用户名: 密码: 验证码:
疣孢漆斑菌(Myrothecium verrucaria)NF-05漆酶的产生、特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漆酶,即p-对苯二酚:双氧氧化还原酶(laccase,p-diphenol:dioxygen oxidoreductase, EC1.10.3.2),是一种多酚类氧化还原蛋白,属于蓝多铜氧化酶家族(blue multicopper oxidoreductase, BMCOs)。本研究从伊春凉水国家级自然保护区土壤样品中分离到一株漆酶高产真菌,纯化了胞外漆酶蛋白,考察了生化、酶学、光谱学及电化学性质,并进行了转化芳香类化合物及降解合成染料的应用研究,获得主要结果如下:
     (1)漆酶高产真菌的分离鉴定
     从土壤样品中筛选到一株具有胞外漆酶活性的真菌NF-05,菌丝白色绒毛状呈同心轮状扩散生长,分生孢子由黄色至淡绿色,最终为墨绿色胶黏团块状;显微形态分生孢子宽梭状,分生孢子梗单生或丛生,顶端帚状分枝较多,边缘菌丝卷曲状分枝,壁有疣状突起,分生孢子座座状或浅杯状,为半知菌亚门(Deuteromycotina)漆斑菌属(Myrothecium. sp)真菌;rDNA-ITS序列片段长度544bp,在NCBI数据库进行BLAST比对分析(accession number HM347341),结合形态学研究结果,鉴定为疣孢漆斑菌(M.verrucaria)。
     (2)产酶条件的优化
     M.verrucaria NF-05在产酶基础培养基中发酵至第五天达到产酶高峰,初始酶活8.38U/ml,菌丝生长与胞外漆酶分泌部分耦合。菌株产酶最适碳源为4%葡萄糖,3%蛋白胨,培养基初始pH值7.0,装液量60ml/250ml,接种量4%,最适培养条件为30℃下140rpm振荡培养,没食子酸及Fe3+对菌株产酶有显著促进作用,NF-05产酶水平提高至12.82U/ml。响应面法(RSM)优化中PB设计结果表明葡萄糖、Cu2+和没食子酸对菌株产酶有显著影响,经最陡爬坡试验及中心组合试验(CCD),葡萄糖浓度为26.47g/l,Cu2+和没食子酸浓度分别为236.3μM和138.4μM时,模型拟合方程有极大值19.82U/ml,是初始酶活的2.37倍。
     (3)胞外漆酶的诱导
     Cu2+在0.1-4mM范围内对NF-05胞外漆酶有显著诱导作用,最优浓度为0.2mM,发酵液漆酶活性43.23U/ml;16种供试酚类对菌株产酶有明显诱导作用,阿魏酸效果最好,酶活达到234.15U/ml;14种显著诱导菌株产酶的胺类物质中,3,3-二甲基-4,4-二氨基联苯使酶活提高至258.11U/ml;6种非酚胺类漆酶底物也对NF-05漆酶产生有显著诱导效果,木质素磺酸钠浓度为1mM时,发酵液漆酶活性为267.92U/ml,是目前报道的真菌漆酶活性最高值;4种染料显著诱导产酶,偶氮类丽春红效果最好,酶活从对照处理的43.23U/ml提高至61.16U/ml。
     (4)蛋白的纯化与鉴定
     以M.verrucaria NF-05发酵液为粗酶液,采用硫酸铵盐析、DEAE-SepharoseFast Flow阴离子交换层析和SephadexG-75凝胶过滤层析纯化,经SDS-PAGE和native-PAGE检测,目的片段为单体蛋白,具有漆酶活性,分子量66kDa。N端10个氨基酸序列为APQISPQYPM,结合基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-/MS)对肽段序列的比对分析,鉴定所获M.verrucarid NF-05胞外目的蛋白为漆酶蛋白。
     (5)光谱学特性
     经电感耦合等离子体原子发射光谱(ICP-AES)测定,每个M.Verrucaria NF-05漆酶蛋白分子含铜离子3.08±0.3个,铁离子0.95±0.2个,二者比例为3:1。目的蛋白在300-650nm波长范围内全扫描,无特征吸收峰,顺磁共振(EPR)也未检测到磁性信号。我们推断M.Verrucaria NF-05漆酶蛋白中铜离子处于正一价态,全满状态的d10核外电子排布,不能产生d-d跃迁,易于电子传递,是造成光谱学“静默”的原因,也赋予NF-05漆酶异常高的酶活性。NF-05漆酶蛋白是一种活性中心金属组分及光谱学特性不同与已知报道的新白色漆酶。
     (6)酶学特性
     M.Verrucaria NF-05漆酶最适作用pH值4.0,最适作用温度40℃;Na+、 Mn2+、Cu2+和Zn2+对漆酶活性有显著促进;在5%供试有机溶剂中,漆酶活性保持在50%以上,常规蛋白抑制剂L-半胱氨酸、SDS、DTT和NaN3浓度为1mM时,酶活性基本丧失;卤族元素阴离子是供试漆酶特异性抑制剂;与常规漆酶底物ABTS亲和性较好,Km值为85.9μM。
     (7)对合成染料的脱色与降解
     偶氮类染料中,NF-05漆酶对橙黄Ⅰ和甲基橙脱色效果最好,无介体参与反应8天后脱色率即可达到90%以上;TE、VA和HBT对橙黄G6、ACE对苋菜红有明显促进脱色效果,脱色率达到90%以上。介体的参与可小幅提高NF-05漆酶对供试蒽醌类染料的脱色效率。芳甲烷类染料中碱性品红脱色效果最好。无介体参与并增大漆酶浓度后,反应10min时橙黄Ⅰ、铬黑T、碱性品红和苯酚红的特征吸收峰即完全被降解。
     (8)对芳香酚胺的转化
     NF-05漆酶对没食子酸等14种酚类底物、对氨基-N,N-二甲基苯胺等15种胺类底物及ABTS等6种非酚胺类底物的催化效率均高于两种对照商品酶。
     (9)电化学性质
     在充氮条件下,M.Verrucaria NF-05漆酶直接吸附于GP和GC裸电极上,与电极间均可进行直接电子转移,发生可逆的电化学反应;对过氧化氢的电催化还原效率均高于对照商品漆酶和胆红素氧化酶,过氧化氢氧化还原起始电势与裸电极相比均有明显正移。
Laccase (p-diphenol:dioxygen oxidoreductase, EC1.10.3.2) is a kind of multiphenolic oxidoreductase which belongs to the family of blue multicopper oxidoreductases. In this research, we isolated a laccase-producing fungus strain and reported a comprehensive investigation on the biochemical, spectral, enzymatic and electrochemical properties of the purified laccase protein. Further more, we also made some practical research on optimization and inducement of laccase production, declorisation and degradation of dyes together with transformation of phenols and amines. The major techniques and results of this research are as follows:
     (1) Isolation and identification of laccase-producing strain
     A fungus named NF-05with high laccase-producing ability was selected from soil sample. When cultured at30℃on a PDA plate for6days, the colony of NF-05was large, flat, rounded, with short and velvety white hyphae, white color on the surface and brown on the back. On the tenth day, light yellow spores emerged then turned to dark green and agglomerated. Strain NF-05was morphologically identified to deuteromycotina, Myrothecium. Combining with rDNA-ITS sequencing (544bp) and BLAST analysis (NCBI accession number HM347341), NF-05was identified as M.verrucaria.
     (2) Optimization of laccase production
     M.verrucaria NF-05reached the highest enzyme activity at8.38U/ml on the fifth day in basal medium, partially coupling with hyphae growing. Variance and multiple comparison analysis based on single factor experiments illustrated the optimum medium components and cultivation conditions were:4%glucose,3%peptone, initial pH value7.0, liquid volume60ml/250ml, inoculum4%,30℃and140rpm. Gallic acid and Fe3+significantly increased laccase production of NF-05. Laccase activity reached to12.82U/ml owing to single factor experiments. Response surface methodology was performed for further optimization. Plackett Burman design indicated the significant effects of glucose, Cu2+and gallic acid on laccase production process. Central composite design was preceded based on steepest ascent experiment. A fitting equation was achieved and testified with the maximum laccase activity at19.82U/ml, which was2.37fold of the initial value. The optimum concentration of glucose, Cu2+and gallic acid were26.47g/L,236.3μM and138.4μM, respectively.
     (3) Inducement of extracellular laccase
     Variance and multiple comparison analysis illustrated that Cu2+in range of 0.1-4.0mM significantly increased laccase production of NF-05. The laccase activity was43.23U/ml with0.2mM Cu2+as inducers. Sixteen tested phenols remarkably induced laccase-producing process, especially ferulic acid with the enzyme activity of234.15U/ml.3,3'-dimethylbiphenyl-4,4'-diamine was the best inducer with the enzyme activity at258.11U/ml among all the14amines which exerted significant inducement on extracellular laccase of NF-05. Another six substrates also increased laccase production, the best among which was sodium lignosulphonate. The laccase activity was267.92U/ml which was the highest level of microbial laccase so far. Four synthetic dyes showed remarkable positive effects for laccase inducement particularly Ponceau S.
     (4) Purification and identification of target protein
     Target protein was purified from the fermentation liquid of strain NF-05via salting out of (NH4)2SO4,anion change chromatography of DEAE-sepharose fast flow and filtration chromatography of sephadexG-75gel. SDS-PAGE and native-PAGE revealed that the purified protein was a monomer with a molecular weight of66kDa which oxidized ABTS to green band. The first ten amino acid sequences were APQISPQYPM. Together with the peptide analysis based on matrix-assisted laser desorption/ionization time of fight mass spectrometry, the purified protein was identified as laccase protein.
     (5) Spectral properties
     The average numbers of copper and fermium ions were3.08±0.3and0.95±0.2per protein molecule respectively, resulting in the ratio of3:1. The ultraviolet-visible scan figure among300-650nm showed no absorption peak. Further more, there was no obvious signal in electron paramagnanetic resonance detection. In view of the "silence" spectral properties, it could be deduced that the lack of absorption in visible light range and absence of EPR signal probably resulted from the existence of incomplete oxidation state of copper (Cu+), which had a fully occupied electron configuration of d10and no d-d transition could take place. The incomplete oxidation of metal ions might confer the easiness of electron transfer in active center of the laccase and also render the protein extra high activity. Consequently, NF-05laccase was a white laccase with new metal composition and spectral properties.
     (6) Enzymatic properties
     The optimum catalyze condition of NF-05laccase was pH4.0,40℃. Na+, Mn2+Cu2+and Zn2+significantly increased enzyme activity at specific concentration. The protein maintained more than50%activity in presence of5%tested organic solvent. Regular protein inhibitors such as L-cysteine, SDS, DTT and Na3N almost totally inhibited enzyme activity at the concentration of1mM. Halogen anions were special inhibitors for NF-05laccase. NF-05laccase showed great intimacy to ABTS with a Km value of85.9μM.
     (7) Decolorization and degradation of synthetic dyes
     Among azo dyes, more than90%of orange I and methyl orange was decolorized by NF-05laccase without mediators. Decolorization rate of orange G6reached to more than90%in TE, VA or HBT mediated system; ACE could well mediate the decolorisation system of amaranth. Mediators could increase the decolorisation rate for anthraquinone dyes to a less extent. The decolorisation rate of basic fuchsin was59.33%, which was the highest among all tested arylmethane dyes without mediators. Malachite green was the second best arylmethane dyes decolorized by NF-05laccase. PZ mediated system could increase the decolorization rate from48.68%to91.42%. NF-05laccase could not efficiently decolorize the tested dyes of other structure types. The decolorization systems under higher enzyme concentration and without mediators involvement were scanned under400-700nm. The specific absorption peaks of orange I, eriochrome black T, fuchsin basic and phenol red were almost totally degraded within10min.
     (8) Transformation of phenols and amines
     Comparison studies of catalyzing phenols and amines by NF-05laccase and control commercial oxidoreductases (laccase and bilirubin oxidase) were conducted. The reaction was coupled with4-aminoantipyrine and referenced by phenol. NF-05laccase exerted higher transforming efficiency of14phenols,15amines and6other type substrates than control enzymes.
     (9) Electrochemical properties
     Under the nitrogen saturation condition, M.verrucaria NF-05could directly absorb on GP and GC electrodes. Obvious redox peak was observed which indicated the occurrence of direct electron transfer and quasi-reversible electrochemical reaction. On GP electrode, the Epa and Epc were-0.026V and0.028V, respectively.△Ep was54mM and E0' was1mV. On GC electrode, thea and Epc were-0.027V and0.01V, respectively.△Ep was37mM and E0' was-8.5mV. The transmormfation efficiencies of peroxide electrocatalyzed by M.verrucaria NF-05lascase were higher than control commercial enzymes on both GP and GC electrodes.
引文
[1]Morozova O V, Shumakovich G P, Gorbacheva M A et al. "Blue" laccases. Biochemistry. 2007,72 (10):1136-1150
    [2]Miele A, Giardina P, Sannia G et al. Random mutants of a Pleurotus ostreatus laccase as new biocatalysts for industrial effluents bioremediation. Journal of applied microbiology. 2010,108 (3):998-1006
    [3]Zhao Y C, Yi X J, Li M H et al. Biodegradation kinetics of DDT in soil under different environmental conditions by laccase extract from white rot fungi. Chinese Journal of Chemical Engineering.2010,18 (3):486-492
    [4]Du M H, Zhao M, Lu L et al. Isolation and dye decolorization of a Bacillus subtilis strain LS02 exhibiting laccase activity. Advanced Materials Research.2011,183-185:839-843
    [5]Osma J F, Toca-Herrera J L, Rodriguez-Couto S. Biodegradation of a simulated textile effluent by immobilised-coated laccase in laboratory-scale reactors. Applied Catalysis A: General.2010,373 (1-2):147-153
    [6]Di Fusco M, Tortolini C, Deriu D et al. Laccase-based biosensor for the determination of polyphenol index in wine. Talanta.2010,81 (1-2):235-240
    [7]Ressine A, Vaz-Dominguez C, Fernandez V M et al. Bioelectrochemical studies of azurin and laccase confined in three-dimensional chips based on gold-modified nano-/microstructured silicon. Biosensors and Bioelectronics.2010,25 (5):1001-1007
    [8]Yoshida H. Chemistry of lacquer (urushi). J Chem Soc.1883,43 472-486
    [9]Hattori M, Tsuchihara K, Noda H et al. Molecular characterization and expression of laccase genes in the salivary glands of the green rice leafhopper, Nephotettix cincticeps (Hemiptera:Cicadellidae). Insect Biochemistry and Molecular Biology.2010,40 (4):331-338
    [10]Dittmer N T, Suderman R J, Jiang H et al. Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology.2004,34 (1):29-41
    [11]Luna-Acosta A, Saulnier D, Pommier M et al. First evidence of a potential antibacterial activity involving a laccase-type enzyme of the phenoloxidase system in Pacific oyster Crassostrea gigas haemocytes. Fish & Shellfish Immunology.2011,31 (6):795-800
    [12]Nitta K, Kataoka K, Sakurai T. Primary structure of a Japanese lacquer tree laccase as a prototype enzyme of multicopper oxidases. Journal of inorganic biochemistry.2002,91 (1):125-131
    [13]Keilin D, Mann T. Laccase, a blue copper-protein oxidase from the latex of Rhus succedanea. Nature.1939,143:23-24
    [14]LaFayette P R, Eriksson K, Dean J. Nucleotide sequence of a cDNA clone encoding an acidic laccase from sycamore maple (Acer pseudoplatanus L.). Plant Physiology.1995,107 (2):667-668
    [15]Sato Y, Wuli B, Sederoff R et al. Molecular cloning and expression of eight laccase cDNAs in Loblolly Pine (Pinus taeda). Journal of Plant Research.2001,114 (2):147-155
    [16]Ranocha P, McDougall G, Hawkins S et al. Biochemical characterization, molecular cloning and expression of laccases-a divergent gene family-in poplar. European Journal of Biochemistry.1999,259 (1-2):485-495
    [17]LaFayette P R, Eriksson K E L, Dean J F D. Characterization and heterologous expression of laccase cDNAs from xylem tissues of yellow-poplar (Liriodendron tulipifera). Plant Molecular Biology.1999,40 (1):23-35
    [18]Kiefer-Meyer M C, Gomord V, O'Connell A et al. Cloning and sequence analysis of laccase-encoding cDNA clones from tobacco. Gene.1996,178 (1-2):205-207
    [19]Caparros-Ruiz D, Fornale S, Civardi L et al. Isolation and characterisation of a family of laccases in maize. Plant Science.2006,171 (2):217-225
    [20]Edens W A, Goins T Q, Dooley D et al. Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici. Applied and Environmental Microbiology. 1999,65 (7):3071-3074
    [21]Iyer G, Chattoo B. Purification and characterization of laccase from the rice blast fungus, Magnaporthe grisea. FEMS Microbiology Letters.2003,227 (1):121-126
    [22]Scherer M, Fischer R. Purification and characterization of laccase Ⅱ of Aspergillus nidulans. Archives of Microbiology.1998,170 (2):78-84
    [23]Dutta J R, Dutta P K, Banerjee R. Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models. Process Biochemistry.2004,39 (12):2193-2198
    [24]Rodriguez A, Falcon M, Carnicero A et al. Laccase activities of Penicillium chrysogenum in relation to lignin degradation. Applied Microbiology and Biotechnology.1996,45 (3):399-403
    [25]Junghanns C, Moeder M, Krauss G et al. Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology.2005,151 (1):45-57
    [26]Chakroun H, Mechichi T, Martinez M J et al. Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride:Application on bioremediation of phenolic compounds. Process Biochemistry.2010,45 (4):507-513
    [27]Dekker R F H, Barbosa A M, Giese E C et al. Influence of nutrients on enhancing laccase production by Botryosphaeria rhodina MAMB-05. International Microbiology.2010,10 (3):177-185
    [28]Wei D, Houtman C J, Kapich A N et al. Laccase and its role in production of extracellular reactive oxygen species during wood decay by the brown rot basidiomycete Postia placenta. Applied and Environmental Microbiology.2010,76 (7):2091-2097
    [29]Lee K H, Wi S G, Singh A P et al. Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana. Journal of Wood Science. 2004,50 (3):281-284
    [30]Cho C H, Lee K H, Kim J S et al. Micromorphological characteristics of bamboo (Phyllostachys pubescens) fibers degraded by a brown rot fungus (Gloeophyllum trabeum). Journal of Wood Science.2008,54 (3):261-265
    [31]陈军,高大文,池玉杰等.偏肿拟栓菌Pseudotrametes gibbosa产漆酶的条件优化.菌物学报.2008,27(6):940-946
    [32]Cabana H, Alexandre C, Agathos S et al. Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Bioresource Technology.2009,100 (14):3447-3458
    [33]Ng T, Wang H. A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius. Biochemical and Biophysical Research Communications. 2004,313 (1):37-41
    [34]Courty P, Hoegger P, Kilaru S et al. Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytologist.2009,182 (3):736-750
    [35]Ikeda R, Sugita T, Jacobson E S et al. Effects of melanin upon susceptibility of Cryptococcus to antifungals. Microbiology and Immunology.2003,47 (4):271-278
    [36]Machonkin T E, Quintanar L, Palmer A E et al. Spectroscopy and reactivity of the type 1 copper site in Fet3p from Saccharomyces cerevisiae:correlation of structure with reactivity in the multicopper oxidases. Journal of the American Chemical Society.2001,123 (23):5507-5517
    [37]Solano F, Lucas-Elio P, Lopez-Serranno D. Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol Lett.2001,204 (1):175-181
    [38]Givaudan A, Effosse A, Faure D et al. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere:evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiology Letters.1993,108 (2):205-210
    [39]Faure D, Bouillant M, Bally R. Comparative study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia oryzae laccases. Applied and Environmental Microbiology.1995,61 (3):1144-1146
    [40]Solano F, Garcia E, De P et al. Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Applied and Environmental Microbiology.1997,63 (9):3499-3506
    [41]Mellano M A, Cooksey D A. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. Journal of Bacteriology.1988,170 (6):2879-2883
    [42]Endo K, Hayashi Y, Hibi T et al. Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. Journal of biochemistry.2003,133 (5):671-677
    [43]Driks A. Bacillus subtilis spore coat. Microbiology and Molecular Biology Reviews.1999, 63 (1):1-20
    [44]Claus H. Laccases and their occurrence in prokaryotes. Archives of Microbiology.2003, 179:145-150
    [45]Beneyton T, Beyl Y, Guschin D A et al. The thermophilic CotA laccase from Bacillus subtilis:bioelectrocatalytic evaluation of O2 reduction in the direct and mediated electron transfer regime. Electroanalysis.2011,23 (8):1781-1789
    [46]Enguita F J, Martins L O, Henriques A O et al. Crystal structure of a bacterial endospore coat component:a laccase with enhanced thermostability properties. Journal of Biological Chemistry.2003,278 (21):19416-19425
    [47]Wang C L, Zhao M, Lu L et al. Characterization of spore laccase from Bacillus subtilis WD23 and its use in dye decolorization. African Journal of Biotechnology.2011,10 (11):2186-2192
    [48]Slomczynski D, Nakas J, Tanenbaum S. Production and characterization of laccase from Botrytis cinerea 61-34. Applied and Environmental Microbiology.1995,61 (3):907-912
    [49]Ko E M, Leem Y E, Choi H. Purification and characterization of laccase isozymes from the white-rot basidiomycete Ganoderma lucidum. Applied Microbiology and Biotechnology. 2001,57 (1):98-102
    [50]Ullrich R, Huong L M, Dung N L et al. Laccase from the medicinal mushroom Agaricus blazei:production, purification and characterization. Applied Microbiology and Biotechnology.2005,67 (3):357-363
    [51]Coll P M, Fernandez-Abalos J, Villanueva J et al. Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Applied and Environmental Microbiology.1993,59 (8):2607-2613
    [52]Heinzkill M, Bech L, Halkier T et al. Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Applied and Environmental Microbiology.1998, 64 (5):1601-1606
    [53]Sharma P, Goel R, Capalash N. Bacterial laccases. World Journal of Microbiology and Biotechnology.2007,23 (6):823-832
    [54]Sulistyaningdyah W, Ogawa J, Tanaka H et al. Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase. FEMS Microbiology Letters.2004,230 (2):209-215
    [55]Halaburgi V M, Sharma S, Sinha M et al. Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications. Process Biochemistry.2011,46 (5):1146-1152
    [56]Zhang G Q, Wang Y F, Zhang X Q et al. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochemistry.2010,45 (5):627-633
    [57]Wu Y, Luo Z, Chow R et al. Purification and characterization of an extracellular laccase from an anthracene-degrading fungus Fusarium solani MAS2. Bioresource Technology. 2010,102 (24):9772-9777
    [58]Solomon E, Sundaram U, Machonkin T. Multicopper oxidases and oxygenases. Chem. Rev. 1996,96 (7):2563-2606
    [59]Palmieri G, Giardina P, Bianco C et al. A novel white laccase from Pleurotus ostreatus. Journal of biological chemistry.1997,272 (50):31301-31307
    [60]Min K L, Kim Y H, Kim Y W et al. Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis. Archives of Biochemistry and Biophysics.2001,392 (2):279-286
    [61]Pozdnyakova N, Turkovskaya O, Yudina E et al. Yellow laccase from the fungus Pleurotus ostreatus D1:purification and characterization. Applied biochemistry and microbiology. 2006,42 (1):63-69
    [62]Karhunen E, Niku-Paavola M, Viikari L et al. A novel combination of prosthetic groups in a fungal laccase; PQQ and two copper atoms. FEBS Letters.1990,267 (1):6-8
    [63]Piontek K, Antorini M, Choinowski T. Crystal structure of a laccase from the fungusTraametes versicolor at 1.90- resolution containing a full complement of coppers. Journal of Biological Chemistry.2002,277 (40):37663-37669
    [64]Ducros V, Brzozowski A, Wilson K et al. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 resolution. Nature Structural & Molecular Biology.1998,5 (4):310-316
    [65]Wang H, Ng T. Purification of a novel low-molecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum. Biochemical and Biophysical Research Communications.2004,315 (2):450-454
    [66]葛宏华,武赞,肖亚中.漆酶空间结构、反应机理及应用.生物工程学报.2011,27 (2):156-163
    [67]Lee S, George S, Antholine W et al. Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. J. Am. Chem. Soc. 2002,124(21):6180-6193
    [68]Riva S. Laccases:blue enzymes for green chemistry. Trends in Biotechnology.2006,24 (5):219-226
    [69]赖超凤,李爽,彭丽丽等.漆酶及其在有机合成中应用的研究进展.化工进展.2010,29(7):1300-1308
    [70]Wood D. Production, purification and properties of extracellular laccase of Agaricus bisporus. Journal of General Microbiology.1980,117 (2):327-338
    [71]Galhaup C, Haltrich D. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Applied Microbiology and Biotechnology. 2001,56 (1):225-232
    [72]Sadhasivam S, Savitha S, Swaminathan K et al. Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1. Process Biochemistry.2008,43 (7):736-742
    [73]Baldrian P, Gabriel J. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiology Letters.2002,206 (1):69-74
    [74]Revankar M, Lele S. Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochemistry.2006,41 (3):581-588
    [75]Vanhulle S, Enaud E, Trovaslet M et al. Overlap of laccases/cellobiose dehydrogenase activities during the decolourisation of anthraquinonic dyes with close chemical structures by Pycnoporus strains. Enzyme and Microbial Technology.2007,40 (7):1723-1731
    [76]Eggert C, Temp U, Eriksson K E. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus:purification and characterization of the laccase. Applied and Environmental Microbiology.1996,62 (4):1151-1158
    [77]Sanchez-Amat A, Fernandez E, Solano F. Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology.2001,1547 (1):104-116
    [78]Otterbein L, Record E, Longhi S et al. Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichia pastoris. European Journal of Biochemistry.2000,267 (6):1619-1625
    [79]Zhang X G, He C, Zhang Y Z. Cloning of laccase gene from a constructed cDNA library of Trametes gallica. Chinese Journal of Biochemistry and Molecular Biology.2009,6 (25):528-533
    [80]Zhang G, Wang Y, Cai L et al. Cloning of a laccase gene cDNA from fungi Ganoderma lucidum by the method of exon spicing. Journal of Wuhan University Natural Sciences Edition.2007,53 (6):701-705
    [81]Pan C, Zhou Y, Mo J. The clone of laccase gene and its potential function in cuticular penetration resistance of Culex pipiens pallens to fenvalerate. Pesticide Biochemistry and Physiology.2009,93 (3):105-111
    [82]Zhuo R, Ma L, Fan F et al. Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp. En3 and cloning and functional analysis of its laccase gene. Journal of Hazardous Materials.2011,192 (2):855-873
    [83]Kim C, Lorenz W W, Hoopes T et al. Oxidation of siderophores by the multicopper oxidase encoded by the Escherichia coli yac K gene. J Bacteriol.2001,183 (16):4866-4875
    [84]Saloheimo M, Niku-Paavola M L. Heterologous production of a ligninolytic enzyme: expression of the Phlebia radiata laccase gene in Trichoderma reesei. Nature Biotechnology. 1991,9 (10):987-990
    [85]Bao W, Peng R, Zhang Z et al. Expression, characterization and 2,4,6-trichlorophenol degradation of laccase from Monilinia fructigena. Molecular Biology Reports.2011,39 (4):3871-3877
    [86]周宏敏,洪宇植,肖亚中等.栓菌漆酶在毕赤酵母中高效表达及重组酶的性质.生物工程学报.2007,23(6):1055-1059
    [87]Lu J Z, Guo Q, Cui M L et al. Construction of a yeast cell-surface display system and expression of Trametes sp. laccase. Advanced Materials Research.2012,347-353 3635-3640
    [88]Larrondo L F, Avila M, Salas L et al. Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns. Microbiology.2003,149 (5):1177-1182
    [89]Record E, Punt P J, Chamkha M et al. Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. European Journal of Biochemistry.2002,269 (2):602-609
    [90]Yaver D S, Overjero M D C, Xu F et al. Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase Lccl. Applied and Environmental Microbiology.1999,65 (11):4943-4948
    [91]Ruijssenaars H J, Hartmans S. A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Applied microbiology and biotechnology.2004,65 (2):177-182
    [92]Wong D W S. Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology.2009,157 (2):174-209
    [93]Shankar S. Laccase production and enzymatic modification of lignin by a novel Peniophora sp. Applied Biochemistry and Biotechnology.2011,166 (4):1802-1094
    [94]Aracri E, Vidal T. Xylanase-and laccase-aided hexenuronic acids and lignin removal from specialty sisal fibres. Carbohydrate Polymers.2011,83 (3):1355-1362
    [95]Georgieva S, Godjevargova T, Mita D et al. Non isothermal bioremediation of waters polluted by phenol and some of its derivatives by laccase covalently immobilized on polypropylene membranes. Journal of Molecular Catalysis B:Enzymatic.2010,66 (1-2):210-218
    [96]Camarero S, Ibarra D, Martinez M J et al. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Applied and Environmental Microbiology.2005,71 (4):1775-1784
    [97]王石磊,张建波,张建英等.漆酶及其在纺织工业中的应用.印染.2010,36(12):52-55
    [98]赵敏,刘欣,工秋玉.漆酶在生物造纸中的应用.森林工程.2009,25(2):28-32
    [99]王岁楼,王琼波.漆酶在食品工业中的应用及其产生菌的研究.食品科学.2005,26(2):260-263
    [100]赵敏,魏兴东,汪春蕾等.细菌漆酶的研究进展.中国造纸学报.2008,23(3):107-114
    [101]Eddowes M, Hill H. Novel method for the investigation of the electrochemistry of metalloproteins:cytochrome c. Journal of the Chemical Society, Chemical Communications. 1977,1977 (21):771-772
    [102]Bonk S, Lisdat F. Layer-by-layer assembly of electro-active gold nanoparticle/cytochrome c multilayers. Biosensors and Bioelectronics.2009,25 (4):739-744
    [103]Amadelli R, Molinari A, Vitali I et al. Photo-electro-chemical properties of TiO2 mediated by the enzyme glucose oxidase. Catalysis Today.2005,101 (3-4):397-405
    [104]Mano N, Mao F, Heller A. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. Journal of the American Chemical Society. 2003,125 (21):6588-6594
    [105]Berezin I V, Bogdanovskaya V A, Varfolomeev S D et al. Bioelectrocatalysis. Equilibrium oxygen potential in the presence of laccase. Doklady Akademii Nauk SSSR.1978,240 615-618
    [106]赵丹,下炎,赵敏.漆酶的生物电化学研究.化学进展.2011,23(6):1224-1236
    [107]Shleev S, Tkac J, Christenson A et al. Direct electron transfer between copper-containing proteins and electrodes. Biosensors and Bioelectronics.2005,20 (12):2517-2554
    [108]Christenson A, Dimcheva N, Ferapontova E et al. Direct electron transfer between ligninolytic redox enzymes and electrodes. Electroanalysis.2004,16 (13-14):1074-1092
    [109]Hudak N S, Gallaway J W, Barton S C. Formation of mediated biocatalytic cathodes by electrodeposition of a redox polymer and laccase. Journal of Electroanalytical Chemistry. 2009,629 (1-2):57-62
    [110]Zhou M, Deng L, Wen D et al. Highly ordered mesoporous carbons-based glucose/O2 biofuel cell. Biosensors and Bioelectronics.2009,24 (9):2904-2908
    [111]Abdullah J, Ahmad M, Heng L et al. An optical biosensor based on immobilization of laccase and MBTH in stacked films for the detection of catechol. Sensors.2007,7 (10):2238-2250
    [112]孙冬梅,蔡称心,刑巍等.酪氨酸酶和漆酶的直接电化学研究.南京师大学报(自然科学版).2004,27(4):52-54
    [113]Wang J, Wang F, Xu Z et al. Surface plasmon resonance and electrochemistry characterization of layer-by-layer self-assembled DNA and Zr4+ thin films, and their interaction with cytochrome c. Talanta.2007,74 (1):104-109
    [114]Szamocki R, Flexer V, Levin L et al. Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator. Electrochimica Acta.2009,54 (7):1970-1977
    [115]Lesniewski A, Niedziolka-Jonsson J, Rizzi C et al. Carbon ceramic nanoparticulate film electrode prepared from oppositely charged particles by layer-by-layer approach. Electrochemistry Communications.2010,12 (1):83-85
    [116]Tan Y, Deng W, Ge B et al. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film. Biosensors and Bioelectronics.2009,24 (7):2225-2231
    [117]Andreu-Navarro A, Fernandez-Romero J, Gomez-Hens A. Determination of polyphenolic content in beverages using laccase, gold nanoparticles and long wavelength fluorimetry. Analytica Chimica Acta.2011,713 (3):1-6
    [118]Zhou Y, Deng T, Pan C et al. Purification of a laccase from fungus combs in the nest of Odontotermes formosanus. Process Biochemistry.2010,45 (7):1052-1056
    [119]Stewart C, Via L. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques.1993,14 (5):748-749
    [120]吴文平.河北省丝孢菌研究Ⅲ、漆斑菌属(Myrothecium Tode:Fr.)的四个种.河北省科学院学报.1991,(1):69-74
    [121]Viswanath B, Chandra M, Pallavi H et al. Screening and assessment of laccase producing fungi isolated from different environmental samples. African Journal of Biotechnology. 2008,7 (8):1129-1133
    [122]Hao J, Song F, Huang F et al. Production of laccase by a newly isolated deuteromycete fungus Pestalotiopsis sp. and its decolorization of azo dye. Journal of Industrial Microbiology and Biotechnology.2007,34 (3):233-240
    [123]姜庆宏,赵敏.新月弯孢霉产漆酶培养条件的优化.农产品加工.2009,(3):62-65
    [124]Liu Z Y, Zhang D X, Hua Z Z et al. Improvement of laccase production and its properties by low-energy ion implantation. Bioprocess and biosystems engineering.2010,33 (5):639-646
    [125]陈今朝,王剑锋,李江等.煤附生真菌产漆酶菌株的分离鉴定及产酶特性研究.菌物学报.2010,29(3):389-396
    [126]Quezado Duval A, Henz G, Paz-Lima M et al. New hosts of Myrothecium spp. in Brazil and a preliminary in vitro assay of fungicides. Brazilian Journal of Microbiology.2010,41 (1):246-252
    [127]Kataoka K, Kitagawa R, Inoue M et al. Point mutations at the type I Cu ligands, cys 457 and met 467, and at the putative proton donor, asp 105, in Myrothecium verrucaria bilirubin oxidase and reactions with dioxygen. Biochemistry.2005,44 (18):7004-7012
    [128]葛衡,张明.产漆酶疣孢漆斑菌Ws2-6原生质体制备条件的研究.中国酿造.2009,(2):53-55
    [129]黄乾明,谢君,张寒飞等.漆酶高产菌株的诱变选育及其产酶条件.菌物学报.2006,25(2):263-272
    [130]Lowry O, Rosebrough N, Farr A et al. Protein measurement with the folin-phenol reagent. J. Biol. Chem.1951,193 (1):265-275
    [131]Ohga S, Royse D. Transcriptional regulation of laccase and cellulase genes during growth and fruiting of Lentinula edodes on supplemented sawdust. FEMS Microbiology Letters. 2001,201 (1):111-115
    [132]Giardina P, Faraco V, Pezzella C et al. Laccases:a never-ending story. Cellular and Molecular Life Sciences.2010,67 (3):369-385
    [133]Niladevi K, Prema P. Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresource Technology.2008,99 (11):4583-4589
    [134]Vasconcelos A F D, Barbosa A M, Dekker R F H et al. Optimization of laccase production by Botryosphaeria sp. in the presence of veratryl alcohol by the response-surface method. Process Biochemistry.2000,35 (10):1131-1138
    [135]Niladevi K N, Sukumaran R K, Jacob N et al. Optimization of laccase production from a novel strain-Streptomyces psammoticus using response surface methodology. Microbiological Research 2009,164 (1):105-113
    [136]Ronne H. Glucose repression in fungi. Trends in Genetics.1995,11 (1):12-17
    [137]Liu Z, Zhang D, Hua Z et al. A newly isolated Paecilomyces sp. WSH-L07 for laccase production:isolation, identification, and production enhancement by complex inducement. Journal of Industrial Microbiology and Biotechnology.2009,36 (10):1315-1321
    [138]Fernandez-Larrea J, Stahl U. Isolation and characterization of a laccase gene from Podospora anserina. Mol Gen Genet 1996,252 (5):539-551
    [139]Cervantes C, Gutierrez-Corona F. Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev.1994,14 (c):121-137
    [140]Garcia T A, Santiago M F, Ulhoa C J. Properties of laccases produced by Pycnoporus sanguineus induced by 2,5-xylidine. Biotechnology Letters.2006,28 (9):633-636
    [141]Couto S R, Toca-Herrera J L. Laccase production at reactor scale by filamentous fungi. Biotechnology Advances.2007,25 (6):558-569
    [142]Terron M C, Gonzalez T, Carbajo J M et al. Structural close-related aromatic compounds have different effects on laccase activity and on lcc gene expression in the ligninolytic fungus Trametes sp.I-62. Fungal Genetics and Biology.2004,41 (10):954-962
    [143]Theerachat M, Morel S, Guieysse D et al. Comparison of synthetic dye decolorization by whole cells and a laccase enriched extract from Trametes versicolor DSM11269. African Journal of Biotechnology.2012,11 (8):1964-1969
    [144]Nakamura T. Purification and physico-chemical properties of laccase. Biochimica et biophysica acta.1958,30 (1):44-52
    [145]Grotewold E, Taccioli G, Aisemberg G et al. A single-step purification of an extracellular fungal laccase. World Journal of Microbiology and Biotechnology.1988,4 (3):357-363
    [146]Diamantidis G, Effosse A, Potier P et al. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biology and Biochemistry.2000,32 (7):919-927
    [147]郭尧君,蛋白质电泳实验技术.第二版.2005,北京:科学出版社.53-107
    [148]Koikeda S, Ando K, Kaji H et al. Molecular cloning of the gene for bilirubin oxidase from Myrothecium verrucaria and its expression in yeast. J. Biol. Chem.1993,268 (25):18801-18809
    [149]Naki A, Varfolomeyev S. Mechanism of the inhibition of laccase activity from Polyporus versicolor by halide-ions. Biokhimiia.1981,46:1694-1702
    [150]Vaz-Dominguez C, Campuzano S, Rudiger O et al. Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Biosensors and Bioelectronics.2008,24 (4):531-537
    [151]Munoz C, Guillen F, Martinez A et al. Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation. Applied and Environmental Microbiology.1997,63 (6):2166-2174
    [152]Choi H, Park H, Yeo S et al. Purification and characterization of urushiol induced laccase isoenzyme from Fomitella fraxinea. The Korean Journal of Mycology.2010,38 (2):152-159
    [153]Yaver D S, Xu F, Golightly E J et al. Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Applied and Environmental Microbiology.1996,62 (3):834-841
    [154]Shin K S, Lee Y J. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus. Arch Biochem Biophys.2000,384 (1):109-115
    [155]Hadibarata T, Yusoff A R M, Aris A et al. Decolorization of azo, triphenylmethane and anthraquinone dyes by laccase of a newly isolated Armillaria sp. F022. Water, Air,& Soil Pollution.2012,223 (3):1045-1054
    [156]Songserm P, Sihanonth P, Sangvanich P et al. Decolorization of textile dyes by Polyporus pseudobetulinus and extracellular laccase. African Journal of Microbiology Research.2012, 6 (4):779-792
    [157]Bibi I, Bhatti H N, Asgher M. Comparative study of natural and synthetic phenolic compounds as an efficient laccase mediators for the transformation of cationic dye. Biochemical Engineering Journal.2011,56 (3):225-231
    [158]Siripornprasarn A, Luepromchai E, Nanny M A. Mechanisms by which soluble humic substances alter the kinetics of pentachlorophenol transformation by Trametes versicolor laccase. Environmental Engineering Science.2011,28 (11):819-825
    [159]Kumar V V, Sathyaselvabala V, Premkumar M et al. Biochemical characterization of three phase partitioned laccase and its application in decolorization and degradation of synthetic dyes. Journal of Molecular Catalysis B:Enzymatic.2011,74 (1-2):63-72
    [160]郑楠,赵敏,梅丽艳等.新月弯孢霉菌丝球对染料脱色作用的研究.菌物学报.2010,29(5):745-752
    [161]Cristovao R O, Tavares A P M, Brigida A I et al. Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. Journal of Molecular Catalysis B:Enzymatic.2011,72 (1-2):6-12
    [162]Bayramoglu G, Yilmaz M, Yakup Arica M. Reversible immobilization of laccase to poly (4-vinylpyridine) grafted and Cu (Ⅱ) chelated magnetic beads:Biodegradation of reactive dyes. Bioresource Technology.2010,101 (17):6615-6621
    [163]Hu M R, Chao Y P, Zhang G Q et al. Laccase-mediator system in the decolorization of different types of recalcitrant dyes. Journal of Industrial Microbiology & Biotechnology. 2009,36 (1):45-51
    [164]Lu L, Zhao M, Li D B et al. Mediator-based decolorization of recalcitrant dyes with laccase from Bacillus amyloliquefaciens LS01. Advanced Materials Research.2011,183 768-772
    [165]Dai Y, Yin L, Niu J. Laccase-carrying electrospun fibrous membranes for adsorption and degradation of PAHs in shoal soils. Environmental Science & Technology.2011,45 (24):10611-10618
    [166]Murugesan K, Chang Y-Y, Kim Y-M et al. Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Research.2010,44 (1):298-308
    [167]Yaropolov A I, Kharybin A N, Emneus J et al. Electrochemical properties of some copper-containing oxidases. Bioelectrochemistry and Bioenergetics.1996,40 (1):49-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700