用户名: 密码: 验证码:
木薯渣功能衍生物的合成、表征及助留助滤性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为缓解目前因木薯渣综合利用水平不高带来的资源浪费及环境污染等问题,本研究旨在将其作为合成造纸化学品的原料,在丰富其综合利用方式、实现高附加值转化的同时,开发出新型造纸湿部化学助剂以补充现代造纸行业发展的需求。木薯渣富含粗纤维及淀粉,本文通过对木薯干渣进行适当物理和化学预处理使其适用于特定的化学改性,同时通过对合成工艺的优化制备具有助留助滤性能的造纸化学品,并将其应用于纸浆中评价其使用效果。
     SEM分析发现,木薯渣是由大小不等、密度不均的淀粉颗粒及粗纤维构成的非匀质混合物,其中纤维以粗长纤维束、纤维碎片及块状纤维组织三种形式存在,块状纤维组织又与淀粉相互包裹。通过纤维粉碎机粗磨及球磨微粉化处理后,纤维尺寸接近甚至小于淀粉颗粒,原料得到充分匀质化处理后,通过酸水解结合IC分析得到木薯渣中葡萄糖含量为81.21%、木糖3.66%、半乳糖1.91%、阿拉伯糖1.41%,证实其具有较高的再利用价值。在球磨预处理基础上,通过探头式超声波深度处理,精制原料相对结晶度由36.25%下降至30.08%,保水值进一步提高至414.5%。此时木薯渣精制原料PCD(Pretreated Cassava Dregs)的对改性反应的均匀性及试剂可及性明显得到改善,可用于功能衍生化改性。
     通过溶媒法使PCD在有机溶剂中分别与3-氯-2羟丙基三甲基氯化铵(CHTAC)及一氯乙酸反应合成阳离子改性产物CPCD及阴离子改性产物CMPCD,其中阳离子醚化反应优化工艺为:反应体系介质为70~80%异丙醇或乙醇(体积浓度),PCD浓度为10%,超声波辅助碱化过程功率为81W,处理时间为10min,m_(NaOH): m_(CHTAC)=0.3:1,m_(CHTAC):m_(PCD)较合理的范围为0.5~0.7:1,反应温度为55℃,反应时间为3.5h;阴离子醚化改性优化条件为:80%乙醇浓度,PCD浓度15%,改性试剂物质的量比值N_(NaOH):N_(氯乙酸)=2.2:1;N_(氯乙酸):N_(PCD)=0.91:1;反应温度55℃,时间4.5h;在PCD醚化改性产物的基础上,通过KMnO_4/H~+引发体系合成了CPCD与丙烯酰胺的阳离子接枝聚合物CPCD-g-PAM及CMPCD与丙烯酰胺、甲基丙烯酰氧乙基三甲基氯化铵的两性二元单体接枝聚合物CMPCD-g-AD,并对影响接枝共聚反应的因素如引发剂浓度、单体比例及浓度、pH值、预氧化时间、反应温度、反应时间、醚化产物取代度、底物浓度等进行了较为详细的讨论,总结归纳了这些因素对接枝聚合反应及产物性质的作用规律。通过SEM、FT-IR、~(13)C-NMR及TG等方法对木薯渣系列改性产物的化学结构及热稳定性质进行了表征,它们均证实了相应合成反应的发生。
     在水相中合成了阳离子醚化剂CHTAC,并成功将顶空气相色谱HS-GC技术应用在其合成过程中主要有机挥发性物质的测定,该方法利用称量式取样及大比例稀释的方法快速制备分析样品,同时还具有较高的精准度(相对标准偏差RSD<2.5%,样品回收率Recovery=101~105%)。此外,还通过化学衡算推导出基于GC信号与取样质量的主产物转化率公式。在此基础上,利用顶空气相色谱技术确定了水相中合成CHTAC的优化工艺条件为:反应物浓度2mol/kg(以三甲胺盐酸盐TMAC计);物料比为N_(ECH):N_(TMAC)=1.1:1;初始pH值为7;催化剂为ZnO,用量2%;反应过程采取三段式升温,分别为:12~14℃反应3.5h;由14℃升温至40℃共反应40min;40℃反应至6.5h。在此条件下主产物产率可提高至95%,粗产物中有效物CHTAC理论含量为25.79%,DCP含量约为0.23%(2279.7mg/kg), ECH含量为0.04%(393.8mg/kg)。依次经过旋转蒸发、氯仿萃取及水蒸气抽提等精制工艺,粗产物中ECH及DCP含量分别降低至1.5mg/kg及25mg/kg,将其用于PCD的阳离子化改性取得了较好的应用效果。
     木薯渣系列改性产物对100%废纸浆具有较好的助留助滤性能,其中CMPCD-g-AD与CPCD助留助滤性能较为优异。单独添加0.4%的CMPCD-g-AD时,纸浆细小组分单程留着率FPR可由未添加时的78.69%提高至93.3%;CPCD在0.1%的用量时,FPR可提高至89.35%。若预先用0.6%PAC预先添加至废纸浆中,后仅加入0.14%的两性助剂CMPCD-g-AD,FPR可在PAC添加效果达到饱和的情况下(88.37%)大幅度提高至93.71%;0.1%的CPCD用量可在PAC添加后将FPR提高至92.56%,但继续添加会出现体系过阳离子化,FPR明显下降。木薯渣改性助剂在6.5~8.5的pH范围内,其助留助滤性能无较大变化,表现出季铵盐阳离子基团较好的pH适应性,同时两性助剂还表现出较好的抗剪切能力。手抄纸实验发现,添加少量CMPCD-g-AD可大幅增加纸张定量,用量为0.2%时,手抄纸定量较空白样(已添加0.5%PAC)增加10.36%,经换算,纸浆细小组分单程留着率由69.58%提高至90.09%;当用量为1.2%,其定量增加14.06%,FPR提高至97.41%,此时成纸的抗张指数、耐破指数及撕裂指数分别增加17.47%、25.56%、6.83%;高取代度CPCD按0.5%添加,可获得一定的增干强效果,但会造成体系过阳离子化,助留助滤效果下降明显。
In order to alleviate the resources waste and pollution caused by a lack of way forcassava dregs(CD) comprehensive utilization, this study aims to use CD to synthesis newpaper wet end chemical agents to meet the demends of modern paper industry and to realizehigh added value transformation. CD is rich in crude fibre and starch, once pretreated byappropritate ways, the starch and cellulose in it could be well used for chemical modificationand applied as retention&filter aids.
     With SEM analysis, CD was mainly comprised of cellulose and starch with different sizeand density, and the cellulose existed in long crude fibre bundle、fiber fragments and reticularfibre, especially the starch was packaged by reticular fibre. With fiber coarse grinding andball-mill micronization pretreatment, fiber size was close to or even less than starch and theCD can realize homogenization. With sulfuric acid hydrolysis of CD and ion chromatographanalysis, four kinds of monosaccharides were detected and respectively with content of81.21%glucose,3.66%xylose,1.91%galactose,1.41%arabinose. After homogenization, therelative crystallinity of CD decreased to36.25%. On the based of homogenization, ultrasonicfurther pretreatment could promote relative crystallinity decrease to30.18%and improveWRV increase to414.5%. After series of pretreatment described as above, the pretreatedcassava dregs (PCD) could be used for chemical modification with good reaction uniformityand nice accessibility for chemical reagent.
     Cationic and anionic etherificatin modified product of PCD were synthesizedrespectively by reacting with3-chloro-2-hydroxypropyltrimethylammonium chloride(CHTAC) and chloroacetic acid. The optimization parameters of cationic etherificationmodified was describe as follow: concentration of isopropyl alcohol or ethanol (V/V) was70~80%, PCD10%, m_(NaOH): m_(CHTAC)=0.3:1, m_(CHTAC): m_(PCD)=0.5~0.7:1, alkalization assistedwith ultrasonic-10min/power81w, reaction temperature55℃, reaction time is3.5h;Anionic etherification modified optimal conditions:80%ethanol, PCD15%, N_(NaOH): N_chloroactic acid)=2.2:1; N_(chloroactic acid): N_(PCD)=0.91:1; reaction temperature55℃, reactiontime4.5h. Meanwhile, the CPCD and CMPCD were used as substrate for graftting copolymerization with monomer of acrylamide and acrylamide&[2-(methacryloyloxy)ethyl]trimethylammonium chloride respectively, and CPCD-g-PAM、 CMPCD-g-AD weresynthesised accordingly. The influence factors of the grafting copolymerization reaction, suchas the initiator concentration, monomers ratio and concentration, pH value, preoxidation time,reaction temperature, reaction time, substitution degree of etherification product, substrateconcentration were discussed in detail, and summarized the effect of these factors onmolecular weight and charge density of product. Then SEM, FT-IR,~(13)C-NMR and TGanalysis technical were used for study on chemical structure and thermal stability propertiescharacterization of PCD modified products, and all of them had proved the correspondingproduct were synthesised successfully.
     A headspace gas chromatographic(HS-GC) technique for the determination of residualEpichlorohydrin (ECH) and generated1,3-Dichloro-2-Propanol (DCP) in synthesis processof CHTAC was set up. By a weight-based sampling method, coupled with significant dilutionin15.8%sodium sulfate and0.1%silver nitrate mixed solution rapidly, the sample forHS-GC analysis was prepared. Based on the reaction stoichiometry, the conversion ofCHTAC during the synthesis process could be calculated from sampling weight and GC peakarea. The results showed that the method has a good measurement precision (RSD <2.5%)and accuracy (Recovery=101~104%) for the quantification of both ECH and DCP inthe process samples. It was simple and accurate and used for the efficient determination of theCHTAC conversion in the synthesis research. With assistance of this method, the optimalsynthesis condition of CHTAC in aqueous phase was obtained—TMAC:2mol/kg; N_(ECH): N_(TMAC)=1.1:1; initial pH value7; catalyst:2%ZnO; the process of reaction:12~14℃,3.5hfollowed heating up to40℃,40min and then40℃,6.5h. On this condition, the conversionand concentration of CHTAC was95%,25.79%respectively, DCP0.23%, ECH0.04%. By aprocess of purification such as rotating evaporation, chloroform extraction and water vaporextraction, the purified product had good application.
     Series derivatives of PCD had good retention and filter aid performance on recycleddeinking pulp.0.4%addition of CMPCD-g-AD could increase first pass retention (FPR) offine components from78.69%to93.3%, and0.1%CPCD could increase the FPR to89.53%.With pre-addition of0.6%PAC,0.14%CMPCD-g-AD could increase FPR from88.37%to 93.71%, and0.1%CPCD could increase FPR to92.56%. But more addition of CPCD wouldcause retention and filter property decrease. The fuction of PCD derivatives hardly change aspH value varied from6.5~8.5and showed good adaptability of quaternary ammonium saltcationic groups to pH. Meanwhile, CMPCD-g-AD showed good shearing resistance ability.Handsheet experiment showed that CMPCD-g-AD dramatically increase the paperquantitative. With0.2%addition of CMPCD-g-AD, the quantitative (compared with0.5%PAC) increased by10.36%, the FPR increased from69.58%to90.09%, meanwhile thephysical strength had little increase; When amount to1.2%, the quantitative increase14.06%,FPR increased to97.41%, the tensile index, brust index and tear index of handsheetrespectively increased by17.47%,25.56%and6.83%. With0.5%addition of CPCD (highDS), Even the physical strength have large increased, the performance of retention reduced.
引文
[1]毕松林.造纸化学品及其应用[M].北京:中国纺织出版社,2007:7-8
    [2]刘温霞,隆言泉等.阳离子聚电解质在纸浆纤维上吸附时的动态变化[J].造纸化学品,2000,(1):2-5
    [3] Scott W.E. Fine management and control in wet end chemistry [J]. Tappi J.,1996,59(12):121
    [4] Nazir B A., Carnegie Jones J. optimising wer end chemistry the pratcticalities [J]. PaperTechnology, Dec.1991:37-41
    [5]胡惠仁,徐立新,董荣业.造纸化学品[M].北京:化学工业出版社,2002
    [6] Lindstrom T., Glad-Nordmark G.[J] Colloid Interface Sci.,1984,97(1):62
    [7] Lindstrom T., Glad-Nordmark G.[J] Colloid Interface Sci.,1984,8:337
    [8] Stack K.R., Dunn L.A., Robers, N.K.[J] Colloid Interface Sci.,1911.61:205
    [9] Klungness J.H., Exner M.P. Chemical additives to pulps—Effect on drainage andstrength of papers containing oak pulps[J]. Tappi Journal,1980,63(6):73
    [10] Norell M., Johansson K., Persson M. Retention and Drainage, Chapt,3in Papermakingchemistry[M]. Helsinki: Finnish Paper Engineers’ Association and Tappi,1999.
    [11] Koethe JL, Scott W E. Polyelectrolyte interactions with Papermaking Fiber: Themechanism of surface-charge decay [J]. Tappi J.,1993,76(12):123
    [12] M.R, Abdallah Qasaimeh. Causes of transient flocculation of fine with polyethyleneoxide and a cofactor: implications for mill performance[J]. Collids and surface A:Physicochem. Eng. Aspects,2011,386:125-130
    [13]Chung-wai Chiu, Daniel Solarek. Starch—chemistry and technology[M]. New Jersey,2009:629-655
    [14]Yingbin Wang, Wenlei Xie. Synthesis of cationic starch with a high degree of substitutionin an ionic liquid[J]. Carbohydrate polymers,2010,80:1172—1177
    [15]Marieta Nichifor, Magdalena Cristina Stanciu, Bogdan C.Simionescu. New cationichydrophilic and amphiphilic polysaccharides synthesized by one pot procedure[J].Carbohydrate Polymers,2010,8(2):965-975
    [16]Xu Shimei, Wang Jingli, Wu Ronglan, Wang Jide, Effect of degree of substitution onadsorption behavior of basic green4by highly crosslinked amphoteric starch with quaternaryammonium and carboxyl groups[J]. Carbohydrate Polymers,2006,66:55-59.
    [17] Gui peng, Shimei Xu, Yang Peng. A new amphoteric superabsorbent hydrogel based onsodium starch sulfate[J]. Bioresource Technology,2008,99:444-447
    [18]Song,H.,Wu,D.,Zhang,R.Q.,Qiao,L.Y.,Zhang,S.H.,Lin,S.,Ye,J..Synthesis and applicationof amphoteric starch graft polymer[J]. Carbohydrate Polymers,2009,78(2):253-257.
    [19] Shaojie Lu, Songbai Lin, Kangde Yao. Study on the synthesis and application ofStarch-graft-Poly(AM-co-DADMAC) by using complex initiation System ofCS-KPS[J].Starch,2004,56:138-143
    [20]Zhen Yang, Bo Yuan, Xin Huang.Evaluation of the flocculation performance ofcarboxymethyl chitosan-graft-polyacrylamide,a novel amphoteric chemically bondedcomposite flocculant[J].water research.,2012:46:1:107-114
    [21]Mihai,M.,Dragan,E.S..Chitosan based nonstoichiometric polyelectrolyte complexes asspecialized flocculants[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,346(13):39-46
    [22] Renault,F.,Sancey,B.,Badot,P.M.,Crini,G.. Chitosan for coagulation and flocculationprocesses of an eco-friendly approach[J].European Polymer Journal,2009,45(5):1337-1348.
    [23]Rojas-Reyna,R.,Schwarz,S.,Heinrich,G.,Petzold,G.,Schutze,S.,Bohrisch,J..Flocculationefficiency of modified water soluble chitosan versus commonly used commercialpolyelectrolytes[J].Carbohydrate Polymers,2010,81(2):317-322.
    [24]Chen,X.G.,Park,H.J..Chemical characteristics of O-carboxymethyl chitosans related to thepreparation conditions[J].Carbohydrate Polymers,2003,53(4):355-359.
    [25]黎厚斌.壳聚糖类造纸湿部助留助滤剂的界面行为及应用研究[D].武汉,武汉大学,2004,4
    [26]曹丽云,黄剑锋,张光华.壳聚糖-丙烯酰胺接枝共聚物用作造纸增强、助留剂的研究[J].纸和造纸,2001,(1):37-38.
    [27]李建文,邱化玉,褚夫强.甲壳素多功能造纸助剂的开发及应用[J].中国造纸,2004,23(5):22-25
    [28]万小芳,李友明.瓜尔胶衍生物的合成、表征及助留助滤性能研究[D].广州:华南理工大学,2007.6
    [29]Sand,A.,Yadav,M.,Behari,K..Preparation and characterization of modified sodiumcarboxymethyl cellulose via free radical graft copolymerization of vinyl sulfonic acid inaqueous media[J].Carbohydrate Polymers2010,81(1):97-103.
    [30]Biswal,D.R.,Singh,R.P..Characterisation of carboxymethyl cellulose and polyacrylamidegraft copolymer[J].CarbohydratePolymers,2004,57(4):379-387.
    [31] H. A Krassig, Cellulose-structure, Accessibility and Reactivity[M], Gordon and BreachScience Publisher, Yverdon,1993
    [32] T.P.Nevell, S. H. Zeronian. Cellulose Chemistry and its Applications[M]. Ellis HorwoodLimited,1985
    [33] P. J. Wakelyn. Handbook of Fiber Chemistry[M]. New York,1998:642–654
    [34] A. Hebeish and J. T. Guthrie. The Chemistry and Technology of Cellulosic Copolymers[M]. Berlin, Springer-Verlag,1984
    [35] S. H. Zeronian, Cellulose Chemistry and Its Applications[M]. Chichester, Ellis HorwoodLimited,1985:159-180
    [36] J. Kunze and H. P. Fink, Macromol. Symp[J].2005,223:175–187.
    [37] E. Dinand, M. Vignon, H. Chanzy and L. Heux, Cellulose[J].2002,9:7–18.
    [38] R. K. Samal, P. K. Sahoo, H. S. Samantaray and S. P. Bhattacharjee, J. Macromol. Sci. R.M. C.,1986,26:81–141
    [39] H. G. Borner and K. Matyjaszewski,[J] Macromol. Symp.,2002,177:1–15
    [40] A. Carlmark and E. E. Malmstrom,[J] Biomacromolecules,2003,4:1740–1745
    [41] P. Mansson and L. Westfelt, J. Polym. Sci. Pol. Chem.,1981,19:1509–1515
    [42] C. J. Biermann, J. B. Chung and R. Narayan, Macromolecules,1987,20:954–957
    [43] M. Szwarc, Nature,1956,178:1168–1169
    [44] T. Otsu and M. Yoshida, Makromolekul. Chem-Rapid,1982,3:127–132
    [45] T. Otsu, M. Yoshida and T. Tazaki, Makromolekul. Chem-Rapid,1982,3:133–140
    [46] I. Ikeda, Y. Kurushima, H. Takashima and K. Suzuki, Polym. J.(Tokyo, Japan),1988,20:243–250
    [47] H. Cheradame, A. U. Tadjang and A. Gandini, Makromolekul. Chem-Rapid,1988,9:255–256
    [48] P. Mansson and L. Westfelt, J. Polym. Sci. Pol. Chem.,1981,19:1509–1515
    [49] C. J. Biermann, J. B. Chung and R. Narayan, Macromolecules,1987,20:954–957
    [50]王文泉,叶剑秋,李开绵,朱文丽.我国木薯酒精生产现状及其产业发展关键技术[J].热带农业科学,2006,26(4):44-49
    [51]田益农,卢赛清.以木薯为原料的生物质能源在中国的发展潜力[J].安徽农业科学,2010,38(28):15763-15766
    [52]王刚,李明,王金丽.热带农业废弃物资源利用现状与分析[J].广东农业科学,2011,(1):12-14
    [53]岳金方,左春丽.在氮气氛围下木薯渣的热裂解的实验研究[J].可再生能源,2009,27(4):47-50
    [54]岳金方,应浩,蒋剑春,孙云娟.水蒸气氛围下木薯渣气化研究[J].林产化学与工业,2008,28(1):83-86
    [55]李静,涂佳才,陈秀龙等.木薯渣微生物降解及再利用研究进展[J].生态环境学报,2010,19(10):2506-2510
    [56]王菁,韩刚,于晓艳等.不同预处理的木薯渣水解液生物酸化特性比较[J].环境工程技术学报,2011,1(6):479-493
    [57]廖善秋,樊幼民.以木薯渣、黄浆为原料生产酒精技术经济评价[J].广西大学学报(自然科学版),1997,22(3):230-234
    [58]林莹,杨有,辛志平.利用Design-Expert设计优化木薯渣制备羧甲基纤维素钠工艺研究[J].食品工艺科技,2011,32(2):289-291
    [59] Miller G L. Anal. Chem.[J],1959,31:426.
    [60]迟聪聪,张曾,柴欣生,戈玮玮.用双波长可见光谱法快速测定半纤维素提取液中糖的含量[J].光谱学与光谱分析,2010,30(4):1084-1087
    [61]陶乐平,丁在富,张部昌.气相色谱在多糖结构测定中的应用[J].色谱,1994,12(5):351–354
    [62]陆德培,黄克武,李荣春.糖的高效液相色谱分析研究[J].生物化学与生物物理学报,1982,14(5):501–506
    [63]李筱华,何兰芳,常凤眉.气相色谱法测定磨甘蔗木素及磨甘蔗酶解木素残留的碳水化合物组成[J].色谱,1987,5(1):4-7
    [64]彭云云,武书彬.离子色谱法测定蔗渣半纤维素中的单糖及糖醛酸含量[J].造纸科学与技术,2009,28(5):10-12
    [65] K S. Suslick, Sonochemistry[J]. Science,1990,247:1439-1445
    [66] A Ebringerova, Z hromadakova. The effect of ultrasound on the structure and propertiesof the water-solble corn hull heteroxylanp[J]. Ultrasonics: Sonochemistry,1997,4(4):305-309
    [67]覃兆海,陈馥衡.超声波在有机合成中的应用[J].化工进展,1998,10(1):64-72
    [68]黄昆,嵇学林,刘华.有机声化学最新进展[J].化学通报,1993,(5):7-11
    [69]常德华,宫宁瑞,刘继华,等,辐射对棉纤维素结晶度的影响[J].北京理工大学学报,1997,17(5):579-583
    [70]唐爱民.超声波作用下纤维素纤维结构与性质的研究[D].广州,华南理工大学,2000
    [71]刘羽,邵国强,许炯.竹纤维与其他天然纤维素纤维的红外光谱分析与比较[J].竹子研究汇刊,2010,29(3):42-46
    [72]龚运淮.天然有机化合物的13C核磁共振化学位移[M].昆明:云南科技出版社,1986:125-134
    [73]陈启杰,陈夫山,胡惠仁,等.高取代度阳离子淀粉的制备和应用[J].中国造纸,2004,23(1):10-15
    [74] Derek Abson, Brooks D F. Wet-end Behavior of dry strength addictives[J]. Tappi J,1985,68(1):76-78
    [75]张宏伟,朱志坚,唐爱民,等.阳离子淀粉的合成及对纸张的增强作用[J].中国造纸,2004,23(10):21-23
    [76]Chowdhary M S. Derivatized guar gum composition including nonionic and cationicgroups which demonstrate excellent solution clarity properties [P]. US:5756720,1998,5
    [77]赵耀明,李艳明.季铵阳离子纤维素醚的合成[J].华南理工大学学报(自然科学版),2007,35(8):83-88
    [78]殷延开,陈玉放,哈成勇.纤维素在不同介质中的吸附碱的研究[J].天然产物研究与开发,2006,18:183-186
    [79]衣洪筑,辛峰.阳离子醚化剂CHPTMAC合成工艺的研究[D].天津,天津大学,2004
    [80] Deavenport. Joseph L, Lopez. Bladimir I, Process for preparation ofhalohydroxypropyl-trialkylammonium halides [P]. U S:5463127
    [81]丁峰,辛峰.微乳条件下ECH和TMAC的合成反应及反应动力学研究[D].天津,天津大学,2004
    [82] V. Haack, T. Heinze, G. Oelmeyer, Macromol. Mater. Eng.2002,287:495
    [83] H.Q. Yu, Y.H. Huang, H. Ying, C.B. Xiao, Carbohydr. Polym.2007,69:29
    [84] A. Tara, F. Berzin, L. Tighzert, B. Vergnes, J. Appl. Polym. Sci.2004,93:201
    [85] L.L.Wang, W. Ma, S.F. Zhang, Carbohydr.Polym.2009,78:602
    [86]刘付芳,孙洁,孙惠莲.气相色谱法分析3-氯-2-羟丙基三甲基氯化铵中的微量有机物质[J].色谱,2002,20(4):362-363
    [87]周维义,范国梁,姜东峰.气相色谱法分析阳离子醚化剂中残存的环氧氯丙烷和1.3-二氯丙醇[J].色谱,2004,22(6):650-651
    [88] B.Y. Ioffe., A.G. Vitenberg, Wiley-VCH, New York,1984.
    [89] X.S. Chai, Q.X. Hou, F.J. Schork, J. Chromatogr. A2004,1040:163.
    [90] H.L. Li, H.Z. Zhan, X.S. Chai, J. Chromatogr. A2007,1175:133.
    [91] X.S. Chai, Q.X. Hou, F.J. Schork, J. Appl. Polym. Sci.2006,99:392.
    [92] J.F. Zhong, X.S. Chai, S.Y. Fu, J. Instrum. Anal2009,28:1111.
    [93] X.S. Chai, J.Y. Zhu, Anal. Chem.1998,70(16):3481.
    [94] A.S. Teja, Ankur K.Gupta a, Kerry Bullock, X.S. Chai, J.Y. Zhu, Fluid PhaseEquilib.2001,185:265.
    [95] Eugene F. Paschall, Orland Park. Starch ethers containing nitrogen and process formaking the same[P]. US:2876217,1959
    [96] Arthur M. Goldstein, Plainview, Erwin M. Heckman, et al. Process for making starchethers[P]. US:3649616,1972.
    [97]游霞,杨漫波.盐酸返滴定测定3-氯-2-羟丙基三甲基氯化铵含量的方法研究[J].四川化工,2009,12(4):37-39
    [98] Sten I. Falkehag, Peter Dilling. Process for producing cationic lignin amines[P]. US:3718639,1973
    [99]松富徹,武田静雄,文野森幸成,等.3-氯-2-羟丙基三甲基氯化铵的合成方法[P]. JP:145054,1992
    [100]杨锦宗,张永华,菅秀君,等.3-氯-2-羟丙基三甲基氯化铵的合成方法[P]. CN:1187484A,1998
    [101]张永华,杨锦宗.相转移催化合成3-氯-2-羟丙基三甲基氯化铵[J].化学试剂,1998,20(5):306-308
    [102] Emmentt L T., Lake Jackson. Method of purifying3-chloro-2-hydroxyproyltrialkylamm-oniumchloride[p]. US:4602110,1986
    [103]张春晓,于维钊.阳离子醚化剂CHPTMAC的催化合成研究[J].山东化工,2005,34(2):3-10
    [104]王凤贺,王晶,雷武,等.3-氯-2-羟丙基三甲基氯化铵合成过程的汽提工艺研究[J].精细石油化工进展,2002,3(9):29-31
    [105] Dow Chemical Corp. product technical data-Quat188. Form NO.123-0001-1000AMS.Published October,2000.
    [106] D. Roy, M. Semsarilar, J. T. Guthrie, et al. Cellulose modification by polymer graftiong:a review[J]. Chemical Society Reviews,2009,38(7):1825-2148
    [107] M. Tizzotti, A. Charlot, E. Fleury, et al. Modification of polysaccharides throughcontrolled/living radical polymerization grafting—Towards the generation of Highperformance hybrids[J]. Macromolecar,2010,31:1751-1772
    [108]曹键,张可达.活性/可控自由基聚合新进展[J].化工研究与应用,2005,17(1):17-26
    [109] Mino G, Kaizerman S. A new method for preparation of graft copolymers[J]. J. PolymSci.,1958,31:242-243
    [110] Pottenger C R, Johnson D C. Mechanism of cerium(IV) oxidation of glucose andcellulose[J]. J. Polym Sci., Part A-1,1970,8(1):301-318
    [111] Kulkarni A Y,Mathta P C. Oxidation of cellulose by Ceric ion[J]. J Polym Sci, Part B,1967,5:209-210
    [112] Ogiwara Y, Kubota M. The Mechanism of consumption of ceric salt with cellulosematerials[J]. J Polym Sci, Part A-1,1968,6:1489-1499
    [113] T. Graczyk,V. Hornof. Graft copolymerization of cellulose initiated by ceric salts: Effectof reaction conditions on the consumption of ceric ion[J]. J Polym Sci, Part A: Polymerchemistry,1988,26(8):2019-2029
    [114]苏茂尧,丁新颖.纤维素经铈离子引发丙烯酸接枝共聚机理研究[J].华南理工大学学报(自然科学版),1994,22(6):118-125
    [115] Higazy A. Graftig of2-dimethylaminoethy methacrylat to flax cellulose usingpotassium permanganate/citric acid system[J]. Bulletin of the national research centre,1996,21(4):385-398
    [116]谭业邦.两性纤维素接枝共聚物的研究I.两性共聚物的合成[J].功能高分子学报,1999,12(2):149-152
    [117]谭业邦.新型水溶性两性纤维素接枝共聚物的研究[D].广州:中山大学,1998
    [118]史俊杰,孙承林,杨旭,等. KMnO4/H2SO4引发制备淀粉改性絮凝剂的研究[J].环境化学,2005,24(5):565-568
    [119]张黎明.水溶性接枝多聚糖的研究,I.淀粉与丙烯酰胺和二甲基二烯丙烯基氯化铵的接枝共聚[J].中山大学学报,2001,40(1):51-54
    [120]张黎明.两性纤维素衍生物的制备与应用研究[D].中山大学:中山大学博士后研究工作报告,1996
    [121]田大听,史伯安,王辉.高猛酸钾引发魔芋粉/丙烯酰胺接枝共聚合成及其增稠性研究[J].功能高分子学报,2003,16(2):252-255
    [122] Jianping Gao, Jiugao Yu, Wei Wang, et al. Graft copolymerization of starch-ANinitiated by Potassium Permangannate[J]. J. Applied Polymer Science,1998,68:1956-1972
    [123] Nrusingha P C,Pradhem A K, Nayak P C. Grafting vinyl monomers onto cellulose. VI.Graf copolymerization of methyl methacrylate onto cellulose using potassium permanganateas the initiator[J]. Marcomol Sci Chem,1982,7(3):501-512
    [124] Palit S R, Konar R S. Permanganate-oxalic acid as a redox initiator of acrylonitrilepolymerization in aqueous. III. Kinetics and degree of polymerization[J]. Jourmal of PolymerScience,1964,2:1731-48
    [125] Varma I. K, Singh O.P, Sandle N. K. Graft-Copplymerization of strarch with acrylamideI[J]. J Polym.Sci,1958,31:481-498
    [126] M. Teresa R. Laguna, Ricardo Medrano, Miguel P. Plana, M. Pilar Tarazona. Polymercharacterization by size-exclusion chromatography with multiple detection[J].Journal ofchromatography A,2001,919:13-19
    [127] K. Sommermeyer, F. Cech, E. Pfitzer, K. R.. Characterisation of polymer by sizeexclusion chromatography using multiple detection. Investigations on the determination ofstructural differences of hydroxyethyl starches[J]Chromatographia,1992,33:151-153
    [128]Sang-Ho Yoo,Jay-lin Jane. Molecular weights and gyration radii of amylopectinsdetermined by high-performance size-exclusion chromatography equipped with multi-anglelaser-light scattering and refractive index detectors[J]. Carbohydrate Polymers.2002,49:307-314
    [129] Ming-Hsuan Chen, Christine J. Bergman. Method for determining the amylose content,molecular weights,and weight-and molar-based distributions of degree of polymerization ofamylose and fine-structure of amylopectin[J]. Carbohydrate Polymers,2007,69:562-578
    [130] Philip J. Wyatt. Light scattering and the absolute characterization of macromolecules[J]. Analytical chemical Acta.1993,272:1-40
    [131]张红杰,陈夫山,胡惠仁.高分子质量阳离子聚丙烯酰胺的合成及其应用[J].中国造纸,2003,22(4):15-18
    [132]刘劭农,周华水,陈雪梅.聚丙烯酰胺分子量测定准确度探讨[J].江西化工,2001(1):25-27
    [133]范宏.淀粉/DMDAAC-AM接枝共聚物的合成及表征[J].高分子材料科学与工程,2002,18(5):62-65
    [134]程建华.壳聚糖接枝三元共聚高分子絮凝剂的合成、表征与应用研究[D],广州:华南理工大学,2005
    [135]王葆仁.有机合成反应(上册)[M].北京:科学出版社,1981:59-60
    [136]谢来苏,胡惠仁,陈夫山,等.造纸用两性助剂[J].天津造纸,1993,3:1-10
    [137]赵军宁,杨宗邃,马建中,等.改性淀粉类绿色化学品开发及应用研究进展[J].精细与专业化学品,2005,13(6):1-5
    [138]陈夫山,刘丹凤,谢来苏,等.两性淀粉在中性抄纸中的应用[J].中国造纸学报,1999,14(10):78-81
    [139]张友全,张本山,曾新安.两性淀粉的制备及在废纸浆抄纸中的应用[J].中国造纸,2002(5):13-16
    [140]张友全,秦丽勋,郑海,等.两性淀粉共聚物在中性抄纸中的应用[J].中国造纸,2006,18(6):733-736
    [141]陈夫山.两性助留助滤剂的研发及其在造纸湿部化学的研究[D],天津:天津轻工业学院,1998
    [142]王海毅.纸浆中两性聚丙烯酰胺的助留助滤作用机理[D].天津:天津科技大学,2001
    [143]陈夫山,何秋实,隆言泉.两性聚丙烯酰胺的助留作用[J].纸和造纸,1998,(4):43-45
    [144] Parvathya K. S, Susheelammab N. S, Tharanathana R. N. et al. A simple non-aqueousmethod for carboxymethylation of galactonmannans[J]. Carbohydrate Polymers,2005,62:137-141.
    [145]王丽,庞方亮,王爱勤.羧甲基纤维素钠/蒙脱土纳米复合材料的制备及结构表征[J].硅酸盐学报,2010,38(9):1821-1825
    [146]杨芳,黎钢,任凤霞,等.羧甲基纤维素与丙烯酰胺接枝共聚及共聚物的性能[J].高分子材料科学与工程,2007,23(4):78-81
    [147]李勤奋,黄棣,王江,等.可生物降解羧甲基纤维素/壳聚糖吸水保水材料的制备与表征[J].高分子材料科学与工程,2010,26(12):118-121
    [148]唐有根,蒋刚彪,黄振谦.两性高分子的合成研究——羧甲基纤维素接枝长链季铵盐[J].中南工业大学学报,2000,31(2):137-140
    [149]苏茂尧,由利丽,郑松,等.羟丙基羧甲基纤维素工艺及反应机理研究[J].华南理工大学学报(自然科学版),1997,25(11):103-107
    [150]张镜吾,程发,李桂凤,等.羧甲基纤维素取代基沿分子链分布的均一性I—溶剂种类对均一性的影响[J].天津大学学报,1995,28(5):648-652
    [151]李建文.造纸湿部化学助剂的协同作用[J].造纸化学品,2006,18(2):66-68
    [152] Britt K. W, Unbehend J.E, New methods for monitoring retention[J]. Tappi,1976,59(2):67-70
    [153] Orlando J. Rojas, Ronald D. N, Adsorption of polysaccharide wet-end additives inpapermaking systems.[J]. Colloids and surfaces A: physicochemical and engineering aspects,1999,55:419-432
    [154]王海毅,谢来苏.造纸湿部化学基本理论及助留助滤研究的基本方法[J].造纸化学品,2001,(2):12-17
    [155]陈蕴智,龙柱,谢来苏.聚合氯化铝的助留助滤效果[J].西南造纸,2002,(1):10-11
    [156]陈夫山,姜秀英,王松林,等.高阳电荷密度聚合物对高得率浆助留助滤性能的影响[J].中国造纸,2010,29(4):36-39
    [157]刘温霞,隆言泉,王启常,谢来苏.无机高分子聚合物及其在造纸湿部化学中的应用[J].上海造纸,1999,30(4):17-21
    [158]黄应刚,何北海.造纸湿部化学参数在线检测及控制的新进展[J].造纸化学品,2000(4):13-17
    [159] Hedberg Fritz. Alkaline rosin sizing using microparticulate aluminumbased retentionaid systems in a fine paper stock containing CaCO3[J]. Nordic Pulp and PaperReasearch,1993
    [160]陈夫山,姜秀英,王松林.改性PEI/CPAM体系对脱墨浆助留助滤性能的研究[J].中华纸业,2010,31(4):11-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700