用户名: 密码: 验证码:
4-氨基安替比林的氧化应激效应及其作用机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物及其中间体残留带来的污染问题已经对生态环境安全及人体健康构成威胁。4-氨基安替比林(AAP)作为一种原料或者中间体,大量用于生产镇痛、消炎、抗菌类的新型药物,AAP会引起粒性白血球缺乏症等毒性作用,已经成为一种暴露于环境中的污染物。
     研究表明氧化应激与所有的疾病有关,环境污染物对生物体产生的危害与氧化应激密切相关。在氧化应激过程中,活性氧类物质(ROS)在生物体内大量表达,参与并促进多种疾病的发生发展过程,造成DNA/RNA、蛋白质、脂类等生物分子的氧化损伤,从而导致机体代谢紊乱,引发疾病。因此,利用氧化应激这一生物学指标来评价环境污染物的毒性效应,有助于人们了解环境污染物的致病机理,全面评价其毒性,为疾病的早期诊断、预防和治疗提供科学依据。
     本论文以环境毒理学、现代仪器分析科学为背景,从实验动物、单细胞、蛋白质分子三个层面研究4-氨基安替比林的氧化应激效应及其作用机理。本论文主要包括以下五个部分:
     第一章介绍了AAP的特性和用途,概述了AAP毒性效应的研究进展;介绍了活性氧物质和抗氧化系统的组成和特点,综述子环境氧化应激的诱发因素;归纳了氧化应激与疾病的相关关系;总结了环境毒理学中氧化应激的评价方法。
     第二章以斑马鱼作为研究对象,从实验动物层面进行了急性染毒实验,测定了AAP对斑马鱼的半数致死浓度LC50-24h,对斑马鱼肝脏中抗氧化系统以及氧化损伤程度的影响,评价了AAP的氧化应激效应。结果表明,AAP导致ROS清除直接相关的CAT和GPx酶活性增大,间接对抗ROS的GR和GST酶活性减小,SOD酶活性没有显著变化,GSH含量显著下降,GSSG含量上升,GSH/GSSG比率显著下降,肝脏组织中的氧化还原平衡被打破,诱发了氧化应激。MDA的含量逐渐增大,说明体内氧化应激损伤产物LOP增多,造成了脂肪组织的氧化损伤。
     第三章以人血红细胞作为研究对象,对其进行体外染毒,从单细胞水平研究AAP对人血红细胞中GSH含量的影响,评价其氧化应激效应。结果表明,在低AAP染毒浓度时,虽然GSH含量的平均值没有显著的变化,但是单细胞分析的结果显示低GSH含量的细胞开始出现。当AAP浓度增大,AAP对GSH含量有显著的影响,低GSH含量的细胞增加,GSH减少可达14.53%。GSH的消耗导致红细胞内环境向氧化型转变。
     第四章选取血液中的传输蛋白(牛血清白蛋白和牛血红蛋白)为研究对象,从蛋白质分子水平上研究AAP与血液中传输蛋白的相互作用。污染物与血液中传输蛋白的结合决定了其在体内的传输和分布。利用多种光谱和分子模拟技术,建立二者间的作用模型,探讨其结合作用机理。
     1)利用光谱和分子模拟的方法在模拟生理条件下研究AAP与牛血清白蛋白(BSA)相互作用的结果表明,AAP与BSA之间属于静态猝灭猝灭,AAP与BSA之间具有较强的相互作用,显正电性的AAP可以通过静电作用自发的跟带BSA分子上带负电的区域相结合,结合在BSA的亚域ⅢA处,导致了BSA微环境和空间构象的改变。
     2)利用荧光、同步荧光、紫外-可见吸收和圆二色谱技术研究了AAP和牛血红蛋白(BHb)的结合作用。结果表明,AAP和BHb具有较强的相互作用,并且通过范德华力和氢键以1:1的比例结合,AAP导致BHb微环境发生变化,骨架结构变的松散。
     第五章选取氧化应激直接相关的三种酶(超氧化物歧化酶、过氧化氢酶、辣根过氧化物酶)作为研究对象,利用光谱和分子模拟技术,从分子水平上研究了AAP对抗氧化酶的毒性作用机理。由于谷胱甘肽过氧化物酶(GPx)价格昂贵且不易保存,我们选用同类的辣根过氧化物酶(Hrp)来模拟GPx。
     1)酶活性评定、光谱和分子模拟的研究结果表明,AAP可以通过氢键和范德华力自发地跟Cu/ZnSOD结合,形成AAP-Cu/ZnSOD结合物,AAP结合在Cu/ZnSOD两个子域的交界面上。AAP诱发了Cu/ZnSOD二级结构发生改变,导致Cu/ZnSOD骨架松散,内部疏水性的多肽链对水的暴露增加,影响了活性位点的微环境,从而对Cu/ZnSOD酶活性产生了抑制作用。
     2)光谱实验和分子模拟的研究结果表明,带正电的AAP可以通过静电作用自发的与带负电的过氧化氢酶(CAT)以1:1的比例结合在CAT中心疏水腔内。CAT的微环境和空间结构受到AAP的影响,导致CAT骨架结构松散,从而影响了CAT活性位点的微环境,造成了血红细胞中CAT酶活性的抑制作用。
     3)利用荧光、紫外-可见、同步荧光和圆二色谱等技术研究了AAP和辣根过氧化物酶(Hrp)的作用机理,考察了二者的结合参数(结合常数、结合位点数、热力学常数和结合力类型)以及AAP对Hrp空间结构的影响。AAP和Hrp具有较强的相互作用,并且通过静电作用以1:1的比例结合,AAP导致了Hrp微环境、二级结构和构象发生变化,造成Hrp的空间结构松散。
     动物和分子水平上的研究结果表明,抗氧化酶活性受到三方面因素的影响,第一,AAP与抗氧化酶二者间直接结合作用会对抗氧化酶活性产生抑制作用;第二,组织发生氧化应激时,抗氧化酶处于ROS大量表达的环境中,直接催化分解ROS的抗氧化酶的酶促反应底物含量增大,这将有刺激抗氧化酶数量增加的趋势;第三,AAP急性染毒会对抗氧化酶的含量产生影响。这三个因素影响的相对大小,最终决定了在动物实验中抗氧化酶酶活性的表观变化情况。
     第六章最后对论文的各研究部分进行了总结,分析了本研究中AAP氧化应激效应评价方法的优势与不足,展望了该领域的发展方向。本研究从分子、细胞和动物整体实验的角度较系统、全面地提供了AAP诱发机体氧化应激效应的评价结果,丰富了环境污染物诱发氧化应激效应的评价方法,有助于人们从分子水平了解环境污染物的致病机理和全面评价污染物毒性,为相关疾病的早期诊断、预防和治疗提供了参考和判定依据。
The pollutions caused by residues of drug and drug inermediates pose a threat to the eco-environmental safety and human health. As a raw material or intermediate,4-aminoantipyrine (AAP) has been widely used in the production of analgesic, anti-inflammatory, antibacterial drugs. Moreover, AAP can cause side effects, such as agranulocytosis. Thus, AAP has become an environmental pollutant exposed in the environment.
     Many studies have shown that oxidative stress is related with all diseases. The hazards of environmental pollutants on organisms are related with oxidative stress. In the process of oxidative stress, reactive oxygen species (ROS) in vivo largely express, participate in and promote the progression of many diseases, cause oxidative damages of biological macromolecules such as DNA/RNA, proteins and lipids, further lead to metabolic disorders of the body and cause diseases. Therefore, the evaluation of toxic effects of environmental pollutants from the point of view of oxidative stress will help people to understand the pathogenesis of environmental pollutants and evaluate on pollutant toxicity comprehensively. That can provide a scientific basis for early diagnosis, prevention and treatment of related diseases.
     This thesis has a background in environmental toxicology and modern instrumental analytical science. We studied the oxidative stress effects of AAP and its mechanism from three levels of experimental animals, single cell and protein macromolecules. This thesis includes the following five sections:
     In the first chapter, the characteristics and applications of AAP were described. The research progress of toxic effects of AAP was overviewed. The compositions and characteristics of ROS and antioxidant system were introduced. The inducing factors of environmental oxidative stress were reviewed. The relationships of oxidative stress and diseases were summarized. The analysis and evaluation methods of oxidative stress in environmental toxicology were summarized.
     In the second chaper, the zebrafish was used as the research target. Acute exposure experiments were carried out from experimental animal level. The AAP-induced half lethal concentration (LC50-24h) was determined. We investigated the effects of AAP on antioxidant system and oxidative damages in zebrafish liver and evaluated on the oxidative stress effects of AAP. The results showed that AAP caused an increase in CAT and GPx activities, a decrease in GR and GST activities and SOD activity did not change significantly. AAP also led to a significant reduction in GSH content, a increase in GSSG content and a significantly decrease in the ratio of GSH/GSSG. The redox equilibrium of liver tissue was broken, indicating that oxidative stress was formed. MDA content gradually increased, indicating that the product of oxidative damage (LOP) increased. The progress resulted in oxidative damages of adipose tissue.
     In the third chapter, we used human erythrocytes as research targets. The erythrocytes were exposed by AAP in vitro. We investigated the effects of AAP on GSH contents in single human erythrocytes from single cell level and evaluated on the oxidative stress effects of AAP. When cells were exposed in low AAP concentration, although the GSH average content was not significant changed, the single-cell analysis revealed that the cells of low GSH contents began to appear. When the AAP concentration increased, AAP had a significant impact on the GSH content. The number of cells with low GSH content increased. GSH contents reduced up to14.53%. GSH depletion induced the internal environmente of erythrocytes changed into oxidized state.
     In the fourth chapter, we used transport proteins in the blood (BSA and BHb) as research targets. The interactions of AAP and transport proteins were investigated from protein macromolecule level. The transmission and distribution of pollutants in the body was determined by the binding of pollutants and transport proteins. Based on multi-spectroscopy and molecular simulation techniques, we established the binding model and investigated the binding mechanisms.
     1) By using spectroscopy and molecular modeling methods, the interaction between AAP and BSA was investigated in simulated physiological conditions. The results showed that BSA was quenched by AAP significantly through a static quenching mechanism. There was a strong interaction between AAP and BSA. The positively charged AAP can spontaneously bind with the negatively charged region of BSA through electrostatic forces. AAP bound to BSA on the subdomain ⅢA. The microenrironment and conformation of BSA were demonstrably changed in the presence of AAP.
     2) With multiple spectroscopic techniques including fluorescence spectra, synchronous fluorescence spectra, UV-vis absorption spectra and CD spectra, the interaction mechanism of AAP and BHb was investigated. The results showed that there was a strong interaction between AAP and BHb. AAP bound to BHb through van der Waals interactions and hydrogen bonds with approximately one binding site. The microenvironment of BHb was changed by AAP and the skeletal structure of BHb loosened.
     In the fifth chapter, we selected three kinds of oxidative stress directly related enzymes (SOD, CAT and Hrp) as research targets. Based on spectroscopy and molecular modeling techniques, the mechanism of toxic effects of AAP on antioxidative enzymes was researched from molecular level. Since GPx was expensive and difficult to save, we used Hrp to simulate the GPx.
     1) The results of spectroscopic, molecular docking and enzyme activity assessment methods showed that AAP can spontaneously bind with Cu/ZnSOD to form AAP-Cu/ZnSOD complex with one binding site mainly through hydrogen bond and van der Waals forces. AAP bound into the Cu/ZnSOD interface of two subdomains. AAP triggered changes in the secondary structure of Cu/ZnSOD. The skeleton structure of Cu/ZnSOD loosened, exposing internal hydrophobic peptide strands to the solution. As the binding of AAP influenced the microenvironment of the activity sites, AAP led to the inhibition of Cu/ZnSOD activity.
     2) On the basis of spectroscopic and molecular docking results, the positively charged AAP can spontaneously bound with the negatively charged CAT with one binding site mainly through electrostatic forces. The results of molecular docking simulation revealed that AAP bound into CAT central cavity. AAP triggered changes in the microenvironment and conformation of CAT. The skeleton structure of CAT loosened, exposing internal hydrophobic peptide strands to the solution. As the binding of AAP influenced the microenvironment of the activity sites, AAP led to the inhibition of CAT activity.
     3) The interaction mechanism of AAP and Hrp was investigated by multiple spectroscopic techniques including fluorescence spectra, synchronous fluorescence spectra, UV-vis absorption spectra and CD spectra. We studied the binding parameters (association constants, number of binding sites, thermodynamic parameters and binding forces) of the interaction and the effect of AAP on the conformation of Hrp. There was a strong interaction between AAP and Hrp. AAP bound to Hrp through electrostatic forces with approximately one binding site. The microenvironment, secondary tructure and conformation of Hrp was changed by AAP and the skeletal structure of Hrp loosened.
     The research results from animal and molecular level showed that antioxidant enzyme activities were affected by two factors. First of all, the direct binding of the AAP and antioxidant enzymes would inhibit the antioxidant enzyme activities. Second, when oxidative stress was generated in tissue, antioxidant enzymes were in the environment of excessive expressed ROS. The substrate content in the catalytic reaction of antioxidant enzymes increased, which would stimulate antioxidant enzyme activity to increase. Third, AAP acute exposure would have an impact on antioxidant enzyme contents. The relative influence degree of these three factors finally determined the apparent changes of the antioxidant enzyme activities in animal experiments.
     In sixth chapter, finally, each section of the thesis was summarized. We analyzed the advantages and disadvantages of the evaluation method of oxidative stress induced by AAP in this thesis and discussed the future development of the field. The study provided more systematic and comprehensive evaluation results of AAP-induced oxidative stress effects from the perspective of molecular, cellular and experimental animal levels. This research has enriched the research on the evaluation method of oxidative stress effects of environmental pollutants, provided some reference gists for the toxicities and pathogenesis of environmental pollutantst.
引文
[1]S. Reuter, S.C. Gupta, M.M. Chaturvedi, B.B. Aggarwal, Oxidative stress, inflammation, and cancer:how are they linked?, Free radical biology & medicine,49 (2010) 1603-1616.
    [2]H. Bartsch, J. Nair, Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer:role of lipid peroxidation, DNA damage, and repair, Langenbeck's archives of surgery/Deutsche Gesellschaft fur Chirurgie,391 (2006) 499-510.
    [3]孟紫强,氧化应激效应与SO2全身性毒作用研究,中国公共卫生,19(2003)1422-1424.
    [4]Y.M. Chen, Y.P. Chen, Measurements for the solid solubilities of antipyrine, 4-aminoantipyrine and 4-dimethylaminoantipyrine in supercritical carbon dioxide, Fluid Phase Equilib.,282 (2009) 82-87.
    [5]A. Lang, C. Hatscher, C. Wiegert, P. Kuhl, Protease-catalysed coupling of N-protected amino acids and peptides with 4-aminoantipyrine, Amino Acids,36 (2009) 333-340.
    [6]S. Cunha, S.M. Oliveira, M.T. Rodrigucs. R.M. Bastos. J. Ferrari. C.M.A. de Oliveira. L Kato, H.B. Napolitano, I. Vencato, C. Lariucci. Structural studies of 4-aminoantipyrine derivatives, J. Mol. Struct.,752 (2005) 32-39.
    [7]S. Prasad, R.K. Agarwal, Cobalt(Ⅱ) complexes of various thiosemicarbazones of 4-aminoantipyrine:syntheses, spectral, thermal and antimicrobial studies, Transit. Met. Chem.,32 (2007) 143-149.
    [8]高锦章,弓巧娟,杨武,莫尊理,康敬万,4-氨基安替吡啉类试剂的合成途径及分析性能,稀有金属,21(1997)458-462.
    [9]阮传民,王宅中,徐其亨,5-(4-安替比啉偶氮)-8-氨基喹啉示波极谱法研究,分析化学,19(1991)1398-1401.
    [10]方瑞斌,徐其亨,几个5位取代8-氨基喹啉衍生物的合成及其在化学分析中的应用,应用化学,5(1988)11-14.
    [11]杜迎翔,高国强,陈玉英,胡育筑,韩晓蓉,间氯偶氮安替比林流动注射分析测定药物及水中钙,分析化学,22(1994)1102-1106.
    [12]杨佳艳,4-氨基安替比林直接分光光度法测定废水中挥发酚方法改进,环境科学与管理,36(2011)143-146.
    [13]C.Z. Katsaounos, E.K. Paleologos, D.L. Giokas, M.I. Karayannis, The 4-aminoantipyrine method revisited:Determination of trace phenols by micellar assisted preconcentration, Int. J. Environ. Anal. Chem.,83 (2003) 507-514.
    [14]X.Y. Hu, J.A. Yang, C.Z. Yang, J.D. Zhang, UV/H2O2 degradation of 4-aminoantipyrine: A voltammetric study, Chem. Eng. J.,161 (2010) 68-72.
    [15]A.M. Vinagre, E.F. Collares, Effect of 4-aminoantipyrine on gastric compliance and liquid emptying in rats, Braz. J. Med. Biol. Res.,40 (2007) 903-909.
    [16]A. El Badry, J.P. Figueroa, E.R. Poore, S. Sunderji, S. Levine, M.D. Mitchell, P.W. Nathanielsz, Effect of fetal intravascular 4-aminoantipyrine infusions on myometrial activity (contractures) at 125 to 143 days' gestation in the pregnant sheep, Am. J. Obstet. Gynecol., 150(1984)474-479.
    [17]S.G. Sunderji, A. El Badry, E.R. Poore, J.P. Figueroa, P.W. Nathanielsz, The effect of myometrial contractures on uterine blood flow in the pregnant sheep at 114 to 140 days' gestation measured by the 4-aminoantipyrine equilibrium diffusion technique, Am. J. Obstet. Gynecol.,149 (1984) 408-412.
    [18]S. Mitsuyama, A. Masumi, K. Katayama, M. Kakemi, T. Koizumi, Pharmacokinetic evidence for blood flow depression in dose dependent disposition of 4-aminoantipyrine in rabbits, Journal of pharmacobio-dynamics,8 (1985) 365-376.
    [19]D.N. Bailey, The unusual occurrence of 4-aminoantipyrine (4-aminophenazone) in human biological fluids, Journal of analytical toxicology,7 (1983) 76-78.
    [20]J.W. Stephens, M.P. Khanolkar, S.C. Bain, The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease, Atherosclerosis, 202(2009)321-329.
    [21]T.E. Andreoli, Free radicals and oxidative stress, Am. J. Med.,108 (2000) 650-651.
    [22]H.E. Seifried, Oxidative stress and antioxidants:a link to disease and prevention?, The Journal of nutritional biochemistry,18 (2007) 168-171.
    [23]J. Limon-Pacheco, M.E. Gonsebatt, The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress, Mutat. Res. Genet. Toxicol. Environ. Mutagen.,674 (2009) 137-147.
    [24]李培峰,方允中,ROS对蛋白质的损伤作用,生命的化学,14(1994)1-3.
    [25]文镜,张春华,董雨,郭豫,蛋白质羰基含量与蛋白质氧化损伤,食品科学,24(2003)153-157.
    [26]K.J. Davies, Oxidative stress:the paradox of aerobic life, Biochemical Society symposium,61 (1995) 1-31.
    [27]S. Miwa, M.D. Brand, Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling, Biochemical Society transactions,31 (2003) 1300-1301.
    [28]王建英,任引哲,王迎新,氧自由基与人体健康,化学世界,1(2006)61-63.
    [29]彭宁,刘俊田,血管紧张素ii诱导ROS簇的产生及其在血管损伤的信号机制,生理科学进展,37(2006)362-365.
    [30]S.I. Liochev, I. Fridovich, Mechanism of the peroxidase activity of Cu, Zn superoxide dismutase, Free radical biology & medicine,48 (2010) 1565-1569.
    [31]S. Rinalducci, L. Murgiano, L. Zolla, Redox proteomics:basic principles and future perspectives for the detection of protein oxidation in plants, Journal of experimental botany, 59(2008)3781-3801.
    [32]P. Wardman, L.P. Candeias, Fenton chemistry:an introduction, Radiation research,145 (1996)523-531.
    [33]E.R. Stadtman, Protein oxidation in aging and age-related diseases, Annals of the New York Academy of Sciences,928 (2001) 22-38.
    [34]方允中,郑荣梁,自由基生物学的理论与应用,科学出版社,北京,2002.
    [35]T.J. Guzik, N.E. West, R. Pillai, D.P. Taggart, K.M. Channon, Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels, Hypertension,39 (2002)1088-1094.
    [36]V.B. O'Donnell, J.P.Eiserich, P.H. Chumley, M.J. Jablonsky, N.R. Krishna, M. Kirk, S. Barnes, V.M. Darley-Usmar, B.A. Freeman, Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion, Chemical research in toxicology,12 (1999) 83-92.
    [37]P. Pacher, J.S. Beckman, L. Liaudet, Nitric oxide and peroxynitrite in health and disease, Physiological reviews,87 (2007) 315-424.
    [38]Z. Durackova, Some Current Insights into Oxidative Stress, Physiol. Res.,59 (2010) 459-469.
    [39]B. Halliwell, J. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, New York,1999.
    [40]严万里,陈晓明,郭丽燕,柳芳,超氧化物歧化酶活性测定的影响因素研究,生物 学通报,46(2011)50-53.
    [41]朱秀敏,超氧化物歧化酶的生理活性,当代医学,17(2011)26-27.
    [42]P. Chelikani, I. Fita, P.C. Loewen, Diversity of structures and properties among catalases, Cell Mol Life Sci,61 (2004) 192-208.
    [43]张福平,陈畅,豌豆过氧化氢酶活性的研究,湖北农业科学,49(2010)1117-1119.
    [44]O. Epp, R. Ladenstein, A. Wendel, The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution, European journal of biochemistry/FEBS,133 (1983)51-69.
    [45]马森,谷胱甘肽过氧化物酶和谷胱甘肽转硫酶研究进展,动物医学进展,29(2008)53-56.
    [46]刘超,袁建国,李峰,谷胱甘肽国内外研究进展,山东食品发酵,4(2010)7-10.
    [47]B.H. Lauterburg, J.D. Adams, J.R. Mitchell, Hepatic glutathione homeostasis in the rat: efflux accounts for glutathione turnover, Hepatology (Baltimore, Md,4 (1984) 586-590.
    [48]S.M. Deneke, B.L. Fanburg, Regulation of cellular glutathione, The American journal of physiology,257 (1989) L163-173.
    [49]B. Mannervik, The enzymes of glutathione metabolism:an overview, Biochemical Society transactions,15 (1987) 717-718.
    [50]陈瑗,周玫,自由基医学基础与病理生理,人民卫生出版社,北京,2002.
    [51]马素永,周先碗,张庭芳,玉米螟谷胱甘肽转硫酶的纯化及性质研究,北京大学学报(自然科学版),35(1999)474-479.
    [52]R.N. Armstrong, Glutathione S-transferases:reaction mechanism, structure, and function, Chemical research in toxicology,4 (1991) 131-140.
    [53]H. Sakurai, H. Yasui, Y. Yamada, H. Nishimura, M. Shigemoto, Detection of reactive oxygen species in the skin of live mice and rats exposed to UVA light:a research review on chemiluminescence and trials for UVA protection, Photochem Photobiol Sci,4 (2005) 715-720.
    [54]A.L. Buchman, M. Neely, V.B. Grossie, Jr., L. Truong, E. Lykissa, C. Ahn, Organ heavy-metal accumulation during parenteral nutrition is associated with pathologic abnormalities in rats, Nutrition (Burbank, Los Angeles County, Calif,17 (2001) 600-606.
    [55]R.J. Dinis-Oliveira, J.A. Duarte, A. Sanchez-Navarro, F. Remiao, M.L. Bastos, F. Carvalho, Paraquat poisonings:mechanisms of lung toxicity, clinical features, and treatment, Critical reviews in toxicology,38 (2008) 13-71.
    [56]S. Ray, A. Sengupta, A. Ray, Effects of paraquat on anti-oxidant system in rats, Indian journal of experimental biology,45 (2007) 432-438.
    [57]M. Akhgari, M. Abdollahi, A. Kebryaeezadeh, R. Hosseini, O. Sabzevari, Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats, Human & experimental toxicology,22 (2003) 205-211.
    [58]A. Kasai, N. Hiramatsu, K. Hayakawa, J. Yao, M. Kitamura, Direct, continuous monitoring of air pollution by transgenic sensor mice responsive to halogenated and polycyclic aromatic hydrocarbons, Environmental health perspectives,116 (2008) 349-354.
    [59]K.B. Kim, B.M. Lee, Oxidative stress to DNA, protein, and antioxidant enzymes (superoxide dismutase and catalase) in rats treated with benzo(a)pyrene, Cancer letters,113 (1997)205-212.
    [60]R. Yoshida, Y. Ogawa, Oxidative stress induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin: an application of oxidative stress markers to cancer risk assessment of dioxins, Industrial health,38(2000)5-14.
    [61]M.H. Emre, G. Aktay, A. Polat, N. Vardt, Effects of benzo(a)pyrene and ethanol on oxidative stress of brain, lung tissues and lung morphology in rats, The Chinese journal of physiology,50 (2007) 143-148.
    [62]H.L. Chen, C.Y Hsu, D.Z. Hung, M.L. Hu, Lipid peroxidation and antioxidant status in workers exposed to PCDD/Fs of metal recovery plants, The Science of the total environment, 372(2006) 12-19.
    [63]V.K. Singh, D.K. Patel, Jyoti, S. Ram, N. Mathur, M.K. Siddiqui, Blood levels of polycyclic aromatic hydrocarbons in children and their association with oxidative stress indices:an Indian perspective, Clinical biochemistry,41 (2008) 152-161.
    [64]R.D. Brook, B. Franklin, W. Cascio, Y. Hong, G. Howard, M. Lipsett, R. Luepker, M. Mittleman, J. Samet, S.C. Smith, Jr., I. Tager, Air pollution and cardiovascular disease:a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association, Circulation,109 (2004) 2655-2671.
    [65]S.D. Adar, G. Adamkiewicz, D.R. Gold, J. Schwartz, B.A. Coull, H. Suh, Ambient and microenvironmental particles and exhaled nitric oxide before and after a group bus trip, Environmental health perspectives,115 (2007) 507-512.
    [66]J.A. Araujo, B. Barajas, M. Kleinman, X. Wang, B.J. Bennett, K.W. Gong, M. Navab, J. Harkema, C. Sioutas, A.J. Lusis, A.E. Nel, Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress, Circulation research,102 (2008)589-596.
    [67]A. Ghosh, P.C. Sil, Anti-oxidative effect of a protein from Cajanus indicus L against acetaminophen-induced hepato-nephro toxicity, Journal of biochemistry and molecular biology,40 (2007) 1039-1049.
    [68]H. Maharaj, D.S. Maharaj, S. Daya, Acetylsalicylic acid and acetaminophen protect against oxidative neurotoxicity, Metabolic brain disease,21 (2006) 189-199.
    [69]O.I. Aruoma, Free radicals, oxidative stress, and antioxidants in human health and disease, J. Am. Oil Chem. Soc.,75 (1998) 199-212.
    [70]S. Orrenius, D.J. McConkey, G. Bellomo, P. Nicotera, Role of Ca2+ in toxic cell killing, Trends in pharmacological sciences,10 (1989) 281-285.
    [71]C.W. Olanow, P. Jenner, M. Youdim, Neurodegeneration and Neuroprotection in Parkinson's disease, Academic Press, London,1996.
    [72]A. Federico, F. Morgillo, C. Tuccillo, F. Ciardiello, C. Loguercio, Chronic inflammation and oxidative stress in human carcinogenesis, International journal of cancer,121 (2007) 2381-2386.
    [73]J.E. Klaunig, Y. Xu, J.S. Isenberg, S. Bachowski, K.L. Kolaja, J. Jiang, D.E. Stevenson, E.F. Walborg, Jr., The role of oxidative stress in chemical carcinogenesis, Environmental health perspectives,106 Suppl 1 (1998) 289-295.
    [74]J.N. Wilson, J.D. Pierce, R.L. Clancy, Reactive oxygen species in acute respiratory distress syndrome, Heart Lung,30 (2001) 370-375.
    [75]P.J. Moulton, Inflammatory joint disease:the role of cytokines, cyclooxygenases and reactive oxygen species, British journal of biomedical science,53 (1996) 317-324.
    [76]L.L. Dugan, K.L. Quick, Reactive oxygen species and aging:evolving questions, Sci Aging Knowledge Environ,2005 (2005) pe20.
    [77]J.P. Bolanos, M.A. Moro, I. Lizasoain, A. Almeida, Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke:Therapeutic implications, Advanced drug delivery reviews,61 (2009) 1299-1315.
    [78]K. Hensley, D.A. Butterfield, N. Hall, P. Cole, R. Subramaniam, R. Mark, M.P. Mattson, W.R. Markesbery, M.E. Harris, M. Aksenov, Reactive oxygen species as causal agents in the neurotoxicity of the Alzheimer's disease-associated amyloid beta peptide, Annals of the New York Academy of Sciences,786 (1996) 120-134.
    [79]M.E. Atabek, H. Vatansev, I. Erkul, Oxidative stress in childhood obesity, J Pediatr Endocrinol Metab,17 (2004) 1063-1068.
    [80]B. Halliwell, Free radicals, reactive oxygen species and human disease:a critical evaluation with special reference to atherosclerosis, British journal of experimental pathology, 70(1989)737-757.
    [81]B.J. Tabner, S. Turnbull, O. El-Agnaf, D. Allsop, Production of reactive oxygen species from aggregating proteins implicated in Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases, Current topics in medicinal chemistry,1 (2001) 507-517.
    [82]R.M. Touyz, Reactive oxygen species and angiotensin II signaling in vascular cells--implications in cardiovascular disease, Brazilian journal of medical and biological research= Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica... [et al.37(2004) 1263-1273.
    [83]D.W. Kamp, P. Graceffa, W.A. Pryor, S.A. Weitzman, The role of free radicals in asbestos-induced diseases, Free radical biology & medicine,12 (1992) 293-315.
    [84]S. Muhammad, A. Bierhaus, M. Schwaninger, Reactive oxygen species in diabetes-induced vascular damage, stroke, and Alzheimer's disease, J Alzheimers Dis,16 (2009)775-785.
    [85]K.A. Gelderman, M. Hultqvist, L.M. Olsson, K. Bauer, A. Pizzolla, P. Olofsson, R. Holmdahl, Rheumatoid arthritis:the role of reactive oxygen species in disease development and therapeutic strategies, Antioxidants & redox signaling,9 (2007) 1541-1567.
    [86]F. Di Virgilio, New pathways for reactive oxygen species generation in inflammation and potential novel pharmacological targets, Current pharmaceutical design,10 (2004) 1647-1652.
    [87]M.J. Haurani, P.J. Pagano, Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling:bellwether for vascular disease?, Cardiovascular research,75 (2007) 679-689.
    [88]A. Miyajima, J. Nakashima, K. Yoshioka, M. Tachibana, H. Tazaki, M. Murai, Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity on bladder cancer cells, British journal of cancer,76 (1997) 206-210.
    [89]I. Kuku, I. Aydogdu, N. Bayraktar, E. Kaya, O. Akyol, M.A. Erkurt, Oxidant/antioxidant parameters and their relationship with medical treatment in multiple myeloma, Cell Biochem. Funct.,23 (2005) 47-50.
    [90]R.I. Salganik, C.D. Albright, J. Rodgers, J. Kim, S.H. Zeisel, M.S. Sivashinskiy, T.A. Van Dyke, Dietary antioxidant depletion:enhancement of tumor apoptosis and inhibition of brain tumor growth in transgenic mice, Carcinogenesis,21 (2000) 909-914.
    [91]D. Sumi, Y. Shinkai, Y. Kumagai, Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells, Toxicol. Appl. Pharmacol.,244 (2010) 385-392.
    [92]N.S. Brown, R. Bicknell, Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer, Breast Cancer Res,3 (2001) 323-327.
    [93]C.I. van de Wetering, M.C. Coleman, D.R. Spitz, B.J. Smith, C.M. Knudson, Manganese superoxidc dismutase gene dosage affects chromosomal instability and tumor onset in a mouse model of T cell lymphoma, Free radical biology & medicine,44 (2008) 1677-1686.
    [94]A. Sharma, M. Rajappa, A. Satyam, M. Sharma, Oxidant/anti-oxidant dynamics in patients with advanced cervical cancer:correlation with treatment response, Mol. Cell. Biochem.,341 (2010)65-72.
    [95]D.W. Chan, V.W.S. Liu, G.S.W. Tsao, K.M. Yao, T. Furukawa, K.K.L. Chan, H.Y.S. Ngan, Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells, Carcinogenesis,29 (2008) 1742-1750.
    [96]C. Oliveira, P. Kassab, F.P. Lopasso, H.P. Souza, M. Janiszewski, F.R.M. Laurindo, K. Iriya, A.A. Laudanna, Protective effect of ascorbic acid in experimental gastric cancer: reduction of oxidative stress, World J. Gastroenterol.,9 (2003) 446-448.
    [97]M. Edderkaoui, P. Hong, E.C. Vaquero, J.K. Lee, L. Fischer, H. Friess, M.W. Buchler, M.M. Lerch, S.J. Pandol, A.S. Gukovskaya, Extracellular matrix stimulates reactive oxygen species production and increases pancreatic cancer cell survival through 5-lipoxygenase and NADPH oxidase, Am. J. Physiol.-Gastroint. Liver Physiol.,289 (2005) G1137-G1147.
    [98]D.F. Calvisi, S. Ladu, K. Hironaka, V.M. Factor, S.S. Thorgeirsson, Vitamin E down-modulates iNOS and NADPH oxidase in c-Myc/TGF-alpha transgenic mouse model of liver cancer, J. Hepatol.,41 (2004) 815-822.
    [99]L. Khandrika, B. Kumar, S. Koul, P. Maroni, H.K. Koul, Oxidative stress in prostate cancer, Cancer letters,282 (2009) 125-136.
    [100]N. Azad, Y. Rojanasakul, V. Vallyathan, Inflammation and lung cancer:Roles of reactive oxygen/nitrogen species, J. Toxicol. Env. Health-Pt b-Crit. Rev.,11 (2008) 1-15.
    [101]J.P. Fruehauf, V. Trapp, Reactive oxygen species:an Achilles' heel of melanoma?, Expert Rev. Anticancer Ther,8 (2008) 1751-1757.
    [102]D. Ziech, R. Franco, A.G. Georgakilas, S. Georgakila, V. Malamou-Mitsi, O. Schoneveld, A. Pappa, M.I. Panayiotidis, The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development, Chemico-biological interactions,188 (2010) 334-339.
    [103]B. Halliwell, J. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, UK,2007.
    [104]S.K. Powers, M.J. Jackson, Exercise-induced oxidative stress:cellular mechanisms and impact on muscle force production, Physiological reviews,88 (2008) 1243-1276.
    [105]M.J. Davies, S. Fu, H. Wang, R.T. Dean. Stable markers of oxidant damage to proteins and their application in the study of human disease, Free radical biology & medicine,27 (1999)1151-1163.
    [106]全珊珊,吴新荣,斑马鱼,人类疾病研究的理想模型动物,生命的化学,28(2008)260-263.
    [107]孙智慧,贾顺姬,孟安明,斑马鱼:在生命科学中畅游,生命科学,18(2006)431-436.
    [108]J.P. Briggs, The zebrafish:a new model organism for integrative physiology, American journal of physiology,282 (2002) R3-9.
    [109]L. Vittozzi, G.D. Angelis, A critical review of comparative acute toxicity data on freshwater fish, Aquatic Toxicology,19 (1991) 167-204.
    [110]M.H. Depledge, A. Aagaard, P. Gyorkos, Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers, Marine Pollution Bulletin,31 (1995) 19-27.
    [111]M.C. Fossi, L. Marsili, C. Leonzio, G.N.D. Sciara, M. Zanardelli, S. Focardi, The use of non-destructive biomarker in Mediterranean cetaceans:Preliminary data on MFO activity in skin biopsy, Marine Pollution Bulletin,24 (1992) 459-461.
    [112]A. Jalali, F. Bosmans, M. Amininasab, E. Clynen, E. Cuypers, A. Zaremirakabadi, M.N. Sarbolouki, L. Schoofs, H. Vatanpour, J. Tytgat, OD1, the first toxin isolated from the venom of the scorpion Odonthobuthus doriae active on voltage-gated Na+ channels, FEBS Lett,579 (2005)4181-4186.
    [113]L. Flohe, F. Otting, Superoxide dismutase assays, Methods in enzymology,105 (1984) 93-104.
    [114]Y. Jiang, J.H. Wong, Z.F. Pi, T.B. Ng, C.R. Wang, J. Hou, R.R. Chen, H.J. Niu, F. Liu, Stimulatory effect of components of rose flowers on catalytic activity and mRNA expression of superoxide dismutase and catalase in erythrocytes, Environmental toxicology and pharmacology,27 (2009) 396-401.
    [115]A.G. Splittgerber, A.L. Tappel, Inhibition of glutathione peroxidase by cadmium and other metal ions, Archives of biochemistry and biophysics,197 (1979) 534-542.
    [116]I. Carlberg, B. Mannervik, Purification and characterization of the flavoenzyme glutathione reductase from rat liver, The Journal of biological chemistry,250 (1975) 5475-5480.
    [117]W.H. Habig, M.J. Pabst, W.B. Jakoby, Glutathione S-transferases. The first enzymatic step in mercapturic acid formation, The Journal of biological chemistry,249 (1974) 7130-7139.
    [118]M.E. Anderson, Determination of glutathione and glutathione disulfide in biological samples, Methods in enzymology,113 (1985) 548-555.
    [119]E.D. Wills, Evaluation of lipid peroxidation in lipids and biological membranes, IRL Press, Oxford,1987.
    [120]M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical biochemistry, 72(1976)248-254.
    [121]K. Fella, M. Gluckmann, J. Hellmann, M. Karas, P.J. Kramer, M. Kroger, Use of two-dimensional gel electrophoresis in predictive toxicology:identification of potential early protein biomarkers in chemically induced hepatocarcinogenesis, Proteomics,5 (2005) 1914-1927.
    [122]D.A. Monteiro, F.T. Rantin, A.L. Kalinin, Inorganic mercury exposure:toxicological (?)cts, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish (?)nxa, Brycon amazonicus (Spix and Agassiz,1829), Ecotoxicology (London, England). 19 (2010) 105-123.
    [123]M. Oliveira, M. Pacheco, M.A. Santos, Organ specific antioxidant responses in golden grey mullet (Liza aurata) following a short-term exposure to phenanthrene, The Science of the total environment,396 (2008) 70-78.
    [124]M. Puerto, S. Pichardo, A. Jos, A.M. Camean, Oxidative stress induced by microcystin-LR on PLHC-1 fish cell line, Toxicol In Vitro,23 (2009) 1445-1449.
    [125]P. Sicinska, B. Bukowska, J. Michalowicz, W. Duda, Damage of cell membrane and (?)xidative system in human erythrocytes incubated with microcystin-LR in vitro, Toxicon, 4(2006) 387-397.
    [126]M. Hermes-Lima, Oxygen in Biology and Biochemistry:Role of Free Radicals, Wiley, Hoboken,2004.
    [127]B. Halliwell, Oxidative stress, nutrition and health. Experimental strategies for of nutritional antioxidant intake in humans, Free radical research,25 (1996) 57-74
    [128]D.J. Reed, Glutathione:toxicological implications, Annual review of pharmacology and toxicology,30 (1990) 603-631.
    [129]E.M. Strasser, B. Wessner, N. Manhart, E. Roth, The relationship between the anti-inflammatory effects of curcumin and cellular glutathione content in myelomonocytic cells, Biochemical pharmacology,70 (2005) 552-559.
    [130]B. Bukowska, Effects of 2,4-D and its metabolite 2,4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes, Comp Biochem Physiol C Toxicol Pharmacol,135 (2003) 435-441.
    [131]A. Maranzana, R.J. Mehlhorn, Loss of glutathione, ascorbate recycling, and free radical scavenging in human erythrocytes exposed to filtered cigarette smoke, Archives of biochemistry and biophysics,350 (1998) 169-182.
    [132]A.K. Price, C.T. Culbertson, Chemical analysis of single mammalian cells with microfluidics. Strategies for culturing, sorting, trapping, and lysing cells and separating their contents on chips, Analytical chemistry,79 (2007) 2614-2621.
    [133]G. Sui, J. Wang, C.C. Lee, W. Lu, S.P. Lee, J.V. Leyton, A.M. Wu, H.R. Tseng, Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels, Analytical chemistry,78 (2006) 5543-5551.
    [134]O. Orwar, H.A. Fishman, N.E. Ziv, R.H. Scheller, R.N. Zare, Use of 2,3-naphthalenedicarboxaldehyde derivatization for single-cell analysis of glutathione by capillary electrophoresis and histochemical localization by fluorescence microscopy, Analytical chemistry,67 (1995) 4261-4268.
    [135]J. Gao, X.F. Yin, Z.L. Fang, Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip, Lab on a chip,4 (2004) 47-52.
    [136]B.L. Hogan, E.S. Yeung, Determination of intracellular species at the level of a single erythrocyte via capillary electrophoresis with direct and indirect fluorescence detection, Analytical chemistry,64 (1992) 2841-2845.
    [137]L. Yu, H. Huang, X. Dong, D. Wu, J. Qin, B. Lin, Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips, Electrophoresis,29 (2008) 5055-5060.
    [138]S. Yue, Y. Xue-Feng, Novel multi-depth microfluidic chip for single cell analysis, Journal of chromatography,1117 (2006) 228-233.
    [139]N. Gao, L. Li, Z. Shi, X. Zhang, W. Jin, High-throughput determination of glutathione and reactive oxygen species in single cells based on fluorescence images in a microchannel, Electrophoresis,28 (2007) 3966-3975.
    [140]O. Paamoni-Keren, T. Silberstein, A. Burg, I. Raz, M. Mazor, O. Saphier, A.Y. Weintraub, Oxidative stress as determined by glutathione (GSH) concentrations in venous cord blood in elective cesarean delivery versus uncomplicated vaginal delivery, Archives of gynecology and obstetrics,276 (2007) 43-46.
    [141]K.M. Erikson, A.W. Dobson, D.C. Dorman, M. Aschner, Manganese exposure and induced oxidative stress in the rat brain, The Science of the total environment,334-335 (2004) 409-416.
    [142]M.A. Timofeyev, Z.M. Shatilina, A.V. Kolesnichenko, D.S. Bedulina, V.V. Kolesnichenko, S. Pflugmacher, C.E. Steinberg, Natural organic matter (NOM) induces oxidative stress in freshwater amphipods Gammarus lacustris Sars and Gammarus tigrinus (Sexton), The Science of the total environment,366 (2006) 673-681.
    [143]Y.Y. Ling, X.F. Yin, Z.L. Fang, Simultaneous determination of glutathione and reactive oxygen species in individual cells by microchip electrophoresis, Electrophoresis,26 (2005) 4759-4766.
    [144]A. Meister, M.E. Anderson, Glutathione, Annual review of biochemistry,52 (1983) 711-760.
    [145]D.C. Carter, J.X. Ho, Structure of serum albumin, Advances in protein chemistry,45 (1994)153-203.
    [146]A. Papadopoulou, R.J. Green, R.A. Frazier, Interaction of flavonoids with bovine serum albumin:a fluorescence quenching study, Journal of agricultural and food chemistry, 53(2005)158-163.
    [147]S. Neelam, M. Gokara, B. Sudhamalla, D.G. Amooru, R. Subramanyam, Interaction studies of coumaroyltyramine with human serum albumin and its biological importance, The journal of physical chemistry,114 (2010) 3005-3012.
    [148]M. Gulden, S. Morchel, S. Tahan, H. Seibert, Impact of protein binding on the availability and cytotoxic potency of organochlorine pesticides and chlorophenols in vitro. Toxicology,175 (2002) 201-213.
    [149]N. Wang, L. Ye, F. Yan, R. Xu, Spectroscopic studies on the interaction of azelnidipine with bovine serum albumin, International journal of pharmaceutics,351 (2008) 55-60.
    [150]R. Karchin, M. Cline, K. Karplus, Evaluation of local structure alphabets based on residue burial, Proteins,55 (2004) 508-518.
    [151]B.K. Sahoo, K.S. Ghosh, S. Dasgupta, Investigating the binding of curcumin derivatives to bovine serum albumin, Biophysical chemistry,132 (2008) 81-88.
    [152]S.S. Sur, L.D. Rabbani, L. Libman, E. Breslow, Fluorescence studies of native and modified neurophysins. Effects of peptides and pH, Biochemistry,18 (1979) 1026-1036.
    [153]X.C. Zhao, R.T. Liu, Y. Teng, X.F. Liu, The interaction between Ag+ and bovine serum albumin:A spectroscopic investigation, Sci. Total Environ.,409 (2011) 892-897.
    [154]Y.Z. Zhang, B. Zhou, X.P. Zhang, P. Huang, C.H. Li, Y. Liu, Interaction of malachite green with bovine serum albumin:determination of the binding mechanism and binding site by spectroscopic methods, Journal of hazardous materials,163 (2009) 1345-1352.
    [155]S. Soares, N. Mateus, V. Freitas, Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching, Journal of agricultural and food chemistry,55 (2007) 6726-6735.
    [156]J.R. Lakowicz, G. Weber, Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules, Biochemistry,12 (1973) 4161-4170.
    [157]Z. Chi, R. Liu, B. Yang, H. Zhang, Toxic interaction mechanism between oxytetracycline and bovine hemoglobin, Journal of hazardous materials,180 (2010) 741-747.
    [158]G Paramaguru, A. Kathiravan, S. Selvaraj, P. Venuvanalingam, R. Renganathan, Interaction of anthraquinone dyes with lysozyme:evidences from spectroscopic and docking studies, Journal of hazardous materials,175 (2010) 985-991.
    [159]P.D. Ross, S. Subramanian, Thermodynamics of protein association reactions:forces contributing to stability, Biochemistry,20 (1981) 3096-3102.
    [160]T.H. Chung, S.M. Wang, Y.C. Chang, Y.L. Chen, J.C. Wu,18beta-glycyrrhetinic acid promotes src interaction with connexin43 in rat cardiomyocytes, Journal of cellular biochemistry,100 (2007) 653-664.
    [161]H. Bian, M. Li, Q. Yu, Z. Chen, J. Tian, H. Liang, Study of the interaction of artemisinin with bovine serum albumin, International journal of biological macromolecules, 39(2006)291-297.
    [162]M. Guo, W.J. Lu, M.H. Li, W. Wang, Study on the binding interaction between carnitine optical isomer and bovine serum albumin, European journal of medicinal chemistry, 43(2008)2140-2148.
    [163]Q. Yang, J. Liang, H. Han, Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques, The journal of physical chemistry, 113(2009) 10454-10458.
    [164]H.R. De Jonge, Toxicity of tetracyclines in rat-small-intestinal epithelium and liver, Biochemical pharmacology,22 (1973) 2659-2677.
    [165]S.M.T. Shaikh, J. Seetharamappa, P.B. Kandagal, D.H. Manjunatha, S. Ashoka, Spectroscopic investigations on the mechanism of interaction of bioactive dye with bovine serum albumin, Dyes Pigment.,74 (2007) 665-671.
    [166]G. Munoz, A. de Juan, pH- and time-dependent hemoglobin transitions:a case study for process modelling, Analytica chimica acta,595 (2007) 198-208.
    [167]W.L. Nichols, B.H. Zimm, L.F. Ten Eyck, Conformation-invariant structures of the alphalbetal human hemoglobin dimer, Journal of molecular biology,270 (1997) 598-615.
    [168]B.J. Reeder, M.T. Wilson, Hemoglobin and myoglobin associated oxidative stress: from molecular mechanisms to disease States, Current medicinal chemistry,12 (2005) 2741-2751.
    [169]R.P. Rother, L. Bell, P. Hillmen, M.T. Gladwin, The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin:a novel mechanism of human disease, Jama, 293 (2005) 1653-1662.
    [170]Y.Q. Wang, H.M. Zhang, R.H. Wang, Investigation of the interaction between colloidal TiO(2) and bovine hemoglobin using spectral methods, Colloid Surf. B-Biointerfaces,65 (2008) 190-196.
    [171]J. Zhou, X. Wu, X. Gu, L. Zhou, K. Song, S. Wei, Y. Feng, J. Shen, Spectroscopic studies on the interaction of hypocrellin A and hemoglobin, Spectrochimica acta,72 (2009) 151-155.
    [172]Y.Q. Wang, H.M. Zhang, Q.H. Zhou, H.L. Xu, A study of the binding of colloidal Fe(3)O(4) with bovine hemoglobin using optical spectroscopy, Colloid Surf. A-Physicochem. Eng. Asp.,337 (2009) 102-108.
    [173]J.Q. Lu, F. Jin. T.Q. Sun. X.W. Zhou, Multi-spectroscopic study on interaction of bovine serum albumin with lomefloxacin-copper(Ⅱ) complex. International journal of biological macromolecules,40 (2007) 299-304.
    [174]Y.Q. Wang, H.M. Zhang, G.C. Zhang, Q.H. Zhou, Z.H. Fei, Z.T. Liu, Z.X. Li, Fluorescence spectroscopic investigation of the interaction between benzidine and bovine hemoglobin, J. Mol. Struct.,886 (2008) 77-84.
    [175]陶慰孙,李惟,姜涌明,蛋白质分子基础,高等教育出版社,北京,1995.
    [176]M.D. Evans, M. Dizdaroglu, M.S. Cooke, Oxidative DNA damage and disease: induction, repair and significance, Mutation research,567 (2004) 1-61.
    [177]J. Gromadzinska, W. Wasowicz, M. Andrijewski, M. Sklodowska, O.Z. Quispe, P. Wolkanin, B. Olborski, A. Pluzanska, Glutathione and glutathione metabolizing enzymes in tissues and blood of breast cancer patients, Neoplasma,44 (1997) 45-51.
    [178]H. Sies, Oxidative stress:from basic research to clinical application, The American journal of medicine,91 (1991) 31S-38S.
    [179]L. Miao, D.K. St Clair, Regulation of superoxide dismutase genes:implications in disease, Free radical biology & medicine,47 (2009) 344-356.
    [180]D. Giustarini, I. Dalle-Donne, D. Tsikas, R. Rossi, Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers, Crit. Rev. Cl. Lab. Sci.,46 (2009) 241-281.
    [181]L.L. Ma, Y.G. Ze, J. Liu, H.T. Liu, C. Liu, Z.R. Li, J.F. Zhao, J.Y. Yan, Y.M. Duan, Y.N. Xie, F.S. Hong, Direct evidence for interaction between nano-anatase and superoxide dismutase from rat erythrocytes, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.,73 (2009) 330-335.
    [182]C. Beauchamp, I. Fridovich, Superoxide dismutase:improved assays and an assay applicable to acrylamide gels, Analytical biochemistry,44 (1971) 276-287.
    [183]Y. Sun, L.W. Oberley, Y. Li, A simple method for clinical assay of superoxide dismutase, Clinical chemistry,34 (1988) 497-500.
    [184]M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, J.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, in, Gaussian, Inc., Wallingford CT,2004.
    [185]L.H. Chen, L.Q. Tianqing, Interaction behaviors between chitosan and hemoglobin, International journal of biological macromolecules,42 (2008) 441-446.
    [186]N. Sreerama, R.W. Woody, On the analysis of membrane protein circular dichroism spectra, Protein Sci,13 (2004) 100-112.
    [187]W.R. Ware, Oxygen quenching of fluorescence in solution:an experimental study of the diffusion process, The journal of physical chemistry,66 (1962) 455-458.
    [188]Y.L. Huang, J.Y. Sheu, T.H. Lin, Association between oxidative stress and changes of trace elements in patients with breast cancer, Clinical biochemistry,32 (1999) 131-136.
    [189]S. Taysi, F. Polat, M. Gul, R.A. Sari, E. Bakan, Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis Rheumatol. Int.,21 (2002) 200-204.
    [190]T. Ishikawa, Y. Ohta, T. Takeda, S. Shigeoka, M. Nishikimi, Increased cellular resistance to oxidative stress by expression of cyanobacterium catalase-peroxidase in animal cells, FEBS Lett.,426 (1998) 221-224.
    [191]M. Banerjee, N. Banerjee, P. Ghosh, J.K. Das, S. Basu, A.K. Sarkar, J.C. States, A.K. Giri, Evaluation of the serum catalase and myeloperoxidase activities in chronic arsenic-exposed individuals and concomitant cytogenetic damage, Toxicol. Appl. Pharmacol., 249(2010)47-54.
    [192]GH. Naik, K.I. Priyadarsini, J.G. Satav, M.M. Banavalikar, D.P. Sohoni, M.K. Biyani, H. Mohan, Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine, Phytochemistry,63 (2003) 97-104.
    [193]Z.X. Chi, R.T. Liu, H. Zhang, Noncovalent Interaction of Oxytetracycline with the Enzyme Trypsin, Biomacromolecules,11 (2010)2454-2459.
    [194]D.J. Li, B.M. Ji, J. Jin, Spectrophotometric studies on the binding of Vitamin C to lysozyme and bovine liver catalase, J. Lumin.,128 (2008) 1399-1406.
    [195]J.F. Zhu, X. Zhang, D.J. Li, J. Jin, Probing the binding of flavonoids to catalase by molecular spectroscopy, J. Mol. Struct.,843 (2007) 38-44.
    [196]W. Eventoff, N. Tanaka, M.G. Rossmann, Crystalline bovine liver catalase, Journal of molecular biology,103 (1976) 799-801.
    [197]B.K. Vainshtein, W.R. Melik-Adamyan, V.V. Barynin, A.A. Vagin, A.I. Grebenko, Three-dimensional structure of the enzyme catalase, Nature,293 (1981) 411-412.
    [198]R. Lavery, S. Sacquin-Mora, Protein mechanics:a route from structure to function, J. Biosciences,32 (2007) 891-898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700