritic gold (DG) was directly fabricated on a smooth gold electrode via square wave potential pulses (SWPPs) in a blank H2SO4solution containing no Au(III) species and additives. The effects of potential range, frequency and duration time of SWPPs and H2SO4concentration on the construction of DG were systematically investigated. The formation and evolution of DG were characterized by scanning electron microscopy (SEM). The growth of DG was believed to be nanoparticle-aggregated self-organization involving diffusion transport process of soluble Au species in H2SO4solution and deposited Au atoms at surface. The whole process was templateless and surfactantless, and therefore effectively avoided possible contaminations that occurred in other synthetic routes. Further, the morphological effect of DG under different development stage on SERS performance was investigated and discussed using rhodamine B as probe molecule.
     4. Ordered arrays of polystyrene (PS) spheres dissymmetrically decorated with gold nanoparticles (NPs) were facilely assembled at air/liquid interface by the combination of colloidal crystal templating method and modified conventional electroless plating technique. Sn2+ions served as the reductant, stabilizer and sensitizer. Colloidal Au NPs spontaneously aggregated onto the sensitized portion of PS spheres due to oxygen-induced ligand replacement of SnCl3-with Cl-, forming asymmetric PS/Au composite particle arrays. Moderate heating accelerated the assembly process. The method presented here is convenient, cost-effective and can be extended to prepare asymmetric composite particle arrays of PS/Pd and PS/AuPd. Furthermore, the SERS performance of the ordered arrays of asymmetric PS/Au composite particle array was examined. It was found that the SERS performances of PS/Au composite particles were dependent on the aggregation state of Au NPs on PS spheres, where effective nanometer and sub-nanometer gap between two close Au NPs formed. Local electromagnetic field enhancement from the closely packed Au NPs assembled on the PS spheres and from the aggregation of PS/Au particles was believed to be responsible for the strong SERS signals. Besides, nanojets would be formed when a laser passed through the bare top of asymmetric PS/Au structures, which led to the highly localized electromagnetic field. The method described in this work provided a new and much simple route to prepare ordered SERS-active substrates.
     5. A nonenzymatic amperometric method was established for glucose detection using a nanoporous gold film (NPGF) electrode by a rapid one-step anodic potential step method within5min in1M KCl. The prepared NPGF was characterized by SEM and cyclic voltammetry. The NPGF has a large roughness over200and thus possesses high electrocatalytic activity toward the direct oxidation of glucose with good stability. Electrochemical responses of the as-prepared NPGF to glucose in0.1M PBS (pH7.4) with or without Cl-were discussed. In amperometric studies carried out at-0.15V in the absence of Cl-, the NPGF electrode exhibited a high sensitivity of232μA mM-1cm-2and gave a linear range from1mM up to14mM with a detection limit of53.2μM (with a signal-to-noise ratio of3). The interferences from ascorbic acid (AA) and uric acid (UA) at physiological levels can be completely eliminated at such a low applied potential. On the other hand, the quantification of glucose in0.1M PBS (pH7.4) containing0.1M NaCl offered an extended linear range from10μM to11mM with a sensitivity of66.0μA mM-1cm-2and a low detection limit of8.7μM (signal-to-noise ratio of3) at a detection potential of0.2V.
     6. By controlling the electrodeposition time, we successfully fabricated Pt-decorated dendritic Au electrode (Pt-DG), Pt-decorated nanoporous Au electrode (Pt-NG) and Pt-decorated smooth Au electrode (Pt-SG). The morphologies and composition of the three Pt-decorated Au electrodes and dendritic AuPt alloy for HCOOH oxidation were systematically investigated and compared. The low Pt loading Pt-DG demonstrated different electrochemical behavior from that on Pt-NG, Pt-SG and on Pt-decorated Au NPs because of more defect sites like steps and edges on the DG surface. The defect sites with low coordinated atoms on DG for depositing Pt clusters were supposed to contribute to the enhanced electrocatalytic activity for the oxidation of HCOOH. Ensemble effect, as well as electronic effect, account for the improved electrocatalytic activity of low Pt loading Pt-DG.
     7. Ag2SO3based composites, ASO/Ag2S (ASO=Ag2SO3/Ag2SO4) and ASO/AgX (X=Cl, Br), were prepared by a simple and mild gas-liquid reaction and ion-exchange method. SEM, energy-dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD) and UV-vis diffuse reflectance absorption spectra were performed to characterize the as-synthesized materials. The photocatalytic performances of Ag2SO3, ASO, ASO/Ag2S and ASO/AgX (X=Cl, Br) were evaluated by the photodegradation of Rhodamine B (RhB) under simulated visible light. The formation of photo-reduced Ag nanoparticles (NPs) during visible light illumination resulted in plasmon-induced photodegradation of RhB.
     8. Density functional theory (DFT) and conceptual/chemical DFT study were carried out in this work for the normal electron demand Diels-Alder reaction between isoprene and acrolein to compare chemical reactivity and regioselectivity of the reactants in the absence and presence of Lewis acid (LA) catalysts. Catalytic activities of different LAs have been estimated via frontier molecular orbitals and found to be consistent with experiments. Linear relationships have been discovered among the bond order, bond length, catalytic activation, and chemical reactivity for the systems concerned. The validity and applicability of maximum hardness principle (MHP), minimum polarizability principle (MPP), and minimum electrophilicity principle (MEP) were examined for the systems and discussed in the prediction of the major regioselective isomer and the preferred reaction pathway for the reactions in the present study.
引文
[1]张立德.纳米材料[M].北京:化学工业出版社,2000:39-50.
    [2]曹茂盛,关长斌,徐甲强.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社,2001:6-14.
    [3]Saha, K., Agasti, S.S., Kim, C. et al. Gold nanoparticles in chemical and biological sensing[J]. Chem. Rev.,2012,112:2739-2779.
    [4]Shi, Z., Zhang, C., Tang, C., et al. Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant[J]. Chem. Soc. Rev.,2012,41:3381-3430.
    [5]Murray, R.W. Nanoelectrochemistry:metal nanoparticles, nanoelectrodes, and nanopores[J]. Chem. Rev.,2008,108:2688-2720.
    [6]Welch, C.M.& R.G. Compton. The use of nanoparticles in electroanalysis:a review[J]. Anal. Bioanal. Chem.,2006,384:601-619.
    [7]Arvia, A.J., Salvarezza. R.C., Triaca, W.E. Noble metal surfaces and electrocatalysis. Review and perspectives[J]. J. New. Mat. Electrochem. Systems,2004,7:133-143.
    [8]Watanabe, K., Menzel, D., Nilius, N., et al. Photochemistry on metal nanoparticles[J]. Chem. Rev.,2006,106:4301-4320.
    [9]Edwards, P.R., Sleith, D., Wark, A.W., et al. Mapping localized surface plasmons within silver nanocubes using cathodoluminescence hyperspectral imaging[J]. J. Phys. Chem. C,2011. 115:14031-14035.
    [10]Xiao, L., Wei. L., He, Y., et al. Single molecule biosensing using color coded plasmon resonant metal nanoparticles[J]. Anal. Chem.,2010,82:6308-6314.
    [11]Arvizo, R.R., Bhattacharyya, S., Kudgus, R.A., et al. Intrinsic therapeutic applications of noble metal nanoparticles:past, present and future[J]. Chem. Soc. Rev.,2012,41:2943-2970.
    [12]Christopher, P., Ingram, D.B., Linic, S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures:photochemistry mediated by Ag surface plasmons[J]. J. Phys. Chem. C,2010,114:9173-9177.
    [13]Abalde-Cela, S., Aldeanueva-Potel, P., Mateo-Mateo, C., et al. Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles[J]. J. R. Soc. Interface,2010,7: S435-S450.
    [14]Hossain, M.K., Kitahama, Y., Huang, G.G., et al. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates Aand methods[J]. Anal. Bioanal. Chem.,2009,394:1747-1760.
    [15]Hoffmann, M.R., Martin, S.T., Choi, W., et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.,1995,95:69-96.
    [16]Serpone, N.& A.V. Emeline. Semiconductor photocatalysis-past, present, and future outlook[J]. J. Phys. Chem. Lett.,2012.3:673-677.
    [17]Wilcoxon, J.P.& B.L. Abrams. Nanosized photocatalysts in environmental remediation[J]. Nanotechnology,2010,51-124.
    [18]Fleischmann. M., Hendra, P.J., McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem. Phys. Lett.,1974.26:163-166.
    [19]Jeanmaire, D.L.& R.P.V. Duyne. Surface Raman spectroelectrochemistry Part I: Heterocyclic aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. J. Electroanal. Chem.,1977,84:1-20.
    [20]Albrecht, M.G.& J.A. Creighton. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. J. Am. Chem. Soc.,1977.99:5215-5217.
    [21]McQuillan, A.J. The discovery of surface-enhanced Raman scattering[R]. Notes Rec. R. Soc. 2009,63:105-109.
    [22]Gersten, J.& A. Nitzan. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces[J]. J. Chem. Phys.,1980,73:3023-3037.
    [23]Tong, L.M., Zhu, T.. Liu, Z.F. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering:from self-assembled arrays to individual gold nanoparticles[J]. Chem. Soc. Rev.,2011,40:1296-1304.
    [24]Fromm, D.P., Sundaramurthy, A., Kinkhabwala, A., et al. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas[J]. J. Chem. Phys.,2006,124:061101.
    [25]Persson. B.N.J., Zhao. K., Zhang, Z. Chemical contribution to surface-enhanced Raman scattering[J]. Phys. Rev. Lett.,2006,96:207401.
    [26]Philpott, M.R. Effect of surface plasmons on transitions in molecules[J]. J. Chem. Phys., 1975,62:1812-1817.
    [27]Quinten, M. Local field close to the surface of nanoparticles and aggregates of nanoparticles[J].Appl. Phys. B,2001,73:245-255.
    [28]Jin, R.C. Nanoparticle clusters light up in SERS[J]. Angew. Chem. Int. Ed.,2010,49: 2826-2829.
    [29]Liz-Marzan, L.M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles[J]. Langmuir,2006,22:32-41.
    [30]Noguez, C. Surface plasmons on metal nanoparticles:the influence of shape and physical environment[J].J.Phys. Chem. C,2007,111:3806-3819.
    [31]Morton, S.M.& L. Jensen. Understanding the molecule-surface chemical coupling in SERS[J]. J. Am. Chem. Soc.,2009,131:4090-4098.
    [32]Otto, A. The 'chemical'(electronic) contribution to surface-enhanced Raman scattering[J]. J. Raman Spectrosc.,2005,36:497-509.
    [33]李刚Raman光谱的增强理论与应用技术研究[D].武汉:华中师范大学物理科学与技术学院,2007:3-7.
    [34]Tian, Z.Q.& B. Ren. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy[J]. Annu. Rev. Phys. Chem.,2004,55:197-229.
    [35]Tian, Z.Q., Gao, J.S., Li, X.Q., et al. Can surface Raman spectroscopy be a general technique for surface science and electrochemistry[J]? J. Raman Spectrosc.,1998,29:703-711.
    [36]Tian, Z.Q.. Ren. B., Wu, D.Y. Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures[J]. J. Phys. Chem. B,2002,106: 9463-9483.
    [37]Tian, Z. Q., Ren, B., Mao, B.W. Extending surface Raman spectroscopy to transition metal surfaces for practical applications.Ⅰ. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces[J]. J. Phys. Chem. B,1997,101: 1338-1346.
    [38]Ren, B., Xu, X., Li, X.Q., et al. Extending surface Raman spectroscopic studies to transition metals for practical applications Ⅱ. Hydrogen adsorption at platinum electrodes[J]. Surf. Sci.,1999. 427-428:157-161.
    [39]Huang, Q.J., Li, X.Q., Yao, J.L., et al. Extending surface Raman spectroscopic studies to transition metals for practical applications Ⅲ. Effects of surface roughening procedure on surface-enhanced Raman spectroscopy from nickel and platinum electrodes[J]. Surf. Sci.,1999, 427-428:162-166.
    [40]Gao, P., Gosztola. D., Leung, L.W.H., et al. Surface-enhanced Raman scattering at gold electrodes:dependence on electrochemical pretreatment conditions and comparisons with silver[J]. J. Electroanal. chem.,1987,233:211-222.
    [41]Zou, S., Williams, C.T., Chen, E.K.Y., et al. Probing molecular vibrations at catalytically significant interfaces:a new ubiquity of surface-enhanced Raman scattering[J]. J. Am. Chem. Soc., 1998,120:3811-3812.
    [42]Deng, Y.P., Huang, W., Chen, X., et al. Facile fabrication of nanoporous gold film electrodes[J]. Electrochem. Commun.,2008,10:810-813.
    [43]Gloria, D., Gooding, J.J., Moran, G., et al. Electrochemically fabricated three dimensional nano-porous gold films optimised for surface enhanced Raman scattering[J]. J. Electroanal. Chem.,2011,656:114-119.
    [44]Xia, Y., Xu, Y.Z., Zheng, J.E. et al. Effects of electrolytes on the fabrication of three-dimensional nanoporous gold films by a rapid anodic potential step method for SERS[J]. J. Raman Spectrosc.,2012, DOI:10.1002/jrs.3105.
    [45]Aroca, R.F., Alvarez-Puebla, R.A., Pieczonka, N., et al. Surface-enhanced Raman scattering on colloidal nanostructures[J]. Adv. Colloid Interface Sci.,2005,116:45-61.
    [46]Kneipp, K., Wang, Y., Kneipp, H., et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Phys. Rev. Lett.,1997,78:1667-1670.
    [47]Nie, S.& S.R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science,1997,275:1102-1106.
    [48]Creighton, J.A., Blatchford. C.G.. Albrecht, M.G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength[J]. J. Chem. Soc. Faraday Trans.,1979,Ⅱ75:790-798.
    [49]Kneipp, K., Kneipp. H., Itzkan, I., et al. Ultrasensitive Chemical Analysis by Raman Spectroscopy[J]. Chem. Rev.,1999,99:2957-2976.
    [50]Schwartzberg, A.M., Grant, CD., Wolcott, A., et al. Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate [J]. J. Phys. Chem. B,2004,108: 19191-19197.
    [51]Qian, L.H., Yan, X.Q., Fujita, T., et al. Surface enhanced Raman scattering of nanoporous gold:Smaller pore sizes stronger enhancements[J]. Appl. Phys. Lett.,2007,90:153120.
    [52]Bell, S.E.J.& M.R. McCourt. SERS enhancement by aggregated Au colloids:effect of particle size[J]. Phys. Chem. Chem. Phys.,2009,11:7455-7462.
    [53]Giersig, M.& P. Mulvaney. Preparation of ordered colloid monolayers by electrophoretic deposition[J]. Langmuir,1993,9:3408-3413.
    [54]Ni, F.& T.M. Cotton. Chemical procedure for preparing surface-enhanced Raman scattering active silver films[J]. Anal. Chem.,1986,58:3159-3163.
    [55]Schlegel, V.L.& T.M. Cotton. Silver-island films as substrates for enhanced Raman scattering:effect of deposition rate on intensity [J]. Anal. Chem.,1991,63:241-247.
    [56]Xue, G.& J. Dong. Stable silver substrate prepared by the nitric acid etching method for a surface-enhanced Raman scattering study[J].Anal. Chem.,1991,63:2393-2397.
    [57]Tian, Z.Q., Ren, B., Li, J.F., et al. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy[J]. Chem. Commun.,2007,3514-3534.
    [58]Mrozek, M.F., Xie, Y., Weaver, M.J. Surface-enhanced Raman scattering on uniform platinum-group overlayers:preparation by redox replacement of underppotential-deposited metals on gold[J]. Anal. Chem.,2001,73:5953-5960.
    [59]Zou, S., Weaver, M.J., Li, X.Q., et al. New strategies for surface-enhanced Raman scattering at transition-metal interfaces:thickness-dependent characteristics of electrodeposited Pt-group films on gold and carbon[J]. J. Phys. Chem. B,1999,103:4218-4222.
    [60]李剑锋,方萍萍,盛建军等.一种新型的通用的SERS基底-核壳结构纳米子[C].北京:第十四届全国光散射学术会议,2007:5.
    [61]Li, J.F., Huang, Y.F., Ding, Y., et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature,2010,464:392-395.
    [62]鲍芳.过渡金属核壳纳米粒子的制备及其表面增强拉曼光谱研究[D].苏州大学,2009.
    [63]Hu, J., Zhang, Y., Li, J., et al. Synthesis of Au@Pd core-shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy [J]. Chem. Phys. Lett.,2005, 408:354-359.
    [64]崔颜,顾仁敖.Ag核Au壳金属复合纳米粒子的制备及表面增强拉曼光谱研究[J].高等学校化学学报,2005,26:2090-2092.
    [65]Green. M.& F.M. Liu. SERS substrates fabricated by island lithography:the silver/pyridine system[J].J. Phys. Chem. B,2003,107:13015-13021.
    [66]Lee, W., Lee, S.Y., Briber, R.M., et al. Self-assembled SERS substrates with tunable surface plasmon resonances[J].Adv. Funct. Mater.,2011,21:3424-3429.
    [67]Tao, A., Kim, F.. Hess, C, et al. Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy[J]. Nano Lett.,2003,3:1229-1233.
    [68]Tessier, P.M., Velev, O.D., Kalambur, A.T., et al. Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy[J]. J. Am. Chem. Soc,2000,122:9554-9555.
    [69]Heller, A.& B. Feldman. Electrochemical glucose sensors and their applications in diabetes management[J]. Chem. Rev.2008,108:2482-2505.
    [70]Kimmel, D.W., LeBlanc, G., Meschievitz, M.E., et al. Electrochemical Sensors and Biosensors[J].Anal. Chem.,2010,84:685-707.
    [71]Steiner, M.S., Duerkop, A., Wolfbeis, O.S. Optical methods for sensing glucose[J]. Chem. Soc. Rev.,2011,40:4805-4839.
    [72]Vangala, K., Yanney, M., Hsiao, C.T., et al. Sensitive carbohydrate detection using surface enhanced Raman tagging[J]. Anal. Chem.,2010.82:10164-10171.
    [73]Dinish, U.S., Yaw, F.C., Agarwal, A., et al. Development of highly reproducible nanogap SERS substrates:comparative performance analysis and its application for glucose sensing[J]. Biosens. Bioelectron.,2011,26:1987-1992.
    [74]Park, S., Boo, H., Chung, T.D. Electrochemical non-enzymatic glucose sensors[J]. Anal. Chim. Acta,2006,556:46-57.
    [75]庄贞静,肖丹,李毅.无酶葡萄糖电化学传感器的研究进展[J].化学研究与应用,2009,21:1486-1493.
    [76]Jena, B.K.& C.R. Raj. Enzyme-Free Amperometric Sensing of Glucose by Using Gold Nanoparticles[J]. Chem. Eur. J.,2006,12:2702-2708.
    [77]Song, Y.Y., Zhang, D., Gao, W., et al. Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template[J]. Chem. Eur. J.,2005,11: 2177-2182.
    [78]Yuan, J., Wang, K., Xia, X. Highly ordered platinum-nanotubule arrays for amperometric glucose sensing[J]. Adv. Funct. Mater,2005,15:803-809.
    [79]Meng, L., Jin, J., Yang, G.X., et al. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures[J]. Anal. Chem.,2009,81: 7271-7280.
    [80]Li, L.H., Zhang, W.D., Ye, J.S. Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection[J]. Electroanalysis,2008,20:2212-2216.
    [81]Su, C., Zhang, C., Lu, G., et al. Nonenzymatic electrochemical glucose sensor based on Pt nanoparticles/mesoporous carbon matrix[J]. Electroanalysis,2010,22:1901-1905.
    [82]Lu. L.M., Zhang, L., Qu. F.L., et al. A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose:enhancing sensitivity through a nanowire array strategy[J]. Biosens. Bioelectron.,2009,25:218-223.
    [83]Reitz, E., Jia, W.Z., Gentile, M., et al. CuO nanospheres based nonenzymatic glucose sensor[J]. Electroanalysis,2008,20:2482-2486.
    [84]Choudhry, N.A., Kampouris, D.K., Kadara, R.O., et al. Next generation screen printed electrochemical platforms:Non-enzymatic Asensing of carbohydrates using copper(II) oxide screen printed electrodes[J].Anal. Methods,2009,1:183-187.
    [85]Vassilyev, Y.B., Khazova. O.A., Nikolaeva, N.N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts Part Ⅱ. Effect of the nature of the electrode and the electrooxidation mechanism[J]. J. Electroanal. chem.,1985,196:127-144.
    [86]Adzic, R.R., Hsiao, M.W., Yeager, E.B. Electrochemical oxidation of glucose on single crystal gold surfaces[J]. J. Electroanal. Chem.,1989,260:475-485.
    [87]Hsiao, M.W., Adzic, R.R., Yeager, E.B. Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer[J]. J. Electrochem. Soc.,1996,143: 759-767.
    [88]Pasta, M., Mantia, F.L., Cui, Y. Mechanism of glucose electrochemical oxidation on gold surface[J]. Electrochim. Acta,2010,55:5561-5568.
    [89]Wang, J.F., Gong, J.X., Xiong, Y.S., et al. Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation[J]. Chem. Commun.,2011,47: 6894-6896.
    [90]Cherevko. S.& C.H. Chung. Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection[J]. Sens. Actuators, B,2009,142:216-223.
    [91]Shin, C., Shin, W., Hong, H.G. Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor[J]. Electrochim. Acta,2007,53:720-728.
    [92]Zhou, Y.G., Yang, S., Qian, Q.Y., et al. Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose[J]. Electrochem. Commun.,2009,11:216-219.
    [93]Li, Y., Song, Y.Y., Yang, C., et al. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose[J]. Electrochem. Commun.,2007,9: 981-988.
    [94]Seo, B.& J. Kim. Electrooxidation of glucose at nanoporous gold surfaces:structure dependent electrocatalysis and its application to amperometric detection[J]. Electroanalysis,2010, 22:939-945.
    [95]Cho, S.& C. Kang. Nonenzymatic glucose detection with good selectivity against ascorbic acid on a highly porous gold electrode subjected to amalgamation treatment[J]. Electroanalysis, 2007,19:2315-2320.
    [96]Xia, Y., Huang, W., Zheng, J.F., et al. Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method[J]. Biosens. Bioelectron.,2011.26:3555-3561.
    [97]Wooten, M., Shim, J.H., Gorski, W. Amperometric determination of glucose at conventional vs. nanostructured gold electrodes in neutral solutions[J]. Electroanalysis,2010,22:1275-1277.
    [98]Xie, F.Y., Huang, Z., Chen. C., et al. Preparation of Au-film electrodes in glucose-containing Au-electroplating aqueous bath for high-performance nonenzymatic glucose sensor and glucose/O2 fuel cell[J]. Electrochem. Commun.,2012,18:108-111.
    [99]Qiu, H.J., Xue, L.Y., Ji, G.L., et al. Enzyme-modified nanoporous gold-based electrochemical biosensors[J]. Biosens. Bioelectron.,2009,24; 3014-3018.
    [100]Hu, K.C., Lan, D.X., Li. X.M., et al. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes[J]. Anal. Chem., 2008,80:9124-9130.
    [101]Liu, Z.N., Du, J.G., Qiu, C.C., et al. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold[J]. Electrochem. Commun.,2009,11:1365-1368.
    [102]Wittstock, A., Biener, J., Baumer, M. Nanoporous gold:a new material for catalytic and sensor applications[J]. Phys. Chem. Chem. Phys.,2010,12:12919-12930.
    [103]Bae, J.H., Han, J.H., Chung, T.D. Electrochemistry at nanoporous interfaces:new opportunity for electrocatalysis[J]. Phys. Chem. Chem. Phys.,2012,14:448-463.
    [104]Sing, K.S.W., Everett. D.H., Haul, R.A.W.. et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure & Appl Chem.,1985,57:603-619.
    [105]Wang, H.J., Zou, C.W., Yang, B., et al. Electrodeposition of tubular-rod structure gold nanowires using nanoporous anodic alumina oxide as template[J]. Electrochem. Commun.,2009, 11:2019-2022.
    [106]Lu, L.& A. Eychmuller. Ordered macroporous bimetallic nanostructures:design, characterization, and applications[J]. Acc. Chem. Res.,2008,41:244-253.
    [107]Stein, A., Li, F., Denny, N.R. Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles[J]. Chem. Mater.,2008,20:649-666.
    [108]Attard, G.S., Bartlett, P.N., Coleman, N.R.B., et al. Mesoporous platinum films from lyotropic liquid crystalline phases[J]. Science,1997,278:838-840.
    [109]Meldrum, F.C.& R. Seshadri. Porous gold structures through templating by echinoidskeletal plates[J]. Chem. Commun.,2000,29-30.
    [110]Liu, J., Cao, L., Huang, W., et al. Preparation of AuPt alloy foam films and their superior electrocatalytic activity for the oxidation of formic acid[J]. ACS Appl. Mater. Interfaces,2011,3: 3552-3558.
    [111]孙雅峰.氢气泡模板法电沉积制备多孔金属薄膜[D].金华:浙江师范大学物理化学研究所,2006.
    [112]Plowman, B.J., O'Mullane, A.P., Selvakannan, P., et al. Honeycomb nanogold networks with highly active sites[J]. Chem. Commun.,2010.46:9182-9184.
    [113]Huang, W., Wang, M., Zheng, J., et al. Facile fabrication of multifunctional three-dimensional hierarchical porous gold films via surface rebuilding[J].J. Phys. Chem. C,2009, 113:1800-1805.
    [114]Li, Y., Jia, W.Z., Song, Y.Y., et al. Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template[J]. Chem. Mater.,2008,19:5758-5764.
    [115]Erlebacher, J., Aziz, M.J., Karma, A., et al. Evolution of nanoporosity in dealloying[J]. Nature,2001,410:450-453.
    [116]Ding, Y.& J. Erlebacher. Nanoporous metals with controlled multimodal pore size distribution[J]. J. Am. Chem. Soc.,2003,125:7772-7773.
    [117]王玲娟Au-Ni合金的去合金化研究[D].大连:大连交通大学,2007.
    [118]Pugh, D.V., Dursun, A., Corcoran, S.G. Electrochemical and morphological characterization of Pt-Cu dealloying[J].J.Electrochem. Soc.,2005,152:B455-B459.
    [119]Cherevko, S., Kulyk, N., Chung, C.H. Pulse-reverse electrodeposition for mesoporous metal films:combination of hydrogen evolution assisted deposition and electrochemical dealloying[J]. Nanoscale,2012,4:568-575.
    [120]Nishio, K.& H. Masuda. Anodization of gold in oxalate solution to form a nanoporous black film[J]. Angew. Chem. Int. Ed.,2011,50:1603-1607.
    [121]Lu, Y., Wang, Q., Sun, J., et al. Selective dissolution of the silver component in colloidal Au and Ag multilayers:a facile way to prepare nanoporous gold film materials[J]. Langmuir,2005, 27:5179-5184.
    [122]刘培生,黄林国.多孔金属材料制备方法[J].功能材料,2002,33:4-11.
    [123]Rice, C., Ha, S., Masel, R.I., et al. Direct formic acid fuel cells[J]. J. Power Sources, 2002,111:83-89.
    [124]Uhm, S., Lee, H. J., Lee, J. Understanding underlying processes in formic acid fuel cells[J]. Phys. Chem. Chem. Phys.,2009,11:9326-9336.
    [125]Yu, X.& P.G. Pickup. Recent advances in direct formic acid fuel cells (DFAFC)[J]. J. Power Sources,2008,182:124-132.
    [126]Capon, A.& R. Parsons. The oxidation of fromic acid at noble metal electrodes Ⅰ. Review of previous work[J]. J. Electroanal. Chem.,1973,44:1-7.
    [127]Capon, A.& R. Parsons. The oxidation of formic acid at noble metal electrodes Part III. Intermediates and mechanism on platinum electrodes[J]. J. Electroanal. Chem.,1973.45: 205-231.
    [128]Cuesta, A., Cabello, G., Gutierrez, C.,et al. Adsorbed formate:the key intermediate in the oxidation of formic acid on platinum electrodes[J]. Phys. Chem. Chem. Phys.,2011,13: 20091-20095.
    [129]田娜.高指数晶面结构PU、Pd纳米催化剂的电化学制备与性能[D].厦门:厦门大学,2007.
    [130]Park, S., Xie. Y., Weaver, M.J. Electrocatalytic pathways on carbon-supported platinum nanoparticles:comparison of particle-size-dependent rates of methanol. formic acid, and formaldehyde electrooxidation[J]. Langmuir,2002,18:5792-5798.
    [131]Neurock, M., Janik, M., Wieckowski, A. A first priciples comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt[J]. Faraday Discuss.,2009,140:363-378.
    [132]Chumillas, S., Buso-Rogero, C., Solla-Gullon, J., et al. Size and diffusion effects on the oxidation of formic acid and ethanol on platinum nanoparticles[J]. Electrochem. Commun.,2011, 13:1194-1197.
    [133]Xu, J.B., Zhao, T.S., Liang, Z.X., et al. Facile preparation of AuPt alloy nanoparticles from organometallic complex precursor[J]. Chem. Mater.,2008,20:1688-1690.
    [134]Xu, C.X., Wang, R.Y., Chen, M.W., et al. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties[J]. Phys. Chem. Chem. Phys.,2010,12: 239-246.
    [135]Zhang, Z.H., Wang, Y., Wang, X.G. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid[J]. Nanoscale,2011,3:1663-1674.
    [136]Uhm, S., Jeon, H., Lee, J. Electrocatalytic oxidation of HCOOH on an electrodeposited AuPt electrode:its possible application in fuel cells[J]. J. Electrochem. Sci. Tech.,2010,1:10-18.
    [137]Kim, S., Jung, C., Kim, J., et al. Modification of Au nanoparticles dispersed on carbon support using spontaneous deposition of Pt toward formic acid oxidation[J]. Langmuir,2010,26: 4497-4505.
    [138]Kristian, N., Yu, Y., Gunawan, P., et al. Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation[J]. Electrochim. Acta, 2009,54:4916-4924.
    [139]Wang, S.Y., Kristian, N., Jiang, S.P., et al. Controlled deposition of Pt on Au nanorods and their catalytic activtiy towards formic acid oxidation. Electrochem. Commun.,2008,10: 961-964.
    [140]Gu, X.H., Cong, X., Ding, Y. Platinum-decorated Au porous nanotubes as highly efficient catalysts for formic acid electro-oxidation[J]. ChemPhysChem,2010,11:841-846.
    [141]Yin, M., Huang, Y.J., Liang, L., et al. Improved direct electrooxidation of formic acid by increasing Au fraction on the surface of PtAu alloy catalyst with heat treatment[J]. Electrochim. Acta,2011,58:6-11.
    [142]葛性波.纳米多孔金属薄膜的制备与电催化性能[D].济南:山东大学,2011.
    [143]徐彩霞.纳米多孔金属材料的设计、制备与催化性能研究[D].济南:山东大学,2009.
    [144]Zhang, J.T., Ma, H.Y., Zhang, D.J., et al. Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold[J]. Phys. Chem. Chem. Phys.,2008, 10:3250-3255.
    [145]Ge, X., Yan, X., Wang, R., et al. Tailoring the structure and property of Pt-decorated nanoporous gold by thermal annealing[J]. J. Phys. Chem. C,2009,113:7379-7384.
    [146]Wang, R., Wang, C., Cai, W.B., et al. Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures[J]. Adv. Mater.,2010,22: 1845-1848.
    [147]Bi, X.X., Wang, R.Y., Ding, Y. Boosting the performance of Pt electro-catalysts toward formic acid electro-oxidation by depositing sub-monolayer Au clusters[J]. Electrochim. Acta,2011, 56:10039-10043.
    [148]邹志刚,赵进才,付贤智等.光催化材料在太阳能转换与环境净化方面的研究现状和发展趋势[J].功能材料信息高层论坛,2005,2:15-20.
    [149]张天永,朱丹丹,付强等.纳米光催化氧化降解染料污染物的进展[J].染料与染色,2004,41:238-239.
    [150]邹志刚.光催化材料与太阳能转换和环境净化[J].功能材料信息高层论坛,2008,5:17-19.
    [151]Tong, H., Ouyang, S., Bi, Y., et al. Nano-photocatalytic materials:possibilities and challenges[J]. Adv. Mater.,2012,24:229-251.
    [152]Kamat, P.V. Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design[J]. J. Phys. Chem. Lett.,2012,3:663-672.
    [153]Linsebigler, A.L., Lu, G., Yates, J.T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chem. Rev.,1995,95:735-758.
    [154]Chen, X.B.& S.S. Mao. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications[J]. Chem. Rev.,2007,107:2891-2959.
    [155]黄柏标,王泽岩,王朋等.光催化材料微结构调控的研究[J].中国材料进展,2010,29:25-36.
    [156]郭建峰.新型可见光催化剂的合成和催化性能研究[D].上海:复旦大学,2011.
    [157]Zou, Z.& H. Arakawa. Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts[J]. J. Photochem. Photobiol. A,2003,158:145-162.
    [158]Zou, Z., Ye, J., Sayama, K., et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature,2001,414:625-627.
    [159]Ouyang, S., Kikugawa, N., Chen, D., et al. A systematical study on photocatalytic properties of AgMO2 (M= Al, Ga. In):effects of chemical compositions, crystal structures, and electronic structures[J]. J. Phys. Chem. C,2009,113:1560-1566.
    [160]Yin, J., Zou, Z., Ye, J. Photophysical and photocatalytic properties of Mln0.5Nb0.5O3 (M=Ca, Sr, and Ba)[J]. J. Phys. Chem. B,2003,107:61-65.
    [161]Yin, J., Zou, Z., Ye, J. A novel series of the new visible-light-driven photocatalysts Nb1/3Nb2/3O3(M=Ca. Sr,and Ba) with special electronic structures[J]. J. Phys. Chem. B,2003, 107:4936-4941.
    [162]Tang, J., Zou, Z., Ye, J. Photophysical and photocatalytic properties of AgInW2O8[J]. J. Phys. Chem. B,2003,107:14265-14269.
    [163]Ikarashi, K., Sato, J., Kobayashi, H., et al. Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 wtih d10 configuration[J]. J. Phys. Chem. B,2002.106:9048-9053.
    [164]Sato, J., Saito, N., NIshiyama, H., et al. New photocatalyst group for water decomposition of RuO2-loaded p-block metal (In, Sn, and Sb) oxides with d10 configuration[J].J. Phys. Chem. B.2001,105:6061-6063.
    [165]Sato, J., Saito, N., Nishiyama, H., et al. Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb207 (M=Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration [J]. J. Photochem. Photobiol. A,2002,148:85-89.
    [166]Bi, Y., Ouyang, S., Umezawa, N., et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. J. Am. Chem. Soc.,2011,133:6490-6492.
    [167]Bi. Y., Ouyang, S., Cao. J., et al. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X=Cl,Br, I) heterocrystals with enhanced photocatalytic properties and stabilities[J]. Phys. Chem. Chem. Phys.,2011,13:10071-10075.
    [168]Xu. C., Liu, Y., Huang, B., et al. Preparation, characterization, and photocatalytic properties of silver carbonate[J]. Appl. Surf. Sci.,2011,257:8732-8736.
    [169]王朋.表面等离子体增强AgX(X=Cl,Br,I)及其复合材料的制备、表征和光催化性能研究[D].济南:山东大学,2010.
    [170]Awazu, K., Fujimaki, M., Rockstuhl, C., et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide[J]. J. Am. Chem. Soc.,2008,130:1676-1680.
    [171]Wang, P., Huang, B.B., Qin, X.Y., et al. Ag@AgCl:A highly efficient and stable photocatalyst active under visible light[J]. Angew. Chem. Int. Ed.,2008,47:7931-7933.
    [172]Wang, P., Huang, B., Zhang, X.,et al. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr[J]. Chem. Eur. J.,2009,15:1821-1824.
    [173]Hu, C., Peng, T., Hu, X., et al. Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation[J]. J. Am. Chem. Soc.,2010,132:857-862.
    [174]Hu, C., Lan, Y., Qu, J., et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria[J]. J. Phys. Chem. B,2006,110:4066-4072.
    [175]Yu, J., Dai, G., Huang, B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays[J]. J. Phys. Chem. C,2009,113: 16394-16401.
    [176]Hu, J., Ren, L., Guo, Y., et al. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles[J]. Angew. Chem. Int. Ed.,2005,44:1269-1273.
    [177]Wang, W., Germanenko, I., El-Shall, M.S. Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS, and CdxZn1-xS[J]. Chem. Mater.,2002,14: 3028-3033.
    [178]Meissner, D., Memming, R., Kastening, B. Photoelectrochemistry of cadmium sulfide.1. Reanalysis of photocorrosion and flat-band potential[J]. J. Phys. Chem.,1988,92:3476-3483.
    [179]Fang, F., Chen, L., Chen, Y., et al. Synthesis and photocatalysis of ZnIn2S4 nano/micropeony[J]. J. Phys. Chem. C,2010,114:2393-2397.
    [180]Lei. Z., You, W., Liu, M., et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method[J]. Chem. Commun.,2003, 2142-2143.
    [181]Kudo, A., Tsuji, I., Kato, H. AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation[J]. Chem. Commun.,2002,17:1958-1959.
    [182]Zong, X., Yan, H., Wu, G., et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J]. J. Am. Chem. Soc.,2008,130: 7176-7177.
    [183]Hara, M., Chiba, E., Ishikawa, A., et al. Ta3N5 and TaON thin films on Ta foil:surface composition and stability[J].J. Phys. Chem. B,2003,107:13441-13445.
    [184]Kasahara, A., Nukumizu, K., Hitoki, G., et al. Photoreactions on LaTiO2N under visible light irradiation[J]. J. phys. Chem. A,2002,106:6750-6753.
    [185]Liu, Y.P., Fang, L., Lu, H.D., et al. One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4[J].Appl. Catal, B,2012,115-116:245-252.
    [186]Tian, Z.Q.& B. Ren. Raman spectroscopy of electrode surfaces. Encyclopedia of electrochemistry (Ed. Allen J. Bard, Martin Stratmann, Patrick R. Unwin)[M], Wiley-VCH,2003, 3:572-659.
    [187]Hering, K., Cialla, D., Ackermann, K., et al. SERS:a versatile tool in chemical and biochemical diagnostics[J].Anal. Bioanal. Chem.,2008,390:113-124.
    [188]Qian, X.M.& S.M. Nie. Single-molecule and single-nanoparticle SERS:from fundamental mechanisms to biomedical applications[J]. Chem. Soc. Rev.,2008,912-920.
    [189]Ren, B., Liu, G.K., Lian, X.B., et al. Raman spectroscopy on transition metals[J]. Anal. Bioanal. Chem.,2007,388:29-45.
    [190]Campion, A.& P. Kambhampati. Surface-enhanced Raman scattering[J]. Chem. Soc. Rev.,1998,27:241-250.
    [191]Xu, H.X.& M. Kall. Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates[J]. ChemPhysChem,2003,4:1001-1005.
    [192]Li, K., Stockman, M.I., Bergman, D.J. Self-similar chain of metal nanospheres as an efficient nanolens[J]. Phys. Rev. Lett.,2003,91:227402.
    [193]Cheng, H.W., Huan, S.Y., Wu, H.L., et al. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates [J]. Anal. Chem., 2009, 81:9902-9912.
    [194]Xu, Y.Z., Zhang, Y.R., Zheng, J.F., et al. Assembly of aggregated colloidal gold nanoparticles on gold electrodes by in situ produced H+ ions for SERS substrates[J]. Int. J. Electrochem. Sci.,2011,6:664-672.
    [195]Tian, Z.Q., Ren, B., Wu. D.Y. Surface-enhanced Raman scattering:From noble to transition metals and from rough surface to ordered nanostructures[J]. J. Phys. Chem. B,2002,106: 9463-9483.
    [196]Lin, X.M., Cui, Y., Xu, Y.H., et al. Surface-enhanced Raman spectroscopy: substrate-related issues [J]. Anal. Bioanal. Chem.,2009,394:1729-1745.
    [197]Gao, P., Patterson, M.L., Tadayyoni, M.A., et al. Gold as a ubiquitous substrate for intense surface-enhanced Raman scattering[J]. Langmuir,1985,1:173-176.
    [198]Liu, Y.C., Wang, C.C., Tsai. C.E. Effects of electrolytes used in roughening gold substrates by oxidation-reduction cycles on surface-enhanced Raman scattering[J]. Electrochem. Commun.,2005,7:1345-1350.
    [199]Liu, Y.C., Yu, C.C., Wang, C.C., et al. New application of photocatalytic TiO2 nanoparticles on the improved surface-enhanced Raman scattering[J]. Chem. Phys. Lett.,2006, 420:245-249.
    [200]Liu, Y.C., Yu, C.C., Hsu, T.C. Improved performances on surface-enhanced Raman scattering based on electrochemically roughened gold substrates modified with SiO2 nanoparticles[J]. J. Raman Spectrosc.,2009.40:1682-1686.
    [201]Peng, YD., Niu, Z.J., Huang, W., et al. Surface-enhanced Raman scattering studies of 1,10-phenanthroline adsorption and its surface complexes on a gold electrode[J]. J. Phys. Chem. B, 2005,109:10880-10885.
    [202]Chu, Y.P., Chen, S., Zheng, J.F., et al. Elimination of oxidation and decomposition by SnCl2 in the SERS study of pyridoxine on a roughened Au electrode[J]. J. Raman Spectrosc.,2009, 40:229-233.
    [203]Wu, D.Y, Li, J.F., Ren. B., et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chem. Soc. Rev.,2008,37:1025-1041.
    [204]Li, Z.L., Wu, T.H., Niu, Z.J., et al. In situ Raman spectroscopic studies on the current oscillations during gold electrodissolution in HCl solution[J]. Electrochem. Commun.,2004,6: 44-48.
    [205]Radeka, R., Moslavac, K., Lovrecek, B. Specific role of chloride in anodic reactions on gold[J]. J. Electroanal. Chem.,1977.84:351-358.
    [206]Niaura, G., Gaigalas, A.K., Vilker, V.L. Surface-enhanced Raman spectroscopy of phosphate anions:adsorption on silver, gold and copper electrodes[J]. J. Phys. Chem. B,1997,101: 9250-9262.
    [207]Kim, K., Shin, D., Kim, K.L., et al. Electromagnetic field enhancement in the gap between two Au nanoparticles:the size of hot site probed by surface-enhanced Raman scattering[J]. Phys. Chem. Chem. Phys.,2010,12:3747-3752.
    [208]Wustholz, K.L., Henry, A.I., McMahon, J.M., et al. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy[J]. J. Am. Chem. Soc.,2010.132:10903-10910.
    [209]Chen, G., Wang, Y., Yang, M.X., et al. Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers[J]. J. Am. Chem. Soc.,2010.132:3644-3645.
    [210]Bell. S.E.J.& N.M.S. Sirimuthu. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides[J]. J. Am. Chem. Soc.,2006,128: 15580-15581.
    [211]Trasatti. S.& O.A. Petrii. Real surface area measurements in electrochemistry[J]. Pure & Appl. Chem.,1991,63:711-734.
    [212]Cai, W.B., Ren, B., Li. X.Q., et al. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope:dependent of suface roughening pretreatment[J]. Surf. Sci.,1998,406:9-22.
    [213]Stolberg, L., Lipkowski, J., Irish, D.E. Adsorption of pyridine at the Au(110)-solution interface[J]. J. Electroanal. Chem.,1990,296:171-189.
    [214]Rashid. M.H.& T.K.. Mandal. Synthesis and catalytic application of nanostructured silver dendrites[J]. J. Phys. Chem. C,2007,111:16750-16760.
    [215]Lu, G.W., Li, C., Shi. G.Q. Synthesis and characterization of 3D dendritic gold nanostructures and their use as substrates for surface-enhanced Raman scattering[J]. Chem. Mater., 2007,19:3433-3440.
    [216]Zhou. P., Dai, Z.H., Fang, M., et al. Novel dendritic palladium nanostructure and its application in biosensing[J]. J. Phys. Chem. C,2007,111:12609-12616.
    [217]Sanles-Sobrido, M., Correa-Duarte, M.A., Carregal-Romero, S., et al. Highly catalytic single-crystal dendritic Pt nanostructures supported on carbon nanotubes[J]. Chem. Mater.,2009, 21:1531-1535.
    [218]Drozdowicz-Tomsia, K., Xie, F., Goldys, E.M. Deposition of silver dentritic nanostructures on silicon for enhanced fluorescence [J]. J. Phys. Chem. C,2010,114:1562-1569.
    [219]Li, F., Han, X.P., Liu, S.F. Development of an electrochemical DNA biosensor with a high sensitivity of fM by dendritic gold nanostructure modified electrode[J]. Biosens. Bioelectron., 2011,26:2619-2625.
    [220]Qin, Y., Song, Y., Sun, N.J., et al. Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry[J]. Chem. Mater.,2008,20:3965-3972.
    [221]Tang, X.L., Jiang, P., Ge, G.L., et al. Poly(N-vinyl-2-pyrrolidone) (PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect[J]. Langmuir,2008,24:1763-1768.
    [222]Sun, X.P.& M. Hagner. Novel preparation of snowflake-like dendritic nanostructures of Ag or Au at room temperature via a wet-chemical route[J]. Langmuir,2007,23:9147-9150.
    [223]Joseph, D.& K.E. Geckeler. Surfactant-directed multiple anisotropic gold nanostructures:synthesis and surface-enhanced Raman scattering[J]. Langmuir,2009,25: 13224-13231.
    [224]Huang, T., Meng, F., Qi, L.M. Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin[J]. Langmuir,2010,26: 7582-7589.
    [225]Fang, J.X., Ma, X.N., Cai, H.H., et al. Nanoparticle-aggregated 3D monocrystalline gold dendritic nanostructures[J].Nanotechnology,2006,17:5841-5845.
    [226]Ye, W.C., Yan, J.F., Ye, Q., et al. Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures:growth and their multiple applications[J]. J. Phys. Chem. C,2010,114:15617-15624.
    [227]Lin, T.H., Lin, C.W., Liu, H.H., et al. Potential-controlled electrodeposition of gold dendrites in the presence of cysteine[J]. Chem. Commun.,2011,47:2044-2046.
    [228]Huan, T.N., Ganesh, T., Kim, K.S., et al. A three-dimensioal gold nanodendrite network porous structure and its application for an electrochemical sensing[J]. Biosens. Bioelectron.,2011. 27:183-186.
    [229]Xu, X.L., Jia, J.B., Yang, X.R., et al. A templateless. surfactantless, simple electrochemcial route to a dendritic gold nanostructure and its application to oxygen reduction[J]. Langmuir,2010,26:7627-7631.
    [230]Hu, S., Huang, W., Li Z.L. Facile fabrication of 3D dendritic gold nanostructures with an AuSn alloy by square wave potential pulse[J]. Mater. Lett.,2010,64:1257-1260.
    [231]Guo, C., Xia, Y., Xu, Y.Z., et al. Transformation of randomly aggregated gold nanoparticles into dendritic structures by square wave potential pulses[J]. Mater. Lett.,2011,65: 2326-2329.
    [232]Cadle, S.H.& S. Bruckenstein. Ring-disk electrode study of the anodic behavior of gold in 0.2 M sulfuric acid[J]. Anal. Chem.,1974,46:16-20.
    [233]Rand, D.A.J.& R. Woods. A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 M sulphuric acid by cyclic voltammetry[J]. J. Electroanal. Chem.,1972, 35:209-218.
    [234]Burke, L.D., O'Mullane, A.P., Lodge, V.E., et al. Auto-inhibition of hydrogen gas evolution on gold in aqueous acid solution[J]. J. Solid State Electrochem.,2001,5:319-327.
    [235]Jusys, Z.& S. Bruckenstein. Electrochemcial quartz crystal microgravimetry of gold in perchloric and sulfuric acid solutions[J]. Electrochem. Solid-State Lett.,1998,1:74-76.
    [236]Shrestha, B.R., Nishikata, A., Tsuru, T. Application of channel flow double electrode to the study on gold dissolution during potential cycling in sulfuric acid solution[J]. J. Electroanal. Chem.,2012,665:33-37.
    [237]Chialvo, A.C., Triaca, W.E., Arvia, A.J. Changes in the polycrystalline gold electrode surface produced by square wave potential perturbations[J]. J. Electroanal. Chem.,1984,171: 303-316.
    [238]Li. D., Li, D.. Li, Y.. et al. Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering[J]. J. Mater. Chem.,2010,20:3688-3693.
    [239]Chen, C.W., Serizawa. T.. Akashi, M. Preparation of platinum colloids on polystyrene nanospheres and their catalytic properties in hydrogenation[J]. Chem. Mater.,1999,11: 1381-1389.
    [240]Lal, S., Clare, S.E., Halas, N.J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact[J]. Acc. Chem. Res..2008,41:1842-1851.
    [241]Spuch-Calvar, M., Rodriguez-Lorenzo, L., Morales, M.P., et al. Bifunctional nanocomposites with long-term stability as SERS optical accumulators for ultrasensitive analysis[J]. J. Phys. Chem. C,2009,113:3373-3377.
    [242]Cao, Y.C., Wang, Z., Jin, X., et al. Preparation of Au nanoparticles-coated polystyrene beads and its application in protein immobilization[J]. Colloids Surf., A,2009,334:53-58.
    [243]Kobayashi. Y., Salgueirino-Maceira, V.. Liz-Marzan, L.M. Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating[J]. Chem. Mater.,2001. 13:1630-1633.
    [244]Liu, J.B., Dong, W., Zhang, P., et al. Synthesis of bimetallic nanoshells by an improved electroless plating method[J]. Langmuir,2005,21:1683-1686.
    [245]Pham. T., Jackson, J.B., Halas, N.J., et al. Preparation and characterization of gold nanoshells coated with self-assembled monolayers[J]. Langmuir,2002,18:4915-4920.
    [246]Sadtler, B.& A. Wei. Spherical ensembles of gold nanoparticles on silica:electrostatic and size effects[J]. Chem. Commun.,2002,15:1604-1605.
    [247]Liang, Z., Susha, A., Caruso, F. Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof[J]. Chem. Mater.,2003.15:3176-3183.
    [248]Liang. Z.. Susha, A.S., Caruso, F. Metallodielectric opals of layer-by-layer processed coated colloids[J]. Adv. Mater.,2002,14:1160-1164.
    [249]Chen, Z., Wang, Z.L., Zhan. P., et al. Preparation of metallodielectric composite particles with multishell structure[J]. Langmuir,2004,20:3042-3046.
    [250]Ji, T., Lirtsman, V.G., Avny, Y., et al. Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads[J]. Adv. Mater.,2001,13:1253-1256.
    [251]Jiang, P.& M.J. McFarland. Wafer-Scale periodic nanohole arrays templated from two-dimensional nonclose-packed colloidal crystals[J]. J. Am. Chem. Soc.,2005,127:3710-3711.
    [252]Xu, M., Lu, N., Xu, H., et al. Fabrication of functional silver nanobowl arrays via sphere lithography [J]. Langmuir,2009,25:11216-11220.
    [253]Kubo, S., Gu, Z.Z., Tryk, D.A., et al. Metal-coated colloidal crystal film as surface-enhanced Raman scattering substrate[J]. Langmuir,2002,18:5043-5046.
    [254]Sun, F., Cai, W., Li, Y., et al. Morphology-controlled growth of large-area two-dimensional ordered pore arrays[J].Adv. Funct. Mater,2004,14:283-288.
    [255]Jiang. P.. Cizeron, J., Bertone. J.F., et al. Preparation of macroporous metal films from colloidal crystals[J]. J. Am. Chem. Soc.,1999,121:7957-7958.
    [256]Lu. L., Randjelovic, I., Capek, R., et al. Contrlloed fabrication of gold-coated 3D ordered colloidal crystal films and their application in surface-enhanced Raman spectroscopy[J]. Chem. Mater.,2005,17:5731-5736.
    [257]Bartlett, P.N., Baumberg, J.J., Coyle, S., et al. Optical properties of nanostructured metal films[J]. Faraday Discuss.,2004,125:117-132.
    [258]Sun, F., Cai, W., Li, Y., et al. Morphology control and transferability of ordered through-pore arrays based on electrodeposition and colloidal monolayers[J]. Adv. Mater.,2004,16: 1116-1121.
    [259]Li, C., Hong, G., Qi, L. Nanosphere lithography at the gas/liquid interface:A general approach toward free-standing high-quality nanonets[J]. Chem. Mater,2010,22:476-481.
    [260]Petit, L., Manaud, J.P., Mingotaud, C., et al. Sub-micrometer silica spheres dissymmetrically decorated with gold nanoclusters[J]. Mater. Lett.,2001,51:478-484.
    [261]Schierhorn, M.& L.M. Liz-Marzan. Synthesis of bimetallic colloids with tailored intermetallic separation[J]. Nano Lett.,2002,2:13-16.
    [262]Wang, M., Chen, S., Xia, Y., et al. Nanoassemblies of colloidal gold nanoparticles by oxygen-induced inorganic ligand replacement[J]. Langmuir,2010,26:9351-9356.
    [263]Piao. L., Park, S., Lee. H.B., et al. Single gold microshell tailored to sensitive surface enhanced Raman scattering probe[J]. Anal. Chem.,2010,82:447-451.
    [264]Pederson. L.R. Comparison of stannous and stannic chloride as sensitizing agents in the electroless deposition of silver on glass using X-ray photoelectron spectroscopy[J]. Sol. Energy Mater.,1982,6:221-232.
    [265]Johnson, L.& D.A. Walsh. Deposition of silver nanobowl arrays using polystyrene nanospheres both as reagents and as the templating material[J]. J. Mater. Chem.,2011,21: 7555-7558.
    [266]Bhagwat, M., Shah, P., Ramaswamy, V. Synthesis of nanocrystalline SnO2 powder by amorphous citrate route[J]. Mater. Lett.,2003,57:1604-1611.
    [267]Shiryaev, V.I.& Y.F. Mironov. Bivalent tin analogues for carbenes[J]. Russ. Chem. Rev., 1983,52:184-200.
    [268]Jin, Y.& S. Dong. Diffusion-limited, aggregation-based, mesoscopic assembly of roughened core-shell bimetallic nanoparticles into fractal networks at the air-water interface[J]. Angew. Chem. Int. Ed.,2002,41:1040-1044.
    [269]Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nat. Phys. Sci.,1973,241:20-22.
    [270]Zhang, Y.R., Xu, Y.Z., Xia, Y., et al. A novel strategy to assemble colloidal gold nanoparticles at the water-air interface by the vapor of formic acid[J]. J. Colloid Interf. Sci.,2011, 359:536-541.
    [271]Holderer, O., Epicier, T., Esnouf, C. et al. Direct structural and chemical analysis of individual core-shell (Pd, Sn) nanocolloids[J]. J. Phys. Chem. B,2003,107:1723-1726.
    [272]Zhang, Y.R., Wang, M.H., Zheng, J.F., et al. Facile preparation of network thin films of Pd nanoparticles at the air-water interface for electrocatalysis[J]. Int. J. Electrochem. Sci.,2010,5: 1605-1611.
    [273]Garcia-Vidal, F.J.& J.B. Pendry. Collective theory for surface enhanced Raman scattering[J]. Phys. Rev. Lett.,1996,77:1163-1166.
    [274]Yang, Y.C., Xia, Y., Huang, W.. et al. Fabrication of nano-network gold films via anodization of gold electrode and their application in SERS[J]. J. Solid State Electrochem.,2012, 16:1733-1739.
    [275]Lin, X., Wang, X., Liu. Z., et al. Enhanced Raman scattering by polystyrene microspheres and application for detecting molecules adsorbed on Au single crystal surface[J]. Acta Phys.-Chim. Sin.,2008,24:1941-1944.
    [276]Du, C.L., Kasim, J., You, Y.M., et al. Enhancement of Raman scattering by individual dielectric microspheres[J]. J. Raman Spectrosc.,2011,42:145-148.
    [277]Wilson, R.& A.P.F. Turner. Glucose oxidase:an ideal enzyme[J]. Biosens. Bioelectron., 1992.7:165-185.
    [278]Wang, J. Electrochemical glucose biosensors[J], Chem. Rev.,2008,108:814-825.
    [279]Toghill, K.E.& R.G. Compton. Electrochemical non-enzymatic glucose sensors:a perspective and an evaluation[J]. Int. J. Electrochem. Sci.,2010,5:1246-1301.
    [280]Hsiao, M.W., Adzic, R.R., Yeager, E.B. The effects of adsorbed anions on the oxidation of D-glucose on gold single crystal electrodes[J]. Electrochim. Acta,1992,37:357-363.
    [281]Vassilyev, Y.B., Khazova, O.A., Nikolaeva, N.N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts Part Ⅰ. Adsorption and oxidation on platinum[J]. J. Electroanal.Chem.,1985,196:105-125.
    [282]Tominaga, M., Shimazoe, T., Nagashima, M., et al. Electrocatalytic oxidation of glucose at gold-silver alloy, silver and gold nanoparticles in an alkaline solution[J]. J. Electroanal. Chem., 2006.590:37-46.
    [283]Sun, Y., Buck, H., Mallouk, T.E. Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors[J].Anal. Chem.,2001,73:1599-1604.
    [284]Tominaga, M., Shimazoe, T., Nagashima, M., et al. Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions[J]. Electrochem. Commun.,2005,7:189-193.
    [285]Bai, Y., Yang, W., Sun, Y., et al. Enzyme-free glucose sensor based on a three-dimensional gold film electrode[J]. Sens. Actuators, B,2008,134:471-476.
    [286]Ge, X., Wang, R., Liu, P., et al. Platinum-decorated nanoporous gold leaf for methanol electrooxidation[J]. Chem. Mater.,2007,19:5827-5829.
    [287]Qiu, H.& X. Huang. Effects of Pt decoration on the electrocatalytic activity of nanoporous gold electrode toward glucose and its potential application for constructing a nonenzymatic glucose sensor[J]. J. Electroanal. Chem.,2010,643:39-45.
    [288]Qiu. H., Xu, C. Huang, X., et al. Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them[J].J.Phys. Chem. C,2008,112:14781-14785.
    [289]Zhao, W.. Xu, J.J., Shi. C.G., et al. Fabrication, characterization and application of gold nano-structured film[J]. Electrochem. Commun,,2006.8:773-778.
    [290]Park. S., Chung, T.D., Kim, H.C. Nonenzymatic glucose detection using mesoporous platinum[J]. Anal. Chem.,2003,75:3046-3049.
    [291]Cho, S., Shin, H., Kang, C. Catalytic glucose oxidation on a polycrystalline gold electrode with an amalgamation treatment (TM 05092)[J]. Electrochim. Acta,2006,51: 3781-3786.
    [292]Cheng, T.M., Huang, T.K., Lin, H.K., et al. (110)-Exposed gold nanocoral electrode as low onset potential selective glucose sensor[J]. ACS Appl. Mater. Interfaces,2010,2:2773-2780.
    [293]Brahim, S.I., Maharajh, D., Narinesingh, D., et al. Design and charaterization of a galactose biosensor using a novel polypyrrole-hydrogel composite membrane[J]. Anal. Lett.,2002, 35:797-812.
    [294]Siegrist, J., Kazarian, T., Ensor. C., et al. Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications[J]. Sens. Actuators, B, 2010,149:51-58.
    [295]Tierney, M.J., Jayalakshmi, Y., Parris, N.A., et al. Design of a biosensor for continual, transdermal glucose monitoring[J]. Clin. Chem..1999,45:1681-1683.
    [296]Tierney, M.J., Tamada, J.A., Potts, R.O., et al. Clinical evaluation of the GlucoWatch(?) biographer:a continual, non-invasive glucose monitor for patients with diabetes[J]. Biosens. Bioelectron.,2001,16:621-629.
    [297]Newman, J.D.& A.P.F. Turner. Home blood glucose biosensors:a commercial perspective[J]. Biosens. Bioelectron.,2005,20:2435-2453.
    [298]Zhang, H., Xu, J.J., Chen, H.Y. Shape-controlled gold nanoarchitectures:synthesis, superhydrophobicity, and electrocatalytic properties[J]. J. Phys. Chem. C,2008,112: 13886-13892.
    [299]Kang, S., Lee, J., Lee, J.K., et al. Influence of Bi modification of Pt anode catalyst in direct formic acid fuel cells[J]. J. Phys. Chem. B,2006,110:7270-7274.
    [300]Lee. J.K., Jeon, H., Uhm, S., et al. Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells[J]. Electrochim. Acta,2008,53: 6089-6092.
    [301]Uhm, S., Chung, S.T., Lee, J. Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell[J]. Electrochem. Commun.,2007,9:2027-2031.
    [302]Chen, W., Kim, J., Sun, S., et al. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid[J]. Langmuir,2007,23:11303-11310.
    [303]Gojkovic, S.L.. Tripkovic, A.V., Stevanovic, R.M., et al. High activity of Pt4Mo alloy for the electrochemical oxidation of formic acid[J]. Langmuir,2007,23:12760-12764.
    [304]Choi, J.H., Jeong, K.J., Dong, Y., et al. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells[J]. J. Power Sources,2006,163:71-75.
    [305]Zhang, S., Shao, Y., Liao, H., et al. Graphene decorated with PtAu alloy nanoparticles: Facile synthesis and promising application for formic acid oxidation[J]. Chem. Mater,2011,23: 1079-1081.
    [306]Kristian, N., Yan, Y., Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation[J]. Chem. Commun.,2008,5:353-355.
    [307]Obradovic, M.D., Tripkovic, A.V., Gojkovic, S.L. The origin of high activity of Pt-Au surfaces in the formic acid oxidation[J]. Electrochim. Acta,2009,55:204-209.
    [308]Park, I.S.. Lee, K.S., Choi, J.H., et al. Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation[J]. J. Phys. Chem. C,2007,111: 19126-19133.
    [309]Zhao, D., Wang, Y.H., Xu, B.Q. Pt flecks on collidal Au (Pt∧Au) as Nanostructured anode catalysts for electrooxidation of formic acid[J].J. Phys. Chem. C,2009,113:20903-20911.
    [310]Scheijen, F.J.E., Beltramo. G.L., Hoeppener, S., et al. The electrooxidation of small orgainc molecules on platinum nanoparticles supported on gold:influence of platinum deposition procedure[J]. J. Solid Stale Electrochem.,2008,12:483-495.
    [311]Zhang, S., Shao, Y, Yin, G., et al. Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation[J]. Angew. Chem. Int. Ed.,2010, 49:2211-2214.
    [312]Kim, J., Jung, C., Rhee, C.K., et al. Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111)[J], Langmuir,2007,23:10831-10836.
    [313]Ge, X., Wang, R., Cui, S., et al. Structure dependent electrooxidation of small organic molecules on Pt-decorated nanoporous gold membrane catalysts[J]. Electrochem. Commun.,2008, 10:1494-1497.
    [314]Min, M., Kim, C., Lee, K. Electrocatalytic properties of platinum overgrown on various shapes of gold nanocrystals[J]. J. Mol. Catal. A-Chem,2010,333:6-10.
    [315]Zhang, Y., Tong, H., Sun, Z., et al. Facile preparation Pt on Au dendrites supported on Si (100) and their electrochemical properties for methanol and CO electrooxidation[J]. J Solid State Electrochem.,2011,15:2231-2237.
    [316]Guo, S.J., Li, J., Dong, S.J., et al. Three-dimensional Pt-on-Au bimetallic dendritic nanoparticle:one-step, high-yield synthesis and its bifunctional plasmonic and catalytic properties[J]. J. Phys. Chem. C,2010,114:15337-15342.
    [317]Clavilier, J.& S.G. Sun. Electrochemical study of the chemisorbed species formed from formic acid dissociation at platinum single crystal electrodes[J]. J. Electroanal. Chem.,1986,199: 471-480.
    [318]Biegler. T., Rand, D.A.J., Woods. R. Limiting oxygen coverage on platinized platinum; Relevance to determination of real platinum area by hydrogen adsorption[J]. J. Electroanal. Chem.,1971,29:269-277.
    [319]Moulder, J.F., Stickle, W.F., Sobol, P.E., et al, Eds. Handbook of X-ray photoelectron spectroscopy[M]. Physical Electronics, Inc.:Eden Prairie,1995,181-183.
    [320]Bastl, Z.& S. Pick. Angle resolved X-ray photoelectron spectroscopy study of Au deposited on Pt and Re surfaces[J]. Surf. Sci.,2004,566-568:832-836.
    [321]Waibel. H.F., Kleinert, M., Kibler. L.A., et al. Initial stages of Pt deposition on Au(111) and Au(100)[J]. Electrochim. Acta,2002,47:1461-1467.
    [322]Pedersen, M.O., Helveg, S., Ruban, A., et al. How a gold substrate can inerease the reaetivity of a Pt overlayer[J]. Surf Sci.,1999,426:395-409.
    [323]Correia, V.M., Stephenson, T., Judd, S.J. Characterisation of textile wastewaters-a review[J]. Environ. Technol.,1994,15:917-929.
    [324]Santos, A.B.D., Cervantes, F.J., Lier, J.B.V. Review paper on current technologies for decolourisation of textile wastewaters:Perspectives for anaerobic biotechnology [J]. Bioresour Technol.,2007,98:2369-2385.
    [325]Chen. C.C., Ma, W.H., Zhao, J.C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chem. Soc. Rev.,2010,39:4206-4219.
    [326]籍宏伟,马万红,黄应平等.可见光诱导TiO2光催化的研究进展[J].科学通报,2003,48:2199-2204.
    [327]Kelly, K.L., Coronado, E., Zhao, L.L., et al. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment[J]. J. Phys. Chem. B,2003, 107:668-677.
    [328]Zong, R.L., Zhou, J., Li, Q., et al. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane[J]. J. Phys. Chem. B,2004,108:16713-16716.
    [329]Carruthers, W. Cycloaddition Reactions in Organic Synthesis[M]. Pergamon Press: Oxford U.K.,1990.
    [330]Martin, J. G., Hill, R. K. Stereochemistry of the Diels-Alder reaction[J]. Chem. Rev., 1961,61:537-562.
    [331]Takao, K.I., Munakata, R., Tadano. K.I. Recent advances in natural product synthesis by using intramolecular Diels-Alder reactions[J]. Chem. Rev.,2005,105:4779-4807.
    [332]Fleming, I. Frontier Orbitals and Organic Chemcial Reaction[M]. Wiley:Chichester, U. K.,1976.
    [333]Houk, K.N. Generalized frontier rrbitals of alkenes and dienes. Regioselectivity in Diels-Alder reactions[J]. J. Am. Chem. Soc.,1973,95:4092-4094.
    [334]Houk, K.N. The frontier molecular orbital theory of cycloaddition reactions[J]. Acc. Chem. Res.,1975,8:361-369.
    [335]Kahn, S.D., Pau, C.F., Overman, L.E., et al. Modeling chemical reactivity.1. Regioselectivity of Diels-Alder cycloadditions of electron-rich dienes with electron-deficient dienophiles[J].J. Am. Chem. Soc.,1986,108:7381-7396.
    [336]Alston, P.V., Ottenbrite, R.M., Shillady, D.D. Secondary orbital interactions determining regioselectivity in the Diels-Alder reaction[J]. J. Org. Chem.,1973,38:4075-4077.
    [337]Yates, P.& P. Eaton. Acceleration of the Diels-Alder reaction by aluminum chloride[J]. J. Am. Chem. Soc.1960,82:4436.
    [338]Kagan, H.B.& O. Riant. Catalytic asymmetric Diels-Alder reactions[J]. Chem. Rev. 1992,92:1007-1019.
    [339]Pindur, U., Lutz, G., Otto, C. Acceleration and selectivity enhancement of Diels-Alder reactions by special and catalytic methods[J]. Chem. Rev.,1993,93:741-761.
    [340]Houk, K..N.& R.W. Strozier. On lewis acid catalysis of Diels-Alder reactions[J]. J. Am. Chem. Soc.,1973,95:4094-4096.
    [341]Alston, P.V.& R.M. Ottenbrite. Secondary orbital interactions determining regioselectivity in the lewis acid catalyzed Diels-Alder reaction. Ⅱ[J]. J. Org. Chem.,1975,40: 1111-1116.
    [342]Alves, C.N., Silva, A.B.F.D., Marti, S., et al. An AM1 theoretical study on the effect of Zn2* lewis acid catalysis on the mechamism of the cycloaddition between 3-phenyl-l-(2-pyridyl)-2-propen-l-one and cyclopentadiene[J]. Tetrahedron,2002,58: 2695-2700.
    [343]Yamabe, S., Dai, T., Minato, T. Fine tuning [4+2] and [2+4] Diels-Alder reactions catalyzed by lewis acids[J]. J. Am. Chem. Soc.,1995.117:10994-10997.
    [344]Yamabe, S.& T. Minato. A three-center orbital interaction in the Diels-Alder reactions catalyzed by lewis acids[J]. J. Org. Chem.,2000,65:1830-1841.
    [345]Birney, D.M.& K.N. Houk. Transition structures of the lewis acid catalyzed Diels-Alder reaction of butadiene with acrolein. The origins of selectivity[J]. J. Am. Chem. Soc.,1990,112: 4127-4133.
    [346]Berski, S., Andres, J., Silvi, B., et al. New findings on the Diels-Alder reactions. An analysis based on the bonding evolution theory[J]. J. Phys. Chem. A,2006,110:13939-13947.
    [347]Ess, D.H., Jones, G.O., Houk, K.N. Conceptual, qualitative, and quantitative theories of1,3-dipolar and Diels-Alder cycloadditions used in synthesis[J]. Adv. Synth. Catal.,2006,348: 2337-2361.
    [348]Garcia, J.I., Martinez-Merino, V., Mayoral, J.A., et al. Density functional theory study of a lewis acid catalyzed Diels-Alder reaction. The butadiene+acrolein paradigm[J]. J. Am. Chem. Soc.,1998,120:2415-2420.
    [349]Geerlings, P., Proft, F.D., Langenaeker, W. Conceptual density functional theory [J]. Chem. Rev.,2003,103:1793-1873.
    [350]Parr, R.G.& W.T. Yang. Density Functional Theory of Atoms and Molecules[M]. Oxford University Press:Oxford U. K.,1989.
    [351]Ayers, P.W.& R.G. Parr. Local hardness equalization:Exploiting the ambiguity[J]. J. Chem. Phys.,2008,128:184108.
    [352]Domingo, L.R., Aurell, M.J., Perez, P., et al. Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions[J]. Tetrahedron, 2002,58:4417-4423.
    [353]Domingo, L.R., Aurell, M.J., Perez, P., et al. Quantitative characterization of the local electrophilicity of organic molecules. Understanding the regioselectivity on Diels-Alder reactions[J]. J. Phys. Chem. A,2002,106:6871-6875.
    [354]Chattaraj, P.K. & B. Maiti. HSAB principle applied to the time evolution of chemical reactions[J]. J. Am. Chem. Soc.,2003,125:2705-2710.
    [355]Chattaraj, P.K., Liu, G.H., Parr, R.G. The maximum hardness principle in the Gyflopoulos-Hatsopoulos three-level model for an atomic or molecular species and its positive and negative ions[J]. Chem. Phys. Lett.,1995,237:171-176.
    [356]Chattaraj, P.K.& S. Sengupta. Popular electronic structure principles in a dynamical context[J]. J. Phys. Chem.,1996,100:16126-16130.
    [357]Chamorro, E.& P. Fuentealba. Variation of the electrophilicity index along the reaction path[J]. J. Phys. Chem. A,2003,107:7068-7072.
    [358]Noorizadeh, S. Minimum electrophilicity principle in photocycloaddition formation of oxetanes[J]. J. Phys. Org. Chem.,2007,20:514-524.
    [359]Noorizadeh, S. Is there a minimum electrophilicity principle in chemical reactions[J]? Chin. J. Chem.,2007,25:1439-1448.
    [360]Noorizadeh, S.& H. Maihami. A theoretical study on the regioselectivity of Diels-Alder reactions using electrophilicity index[J]. J. Mol. Stru. THEOCHEM,2006,763:133-144.
    [361]Hohenberg. P.& W. Kohn. Inhomogeneous electron gas[J]. Phys. Rev,1964,136:B864.
    [362]Kohn, W.& L.J. Sham. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev.,1965,140:A1133-A1138.
    [363]Janak, J.F. Proof that (?)E/(?)ni=εi in density-functional theory[J]. Phys. Rev. B,1978.18: 7165-7168.
    [364]Parr, R.G., Szentpaly L.V., Liu S.B. Electrophilicity index[J]. J. Am. Chem. Soc.,1999, 121:1922-1924.
    [365]Parr, R.G.& W.T. Yang. Density functional approach to the frontier-electron theory of chemical reactivity[J]. J. Am. Chem. Soc.,1984,106:4049-4050.
    [366]Yang, W.T.& W.J. Mortier. The use of global and local molecular parameters for the analysis of the gas-phase basicity of aines[J]. J. Am. Chem. Soc.,1986.108:5708-5711.
    [367]Chattaraj, P.K., Sarkar, U., Roy, D.R. Electrophilicity index[J]. Chem. Rev.,2006,106: 2065-2091.
    [368]Li, X.Y.& J. Nie. Density functional theory study on metal bis(trifluoromethylsulfonyl)imides:electronic structures, energies, catalysis, and predictions[J]. J. Phys. Chem. A,2003,107:6007-6013.
    [369]Fringuelli, F.& A. Taticchi. The Diels-Alder reaction:selected practical methods[M]. John Wiley & Sons, Ltd.:New York,2002.
    [370]Damoun, S., Woude, G.V.D., Mendez, F., et al. Local softness as a regioselectivity indicator in [4+2] cycloaddition reactions[J]. J. Phys. Chem. A,1997,101:886-893.
    [371]Guell, M., Luis, J.M., Sola, M., et al. Importance of the basis set for the spin-state energetics of iron complexes[J]. J. Phys. Chem. A,2008,112:6384-6391.
    [372]Huang, Y., Zhong, A.G., Rong, C.Y., et al. Structure, spectroscopy, and reactivity properties of porphyrin pincers:A conceptual density functional theory and time-dependent density functional theory study[J]. J. Phys. Chem. A,2008,112:305-311.
    [373]Rong, C.Y., Lian, S.X., Yin, D.L., et al. Towards understanding performance differences between approximat e density functionals for spin states of iron complexes[J]. J. Chem. Phys., 2006,125:174102.
    [374]Rong, C.Y., Lian, S.X., Yin, D.L., et al. Effective simulation of biological systems: Choice of density functional and basis set for heme-containing complexes[J]. Chem. Phys. Lett., 2007,434:149-154.
    [375]Liu, S.B.& W. Langenaeker. Hund's multiplicity rule:a unified interpretation[J]. Theor. Chem. Acc.,2003,110:338-344.
    [376]Frisch, M.J., Trucks, G. W., Schlegel, H. B., et al., Gaussian 03, revision B.04;. Gaussian, Inc. Pittsburgh, PA,2003.
    [377]Chattaraj, P.K.& D.R. Roy. Update 1 of:Electrophilicity index[J]. Chem. Rev.,2007, 107:PR46-PR74.
    [378]Yin, D.H., Yin, D.L., Fu, Z.H., et al. The regioselectivity of Diels-Alder reaction of myrcene with carbonyl-containing dienophiles catalysed by Lewis acids[J]. J. Mol. Catal. A Chem, 1999,148:87-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700