用户名: 密码: 验证码:
离子液体用作相变储能介质的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变材料是相变储能技术的核心和基础,其性质的好坏决定着能源利用效率的高低。传统的相变材料包括无机物和有机物两类,无机储能材料具有潜热大、导热系数高、相变时体积变化小的优点,但易出现过冷和相分离的现象,导致其蓄热能力大幅度降低,且具有腐蚀性。有机类相变材料几乎没有相分离的缺点、化学性能稳定,但易挥发、易燃烧、导热性能差。所以,研究可以克服二者缺陷的新型相变蓄热材料成为挑战性课题之一。本论文提出离子液体用作相变储能材料,通过量子化学计算分析离子液体分子结构对离子液体性质的影响规律,指导实验合成一系列性能良好的离子液体,并对其热力学性质进行研究,探索离子液体用于跨季节蓄热、工业废热、热泵等领域的可行性。
     首先对离子液体分子结构和熔化热性质进行了QSPR研究。分别采用PM3半经验算法和密度泛函(DFT)算法对离子液体分子结构进行了结构优化。得到如下量子化学结构参数:阴阳离子液体相互作用能(Ei)、偶极矩(μ)、分子轨道能(ELUMO和EHOMO)、前端离子电荷(Gcation和Canion)、分子体积(Vm)、表面积(S)、最短氢键距离(LH)等。结合熔化热实验数据,建立了针对44种离子液体的六参数模型、30种离子液体的四参数模型、22种咪唑盐类离子液体的五参数模型、10种卤代盐类离子液体的三参数模型和9种卤代咪唑盐离子液体的二参数模型。模型的相关系数均大于0.93,具有很好的内部相关性。对测试集的数据进行了外部验证,模型具有很好的外部预测性。当所选训练集中离子液体的阴离子或阳离子相同,或者属于同一类的衍生物时,模型的相关性和预测性较高。五个QSPR模型中,分子体积这一结构描述符对离子液体的相变热影响最大,是最显著参数。另外,分子量、偶极矩和最低分子未占轨道能等描述符对离子液体的熔化热影响也较大。通过对优化结果分析,得到了烷基侧链长度、甲基取代C2位H原子和阴离子变化对离子液体热力学性质的影响规律,用于指导离子液体的合成。
     通过增加烷基侧链长度、采用甲基取代C2位H原子和选取体积较小的卤族元素阴离子(如,Cl-和Br-)等方式,设计并制备了8种烷基咪唑卤代盐类离子液体和6种己内酰胺类离子液体。
     分别对上述两种离子液体的热力学性质进行了表征。表征结果表明[C16MIM]Br和口[C16MMIM]Br两种离子液体的相变热最高,分别为144.37J·g-1和123.68J·g-1。两种离子液体固态时的热容高于1.25J·g-1·℃-1,并且随着温度的升高而升高,液态时达到2.3J·g-1·℃-1左右,说明具有很好的显热存储能力。TG表征测得两种离子液体的初始分解温度分别为230℃和250℃,都具有较高的热稳定性。两种离子液体在10-50℃之间的的导热系数介于0.15~0.35W·m-1·℃-1之间。和商业用Therminol(?)VP-1导热流体相比,具有明显的优势。内酰胺类离子液体的熔点温度范围在60~75℃之间,相变潜热在120J·g-1以上,表现出良好的相变储热性能;它们的热容在固态和液态时分别在1.33J·g-1·℃-1和2J·g-1·℃-1以上,表现出良好的显热存储性能。
     利用离子液体过冷的性质,用于跨季节蓄热。离子液体以液体的形式存储热量,温度降至凝固点以下时,通过加入成核引发剂,激发其发生相变释放出热量。本文选取[C16MIM]Br和[C16MMIM]Br两种离子液体,添加质量比为0~25wt%的铜粉、石墨粉和十八醇作为成核引发剂,考察成核剂对离子液体升降温过程热力学性质的影响。结果表明,[C16MIM]Br+铜粉混合物体系具有合适的温度和稳定的过冷状态,可以用于跨季节蓄热系统。
     为解决离子液体相变材料相变体积变化、使用过程中的损失及与其周围环境界面的结合等问题,考虑将离子液体包裹进微胶囊。选取三聚氰胺-甲醛(MF)树脂为壁材,[C4MIM]PF6或[C16MIM]PF6为芯材,制备离子液体微胶囊材料。考察了制备工艺和壳材中三聚氰胺/甲醛摩尔配比的影响。当选择一步法制备工艺,三聚氰胺/甲醛配比为1:4.16时,成功制备了包裹[C4MIM]PF6离子液体的相变微胶囊材料。
The base and core of phase change energy storage technology is Phase Change Materials (PCMs), of which the quality determines the level of energy efficiency. PCMs, mainly indicating solid-liquid PCMs, include inorganic PCMs and organic PCMs. Inorganic PCMs possess high fusion heat, high thermal conductivity and small volume change. While they are prone to get supercooling and phase separation, which can decrease their thermal storage capacity severely. At the same time inorganic PCMs are usually corrosive. Organic PCMs have not the disadvantage of phase separation and are stable. While organic PCMs are highly volatile and flammable, this represents a considerable safety concern for many applications. Also their thermal conductivities are generally low. Therefore new PCMs overcoming the defects of inorganic and organic PCMs are urgently needed. In this work, ionic liquids (ILs) were supposed to be used as PCMs. Quantum chemistry calculation methods were used to recognize the structure effects of ionic liquids to their properties and used for directing the experimental preparation of novel ionic liquids with good performances. Thermodynamic properties of the synthesized ILs were characterized, and their applications in seasonal heat storage, industrial waste heat, and heat pump were investigated.
     QSPR methods were firstly adopted to study the relationship between structures and heat of fusion of ionic liquids. The geometries of ILs were optimized by PM3semi-empirical calculation and Density Function Theory (DFT) separately. Then, Quantum chemistry parameters were obtained from the output file:cation-anion interaction energy (Ei), Dipole moment (μ), energy molecular orbital (ELUMO and EHOMO), electric charge of front atom (Ccation and Canion), molecular volum (Vm), surface area (S) and shortest hydrogen bond distance (LH).6-parameters model for44ILs,4-parameters model for30ILs,5-parameters model for22imidazolium ILs,3-parameters model for10halide ILs and2-parameters model for9halide imidazolium ILs were constructed. The correlation coefficients were greater than0.93which showed satisfactory internal consistency. The predictabilities of QSPR models were evaluated by external datasets. It was concluded that the validity of the correlation models were greatly depending on the consistency of cation and anion structures of ILs. Besides, the most effective descriptor for heat of fusion was molecular volume. The other descriptors, such as MW,μ and ELUMO, were also important factors. The influencing rules of alkyl side chain length, methyl substitution at C2, and variations of anion on the thermodynamic properties of ILs were obtained and were used for directing the preparation of ILs.
     Eight kinds of imidazolium halide ILs and six kinds of caprolactam ILs were prepared by changing the length of alkyl side chain, methyl substitution at C2, and selecting small volum anion (ie, Cl-and Br-).
     Thermodynamic properties of ILs prepared in this work were characterized. The results indicated that the heat of fusion of [C16MIM]Br and [C16MMIM]Br were144.37J·g-1and123.68J·g-1, respectively.[C16MIM]Br and [C16MMIM]Br performed good sensible heat storage. The heat capacities of two ILs at solid state were higher than1.25J·g-1·℃-1and increased with increasing temperature. The heat capacities of two ILs at liquid state were about2.3J·g-1·℃-1. The initial decomposition temperatures for two ILs are230℃and250℃. When temperature ranges from10℃to50℃, thermal conductivities of imidazolium ILs are between0.15~0.35W·m-1·℃-1which are higher than that of Therminol(?) VP-1heat transfer fluid.
     Melting points, heat of fusions and heat capacities6kinds of caprolactam halide ILs were characterized. They performed comparatively good latent heat and sensitive heat storage properties. The thermodynamic properties of caprolactam halide ILs are below:melting points are in the range of60~75℃, heat of fusions are above120J·g-1, heat capacities at solid state and liquid state are above1.33J·g-1·℃-1and2.0J·g-1℃, respectively.
     The active use of supercooling of ionic liquids for seasonal solar energy storage was proposed, which means that the thermal energy is stored in a supercooled liquid state and released by nucleating agents when needed.[C16MIM]Br and [C16MMIM]Br are selected in this work, copper powder, graphite powder and1-octadecanol as nucleating agents are added with different mass ratios (0-25wt%) and their effects on the thermodynamic properties of two ionic liquids are investigated. The result indicates that the [C16MIM]Br+copper powder behaves proper melting points and stable supercooling state that are more suitable for seasonal thermal energy storage.
     In order to solve the problems of IL-PCMs, such as the volume changes during phase change, loss during the using process and combination with the surroundings, ILs were supposed to be packaged into microcapsule. Using melamine-formaldehyde resin (MF) as wall materials and [C4MIM]PF6or [C16MIM]PF6as inner materials, the microencapsulated ILs were prepared. The effects of preparation method and the molar ratio of melamine/formaldehyde were studied. The microencapsulated [C4MIM]PF6were successfully prepared by one step method when the molar ratio of melamine/formaldehyde was1:4.16.
引文
[1]秦培煜,周世权.能源材料的研究现状及发展前景[J].节能,2002,(5):5-7
    [2]沈学忠,张仁元.相变储能材料的研究和应用[J].节能技术,2006,24(5):460-463
    [3]Seddon K R. Ionic liquids for clean technology[J]. J. Chem. Technol. Biotechnol.,1997,68(4): 351-356
    [4]张寅平,胡汗平.相变储能-理论和应用[M].合肥:中国科学技术大学出版社,1996:8-31
    [5]邹向.液态铝硅合金的浸蚀研究[J].腐蚀与防护,1995,16(5):214-216
    [6]姜勇,丁恩勇,黎国康.相变储能材料的研究进展[J].广州化学,1999,3(3):48-54
    [7]戴或,唐黎明.相变储热材料研究进展[J].化学世界,2001,42(12):662-666
    [8]Inaba H. New challenge in advanced thermal energy transportation using functionally thermal fluids[J]. Int. J. Therm. Sci.,2000,39(9-11):991-1003
    [9]张寅平,胡先旭,郝磐,等.等热流圆管内潜热型功能热流体层流换热的内热源模型及应用[J].中国科学(E辑),2003,33(3):237
    [101 Inaba H, Tu P. Evaluation of thennophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material [J]. Heat and Mass Transfer/Waerme-und Stoffuebertragung, 1997,32(4):307-312
    [11]黄金,张仁元.无机盐/陶瓷基复合相变蓄热材料的研究[J].材料导报,2005,19(8):106-108,116
    [12]工剑锋.相变储热研究进展:(1)相变材料特性与储热系统优化[J].新能源,200u,22(3):31-35
    [13]李军,朱冬生,张立志,等.纳米技术在蓄热材料中的应用[J].材料导报,2003,17(P09):135-137
    [14]方晓明,张正国.硬酯酸/膨润上复合相变储热材料研究[J].非金属矿,2005,28(4J:23-24,27
    [15]丁剑红,张寅平,王馨,等.掺杂对定形相变材料导热系数的影响[J].太阳能学报,2003,26(6):853-856
    [16]阮德水,张太平.相变贮热材料的DSC研究[J].太阳能学报,1994,15(1):19-24
    [17]马贵阳,张育才,王旭东.太阳能相变蓄热加热输送原油系统[J].辽宁石油化工大学学报,2006,26(3):66-69,72
    [1 8]陈慧斌,沈学忠.电力调峰和相变储能技术[J].陕西电力,2006,38(1):50-52
    [19]剧霏,刘超,程军,等.蓄热材料在热泵及其它方面的应用[J].制冷,2006,25(1):40-43
    [20]林怡辉,张正国.溶胶-凝胶法制备新型蓄能复合材料的研究[J].华南理工大学字报:自然科学版,2001,29(11):7-10
    [211 Athienitis A K, Liu C, Hawes D, et al. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage[J]. Build. Env.,1997,32(5):405-410
    [22]尚燕,张雄.新型相变储能技术的应用与发展[J].节能技术,2006,34(2):21-26
    [231 Miyamoto K. Renewable biological systems for alternative sustainable energy production[M]. FAO-Food and Agriculture Organization of the United Nations, Osaka University ed. Osaka: 1997:135
    [24]Ozturk H H. Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating[J]. Energy Convers. Manage.,2005,46(9-10):1523-1542
    [25]Kenisarin M, Mahkamov K. Solar energy storage using phase change materials[J]. Energy Convers. Manage.,2007,11(9):1913-1965
    [26]仝兆丰,孔祥冬,刘民义.高温金属/陶瓷蓄热材料及其工业节能应用前景[J].节能,1995,(10):8-12
    [27]王志强,曹明礼,龚安华,等.相变储热材料的种类,应用及展望[J].安徽化工,2005,31(2):8-11
    [28]张东,周剑敏,吴科如.相变储能复合材料及其电力调峰功能分析[J].华东电力,2003,(9):27-30
    [291 You M, Zhang X X, Wang J P, et al. Polyurethane foam containing microencapsulated phase-change materials with styrene-divinybenzene co-polymer shells[J]. J. Mater. Sci.,2009, 44(12):3141-3147
    [30]Athienitis A, Liu C, Hawes D, et al. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage[J]. Build. Env.,1997,32(5):405-410
    [31]Frank E. Ionic liquids:Solvents for the electrodeposition of metals and semiconductors[J]. ChemPhysChem,2002,3(2):144-154
    [32]李汝雄,王建基.离子液体与相关聚合物电解质研究进展[J].化工新型材料,2002,30(9):13-16
    [33]Peter W, Wilhelm K. Ionic liquids-new "solutions" for transition metal catalysis[J]. Angew. Chem. Int. Edit.,2000,39(21):3772-3789
    [34]Tait S, Osteryoung R A. Infrared study of ambient-temperature chloroaluminates as a function of melt acidity[J]. Inorg. Chem.,1984,23(25):4352-4360
    [35]Wilkes J S. A short history of ionic liquids-from molten salts to neoteric solvents[J]. Green Chem.,2002,4(2):1463-9262
    [36]Caldwell R A, Creed D, Ohta H. Exciplex quenching. Geometric and electronic requirements[J]. J. Am. Chem. Soc.,1975,97(11):3246-3247
    [37]Wilkes J S, Levisky J A, Wilson R A, et al. Dialkylimidazolium chloroaluminate melts:A new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis[J]. Inorg. Chem.,1982,21(3):1263-1264
    [38]Wilkes J S, Zaworotho M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. J. Chem. Soc.:Chem. Commun.,1992, (13):965-966
    [39]杨雅立,上晓化,寇元,等,不断壮大的离子液体家族[J].化学进展,2003,15(6):471-476
    [40]Bao W, Wang Z, Li Y. Synthesis of chiral ionic liquids from natural amino acids[J]. J. Org. Chem.,2003,68(2):591-593
    [41]Cole A C, Jensen J L, Ntai I, et al. Novel Bronsted acidic ionic liquids and their use as dual solvent-catalysts[J]. J. Am. Chem. Soc.,2002,124(21):5962-5963
    [42]Leone A M, Weatherly S C, Williams M E, et al. An ionic liquid form of DNA:Redox-active molten salts of nucleic acids[J]. J. Am. Chem. Soc.,2001,123(2):218-222
    [43]张锁江,吕兴梅.离子液体-从基础研究到工业应用[M].北京:科学出版社,200.6:2
    [44]王均风,张锁江,陈慧萍,等.离子液体的性质及其在催化反应中的应用[J].过程工程学报,2003,3(2):177-185
    [45]Dean J A. Lange's handbook of chemistry(the 15th edition)[M]. New York: McGrawHill,1999:
    [46]何鸣元,戴立益.离子液体与绿色化学[J].化学教学,2002,(6):1-3
    [47]Brennecke J F, Maginn E J. Ionic liquids:Innovative fluids for chemical processing [J]. AIChE J., 2001,47(11):2384-2389
    [48]Omotowa B A, Shreeve J n M. Triazine-based polyfluorinated triquatenary liquid salts: Synthesis, characterization, and application as solvents in rhodium(i)-catalyzed hydroformylation of I-octene[J]. Organometallics,2004,23(4):783-791
    [49]Branco L C, Rosa J N, Moura Ramos J J, et al. Preparation and characterization of new room temperature ionic liquids[J]. Chem. Eur. J.,2002,8(16):3671-3677
    [50]Yamamuro O,Minamimoto Y, Inamura Y, et al. Heat capacity and glass transition of an ionic liquid 1-butyl-3-methyliimidazolium chloride[J]. Chem. Phys. Lett.,2006,423(4-6):371-375
    [51]Holbrey J D, Seddon K R. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals[J]. J. Chem. Soc., Dalton Trans.,1999, (13):2133-2140
    [52]Law G, Watson P R. Surface tension measurements of n-alkylimidazolium ionic liquids[J]. Langmuir,2001,17(20):6138-6141
    [53]Suarez P A Z, Einloft S, Dullius J E L. et al. Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation[J]. J. Chim. Phys,1998,95(7): 1626-1639
    [54]Nishida T, Tashiro Y, Yamamoto M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte[J]. J. Fluor. Chem.,2003,120(2): 135-141
    [55]Bonhote P, Dias A P, Papageorgiou N, et al. Hydrophobic, highly conductive ambient-temperature molten salts[J]. Inorg. Chem.,1996,35(5):1168-1178
    [56]Huddleston J G, Visser A E, Reichert W M, et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation[J]. Green Chem.,2001,3(4):156-164
    [57]Ngo H L, LeCompte K, Hargens L, et al. Thermal properties of imtdazolium ionic liquids[J]. Thermochim, Acta,2000,357-358:97-102
    [58]Perry R L, Jones K M, Scott W D, et al. Densities, viscosities, and conductivities of mixtures of selected organic cosolvents with the lewis basic aluminum chloride + 1-methyl-3-ethyllimidazolium chloride molten salt[J]. J. Chem. Eng. Data,1995,40(3):615-619
    [59]Dzyuba S V, Bartsch R A. Influence of structural variations in 1-alkyl (aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids.[J]. ChemPhysChem, 2002, 3(2): 161-166
    [60]Gu Z, Brennecke J F. Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids[J]. J. Chem. Eng. Data, 2002, 47(2): 339-345
    [61]韩金玉,黄鑫,王华,等.绿色溶剂离子液体的性质和应用研究进展[J],化学工业与工程,20,05,22(1):62-66
    [62]Gu Y, Li G. Ionic liquids-based catalysis with solids: State of the art[J]. Adv. Synth. Catal., 2009, 351(6): 817-47
    [63]Zhang Q, Zhang S, Deng Y. Recent advances in ionic liquid catalysis[J]. Green Chem., 2011, 13(10): 2619-37
    [64]Wilkes J S. Properties of ionic liquid solvents for catalysis[J]. J. Mol. Catal. A: Chem., 2004, 214(1): 11-17
    [65]Huddleston J G Willauer H D, Swatloski R P, et al. Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction[J]. Chem. Commun., 1998, 998(16): 1765-1766
    [66]Fadeev A G, Meagher M M. Opportunities for ionic liquids in recovery of biofuels [J]. Chem. Commun., 2001, 1(3): 295-296
    [67]Freemantle M Designer solvents[J]. Chem. Eng. News, 1998, 76(13): 32-37
    [68]顾彦龙,石峰,邓友全.室温离子液体浸取分离牛磺酸与硫酸钠固体混合物[J].化学学报,2004,62(5):532-536
    [69]Yanes E G, Gratz S R, Baldwin M J, et al. Capillary electrophorettc application of 1-alkyl-3-methylimidazolium-based ionic liquids[J]. Anal. Chem., 2001, 73(16): 3838-3844
    [70]Armstrong D W, He L, Liu Y-S. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography[J]. Anal. Chem., 1999, 71(17): 3373-3876
    [71]周瀚成,陈楠,石峰,等.离子液体萃取脱硫新工艺研究[J].分子催化,2005,19(2):94-97
    [72]胡松青,张军,刘冰,等.离子液体萃取脱硫的探索性研究[J].石油学报(石油加工),2007,23(1):100-103
    [73]Ye C F, Liu W M, Chen Y X, et al. Room-temperature ionic liquids: A novel versatile Iubricant[J]. Chem. Commun., 2001, 1(21): 2244-2245
    [74]Del Sesto R E, Ghebremichael F, Heimcr N E, et al Modeling, synthesis, and characterization of third-order nonlinear optical salts[A]. Proc. SPIE, 2003, 5212: 292
    [75]Deetlefs M, Seddon K R, Shara M. Neoteric optical media for refractive index determination of gems and minerals[J]. New J. Chem., 2006, 30, 317-326
    [76]Uzagare M C. Sanghvi Y S, Salunkhe M M. Application of ionic liquid 1-methoxyethyl-3-methyl imidazolium niethanesulfonate in nucleoside chemistry[J]. Green Chem., 2003, 5:370-372
    [77]Endres F. Ionic liquids for electrochemical deposition: Prospects and challenges[J]. Chem. Ing. Tech., 2011,83(9): 1485-1492
    [78]Weaver J, Breadner D, Deng F, et al. Electrochemistry of ferrocene-functionalized phosphonium ionic liquids[J]. J Phys. Chem. C., 2011, 115(39): 19379-19385
    [79]Hurley F, Wier T. Electrodeposition of metals from fused quaternary ammonium salts[J]. J. Electrochein. Soc, 1951, 98: 203-206
    [80]MacFarlane D R, Huang J, Forsyth M. Lithium-doped plastic crystal electrolytes exhibiting fastion conduction for secondary batteries[J]. Nature, 1999, 402(6763): 792-794
    [81]Fuller J, Carlin R T, Osteryoung R A. Room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: Electrochemical couples and physical properties[J]. J. Electrochem. Soc, 1997, 144(11): 3881-3886
    [82]Tsuda T, Husscy C L. Electrodeposition of photocatalytic alinsb semiconductor alloys in the lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride room-temperature ionic liquid[J]. Thin Solid Films, 2008, 516(18): 6220-6225
    [83]Stall M E, Oldhamt W J, Costa D A. Metal electrodeposition and electron transfer studies of uranium compounds in room temperature ionic liquids[A]. Pennington, NJ 08534-2896, United States: Electrochemical Society Inc., 2004: 2426
    [84]Endres F. Ionic liquids: Promising solvents for the electrodeposition of nanoscale metals and semiconductors[A]. Pennington, NJ 08534-2896, United States: Electrochemical Society Inc., 2004:2455
    [85]Sell C. Liquid gokl?[J]. Engineer, 2005,293(7669): 36
    [86]Sato T, Masuda G, Takagi K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications[J]. Electrochim. Acta, 2004, 49(21): 3603-3611
    [87]Buzzeo M C. Hardacre C, Compton R G. Use of room temperature ionic liquids in gas sensor design[J]. Anal. Chem.,2004,76(15):4583-4588
    [88]Li X, Geng Y, Simonsen J, et al. Application of ionic liquids for electrostatic control in wood[J]. Holzforschung,2004,58(3):280-285
    [89]Zhou Y. Recent advances in ionic liquids for synthesis of inorganic nanomaterials [J]. Curr. Nanosci.,2005,1(8):35-42
    [90]Zhang Y, Shen Y, Yuan J, et al. Design and synthesis of multifunctional materials based on an ionic-liquid backbone[J]. Angew. Chem. Int. Edit.,2006,45(35):5867-5870
    [91]Antonietti M, Kuang D, Smarsly B, et al. Ionic liquids tor the convenient synthesis of functional nanoparticles and other inorganic nanostructures[J]. Angew. Chem. Int. Edit.,2004,43(38): 4988-4992
    [92]Ma Z, Yu J, Dai S. Preparation of inorganic materials using ionic liquids[J]. Adv. Mater.,2010, 22(2):261-85
    [93]诸平C8mimPF——理想的载热介质[J].北京工业大学学报,2003,29(2):202-206
    [94]Valkenburg M E V, Vaughn R L, Williams M, et al. Thermochemistry of ionic liquid heat-transfer fluids[J]. Thermochirn. Acta 2005,425(2005):181-188
    [95]薛平,孙国林,丁筠,等.相变储能材料的制备方法[P].中国专利,100341973C.
    [96]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chem. Rev, 1999,99(8):2071-2084
    [97]Wiener H. Structural determination of paraffin boiling points[J]. J. Am. Chem. Soc.,1947,69(1): 17-20
    [98]Blum D J W, Specce R E. Determining chemical toxicity to aquatic species; the use of QSARs and surrogate organisms[J]. Environ. Sci. Technol., 1990,24(3):284-293
    [99]郑燕升,莫倩,刘昭明.离子液体的QSPR/QSAR开究[J].化学进展,2009,21(9):1772-1781
    [100]Kamlet M, Doherty R, Abraham M, et al. Linear solvation energy relationship.46. An improved equation for correlation and prediction of octanol/water partition coefficients of organic nonelectrolytes (including strong hydrogen bond donor solutes)[J]. J. Phys. Chem.1988,92(18): 5244-5255
    [101]Katritzky A R, Jain R, Lomaka A, et al. Correlation of the melting points of potential ionic liquids (imidazolium bromides and benzimidazolium bromides) using the codessa program[J]. J. Chem. Inf. Comput. Sci.,2002,42(2):225-231
    [102]Katritzky A R, Lomaka A, Petrukhin R, et al. QSPR correlation of the melting point for pyridinium bromides, potential ionic liquids[J]. J. Chem. Inf. Comput. Sci.,2002,42(1):71-74
    [103]Eike D M, Brennecke J F, Maginn E J. Predicting melting points of quaternary ammonium ionic liquids[J]. Green Chem.,2003,5(3):323-328
    [104]Trohalaki S, Pachter R, Drake G W, et al. Quantitative structure-property relationships for melting points and densities of ionic liquids[J]. Energy Fuels,2005,19(1):279-284
    [105]Trohalaki S, Pachter R. Prediction of melting points for ionic liquids[J]. QSAR Comb. Sci,2005, 24(4):485-490
    [106]孙宁,张锁江,张香平,等.离子液体物理化学性质数据库及QSPR分析[J].过程工程学报,2005,5(6):698-702
    [107]Sun N, He X, Dong K, et al. Prediction of the melting points for two kinds of room temperature ionic liquidsLJ]. Fluid Phase Equilib.,2006,246(1-2):137-142
    [108]Varnek A, Kireeva N, Tetko I V, et al. Exhaustive QSPR studies of a large diverse set of ionic liquids:How accurately can we predict melting points?[J]. J. Chem. Inf. Comput. Model.,2007, 47(3):1111-1122
    [109]Carrera G V S M, Branco L C, Aires-de-Sousa J, et al. Exploration of quantitative structure-property relationships (QSPR) for the design of new guanidinium ionic liquids[J]. Tetrahedron,2008,64(9):2216-2224
    [110]Ren Y Y, Qin J, Liu H X, et al. QSPR study on the melting points of a diverse set of potential ionic liquids by projection pursuit regression [J]. QSAR Comb. Set.,2009,28(11-12):1237-1244
    [111]Deetlefs M, Seddon K R, Shara M. Predicting physical properties of ionic liquids[J]. Phys. Chem. Chem. Phys.,2006,8(5):642-649
    [112]Lazzus J A. (T, P) model for ionic liquids based on quantitative structure-property relationship calculations[J]. J. Phys. Org. Chem.,2009,22(12):1193-1197
    [113]Carvalho P, Neves C, Coutinho J. Surface tensions of bis(trifluoromethylsulfonyl)imide anion-based ionic liquids[J]. J. Chem. Eng. Data,2010,55(9):3807-3812
    [114]Gardas R L, Coutinho J A P. Applying a QSPR correlation to the prediction of surface tensions of ionic liquids[J]. Fluid Phase Equilib.,2008,265(1-2):57-65
    [115]Balasubrahmanyam S N. Einstein,'parachor' and molecular volume:Some history and a suggestion [J]. Curr. Sci.,2008,94(12):1650-1658
    [116]Ayirala S C, Rao D N. A new mechanistic parachor model to predict dynamic interfacial tension and miscibility in multicomponent hydrocarbon systems[J]. J. Colloid Interface Sci., 2006, 299(1): 321-331
    [117]Gardas R L, Rooney D W, Hardacre C. Development of a QSPR correlation for the parachor of 1,3-dialkyl imidazolium based ionic liquids[J]. Fluid Phase Equilib., 2009, 283(1-2): 31-37
    [118]Katritzky A R, Kuanar M, Stoyanova-Slavova I B, et al. Quantitative structure-property relationship studies on ostwald solubility and partition coefficients of organic solutes in ionic liquids[J].J. Chem. Eng. Data, 2008, 53(5): 1085-1092
    [119]Eike D M, Brennecke J F, Maginn E J. Predicting infinite-dilution activity coefficients of organic solutes in ionic liquids[J]. Ind. Eng. Chem. Res., 2004, 43(4): 1039-1048
    [120]Ge M, Li C, Ma J. QSPR analysis for infinite dilution activity coefficients of organic solutes in ionic liquids[J]. Electrochem., 2009, 77(8): 745-747
    [121]Xi L, Sun H, Li J, et al. Prediction of infinite-dilution activity coefficients of organic solutes in ionic liquids using temperature-dependent quantitative structure-property relationship method[J]. Chem. Eng. J., 2010, 163(3): 195-201
    [122]朱吉钦,于燕梅,陈健.有机物在离子液体中无限稀释活度因子及液液界面张力的定量结构-性质关系[J].化工学报,2006,57(8):1835-1840
    [123]Freire M G, Neves CMSS, Ventura S P M, et al. Solubility of non-aromatic ionic liquids in water and correlation using a QSPR approach[J]. Fluid Phase Equilib., 2010, 294(1-2): 234-240
    [124]Zhou Z B, Takeda M, Ue M. New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions[J]. J. Fluorine Chem., 2004, 125(3): 471-476
    [125]Matsuda H, Yamamoto H, Kurihara K, et al. Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities and viscosities[J]. Fluid Phase Equilib., 2007, 261(1-2): 434-443
    [126]Tochigi K, Yamamoto H. Estimation of ionic conductivity and viscosity of ionic liquids using a QSPR model[J]. J. Phys. Chem, C. 2007, 111(43): 15989-15994
    [127]Billard I, Marcou G, Ouadi A, et al. In silico design of new ionic liquids based on quantitative structure-property relationship models of ionic liquid viscosity[J]. J. Phys. Chem. B, 2011, 115(1): 93-98
    [128]Bini R, Malvaldi M, Pitner W R, et al. QSPR correlation tor conductivities and viscosities of low-temperature melting ionic liquids[J]. J. Phys. Org. Chem., 2008, 21(7-8):622-629
    [129]Han C, Yu G, Wen L, et al. Data and QSPR study for viscosity of imidazollum-based ionic liquids[J]. Fluid Phase Equilib., 2011, 300(1-2): 95-104
    [130]Li G, Shen J, Zhu Y. Study of pyridinium-type functional polymers.ll. Antibacterial activity of soluble pyridinium-type polymers[J]. J. Appl. Polym. Sci., 1998, 67(10): 1761-1768
    [131]Pernak J, Kalewska J, Ksyciska H, et al. Synthesis and anti-microbial activities of some pyridinium salts with alkoxymethyl hydrophobic group[J]. Eur. J. Med. Chem., 2001, 36(11-12): 899-907
    [132]Pernak J, Rogoa J, Mirska 1. Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides[J]. Eur. J. Med. Chem., 2001, 36(4): 313-320
    [133]Pernak J, Chwaa P. Synthesis and anti-microbial activities of choline-like quaternary ammonium chlorides[J], Eur. J. Med. Chem., 2003, 38(11-12): 1035-1042
    [134]Ranke J, Molter K, Stock F, et al. Biological effects of imidazolium ionic liquids with varying chain lengths in acute vibrio fischeri and WST-1 cell viability assays[J. Ecotox. Environ. Safe., 2004, 58(3): 396-404
    [135]Docherty K M, Kulpa Jr C F. Toxicity and antimicrobial activity of iniidazolium and pyridinium ionic hquids[J]. Green Chem., 2005, 7(4): 185-189
    [136]Couling D J, Bernot R J, Docherty K M, et al. Assessing the factors responsible tor ionic Liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling[J]. Green Chem., 2006, 8(1): 82-90
    [137]Luis P, Ortiz I, Aldaco R, et al. A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio fischeri EC50) of ionic liquids[J]. Ecotox. Environ. Safe., 2007, 67(3): 423-429
    [138]Nist standard reference database #147, http://ilthermo.boulder.nist.gov.
    [139]Dyekjaer J D, Jonsdottir S O. QSPR models based on molecular mechanics and quantum chemical calculations. 2. Thermodynamic properties of alkanes, alcohols, polyols, and ethers [J]. Ind. Eng. Chem. Res., 2003,42(18): 4241-4259
    [140]Vetere A. Methods to predict the vaporization enthalpies at the normal boiling temperature of pure compounds revisited[J]. Fluid Phase Equilib., 1995, 106(1-2): 1-10
    [141]蒋栋,王媛嫒,刘洁,等.咪唑类离了液体结构与熔点的构效关系及其基本规律[J].化学通 报,2007,70(5):371-375
    [142]刘坤辉,蒲敏,李会英,等.1-乙基-3-甲基咪唑四氟硼酸盐离子液体的量子化学研究[J].化学物理学报,2005,18(3):331-335
    [143]Zhou Z, Parr R G. Activation hardness:New index for describing the orientation of electrophilic aromatic substitution[J]. J. Am. Chem. Soc.,1990,112(15):5720-5724
    [144]Web:Http://www.Spss.com/
    [145]Handy S T, Okello M. The 2-position of imidazolium ionic liquids:Substitution and exchange[J]. J. Org. Chem.,2005,70(5):1915-1918
    [146]Dieter K M, Dymek C J, Heimer N E, et al. Ionic structure and interactions in 1-methyl-3-ethylimidazolium chloride-aluminum chloride molten salts[J]. J. Am. Chem. Soc., 1988,110(9):2722-2726
    [147]Urahata S M, Ribeiro M C C. Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: A systematic computer simulation study[J]. J. Chem. Phys.,2004,120:1855
    [148]Hunt P A, Gould I R. Structural characterization of the 1-butyl-3-methylimidazolium chloride ion pair using ab initio methods[J]. J. Phys. Chem. A,2006,110(6):2269-2282
    [149]Buhl M, Chaumont A, Schurhammer R, et al. Ab initio molecular dynamics of liquid 1, 3-dimethylimidazolium chloride[J]. J. Phys. Chem. B,2005,109(39):18591-18599
    [150]Tsuzuki S, Tokuda H, Hayamizu K, et al. Magnitude and directionality of interaction in ion pairs of ionic liquids:Relationship with ionic conductivity[J]. J. Phys. Chem. B,2005,109(34): 16474-16481
    [151]Demberelnyam ba D, Shin B K, Lee H. Ionic liquids based on n-vinyl-g-butyrolactam:Potential liquid electrolytes and green solvents[J]. Chem. Commun.,2002,2(14):1538-1539
    [152]邓友全,杨静,张庆华,等.以季铵化己内酰胺为阳离子的离子液体及其制备方法[P].中国专利,200510129875.2005-12-09
    [153]邓友全,杜正银,郭术,等.以N-质子化内酰胺为阳离子基团的布朗斯特酸性室温离子液体及其制备方法[P].CN,1772739A.
    [154]邓友全,李冬梅,石峰,等.一种离子液体的制备方法[P].CN,1978434A.
    [155]Du Z, Li Z, Guo S, et al. Investigation of physicochemical properties of lactam-based Bronsted acidic ionic liquids[J]. J. Phys. Chem. B,2005,109(41):19542-19546
    [156]梁飞,张磊,方伟成,等.离子液体的分类、合成及在氟化工艺中的应用[J].化工技术与开发,2007,36(12):17-20
    [157]Berg R W, Deetlefs M, Seddon K R, et al. Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids[J]. J. Phys. Chem. B,2005,109(40):19018-19025
    [158]Jeon Y, Sung J, Kim D, et al. Structural change of 1-butyl-3-methylimidazolium tetrafluoroborate+ water mixtures studied by infrared vibrational spectroscopy[J]. J. Phys. Chem. B,2008,112(3):923-928
    [159]Brubach J B, Mermet A, Filabozzi A, et al. Dependence of water dynamics upon confinement size[J]. J. Phys. Chem. B,2001,105(2):430-435
    [160]Talaty E R, Raja S, Storhaug V J, et al. Raman and infrared spectra and ab initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids[J]. J. Phys. Chem. B,2004,108(35): 13177-13184
    [161]Hohne G, Hemminger W, Flammersheim H. Differential scanning calorimetry[M]. Springer Verlag,2003:13
    [162]Van Valkenburg M E, Vaughn R L, Williams M, et al. Ionic liquid heat transfer fluids[A]. Fifteenth Symposiumon Thermophysical Properties:Boulder, CO,[C].2003:22-27
    [163]Nishikawa K, Wang S, Katayanagi H, et al. Melting and freezing behaviors of prototype ionic liquids, 1-butyl-3-methylimidazolium bromide and its chloride, studied by using a nano-watt differential scanning calorimeter[J]. J. Phys. Chem. B,2007,111(18):4894-4900
    [164]Chowdhury P K, Halder M, Sanders L, et al. Dynamic solvation in room-temperature ionic liquids[J]. J. Phys. Chem. B,2004,108(29):10245-10255
    [165]Marsh K N, Boxall J A, Lichtenthaler R. Room temperature ionic liquids and their mixtures--a review[J]. Fluid Phase Equilib.,2004,219(1):93-98
    [166]Kulkarni P S, Branco L C, Crespo J G, et al. Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations[J]. Chem. Eur. J.,2007,13(30):8478-8488
    [167]Fredlake C P, Crosthwaite J M, Hert D G, et al. Thermophysical properties of imidazolium-based ionic liquids[J]. J. Chem. Eng. Data,2004,49(4):954-964
    [168]Bonhote P, Dias A-P, Papageorgiou N, et al. Hydrophobic, highly conductive ambient-temperature molten salts[J]. Inorg. Chem.,1996,35(5):1168-1178
    [169]Hagiwara R, Ito Y. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions[J]. J. Fluorine Chem., 2000, 105(2): 221-227
    [170]Mukai T, Yoshio M, Kato T, et al. Effect of methyl groups onto imidazoHum cation ring on liquid crystallinity and ionic conductivity of amphiphilic ionic liquids[J]. Chem. Lett., 2004, 33(12): 1630-1631
    [171]Endo T, Kato T, Nishikawa K. Effects of methylation at the 2 position of the cation ring on phase behaviors and confbrmational structures of imidazolium-based ionic liquids[J]. J. Phys. Chem. B, 2010, 114(28): 9201-9208
    [172]Telkes M. Nucleation of supersaturated inorganic salt solutions[J]. Ind. ling. Chem.,1952, 44(6): 1308-1310
    [173]Lane G A. Phase change materials for energy storage nucleation to prevent subcooling[J]. Sol. Energy Mater. Sol. Cells, 1991, 27: 135-160
    [174]Zhang X X, Fan Y F, Tao X M, et al. Crystallization and prevention of supercooling of microencapsulated n-atkanes[J]. J. Colloid Interface Sci., 2005, 281(2): 299-306
    [175]Breger D, Bankston C, Sunderland J. Central solar heating plants with seasonal tank[J]. ASHRAE J, 1992, 34(5): 27-33
    [176]Heller A. 15 years of r&d in central solar heating in denmark[J]. Sol. Energy, 2000, 69(6): 437-447
    [177]Schultz J M, Furbo S. Solar heating systems with heat of fusion storage with 100% solar fraction for solar low energy builidngs[M]. Springer Berlin Heidelberg, 2009: 2721-2725
    [178]Ito N, Huang W, Richert R. Dynamics of a supercooled ionic liquid studied by optical and dielectric spectroscopyp]. J. Phys. Chem. B, 2006, 110(9): 4371-4377
    [179]MacFarlane D R, Forsyth S A, Golding J, et al. Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion[JJ. Green Chem, 2002, 4: 444-448
    [180]付江辉,郑丹星.饱和一元脂肪醇类相变材料的蓄热特性[J].北京化工大学学报,2004,31(3):18-21
    [181]刘袖洞,何洋,刘群,等.微胶囊及其在生物医学领域的应用[J].科学通报,2000,45(23):2476-2485

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700