用户名: 密码: 验证码:
网状木质基泡沫炭的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富勒烯和碳纳米管等新型炭材料的发现,使炭材料的研究倍受关注。作为一种新型炭材料,泡沫炭具有比表面积高、孔隙发达、密度小、耐高温、耐腐蚀等优点,在催化、净化、医疗、航空航天、军事及民用工业有着广泛应用前景。目前泡沫炭的制备主要以煤焦油沥青、石油中间相沥青、高聚物等通过自裂解发泡法、物理发泡法及模板法制备。对泡沫炭原料范围的扩展及制备方法的改进有着重要的现实意义和理论价值。
     本文旨在于利用木屑这一低成本的可再生资源为原料,经过液化、液化木材树脂化、发泡、炭化、活化等工艺分别制备出多孔泡沫炭、蜂窝状泡沫炭及网状泡沫炭;并将网状泡沫炭与TiO2复合制备复合光催化剂;研究中通过热重分析、X-射线衍射分析、透射电子显微镜、扫描电子显微镜及能谱分析、低温氮气吸附分析及气相甲苯的吸附与降解等方法对制备材料进行了表征。
     本文对泡沫炭、木材液化研究现状进行了综述,在此基础上介绍了本课题的研究背景、方案、内容、创新点及主要研究方法。
     研究中以落叶松木屑、桦木木屑、落叶松综纤维素等为原料,通过木材液化、热塑性树脂化及高温裂解炭化等过程,制备了木质基多孔泡沫炭,产物表观密度在0.34~0.50g/cm3之间,经800℃高温处理后,比表面积达到400m2/g以上,平均孔径在1.85~2.35nm之间。
     以落叶松木屑、桦木木屑、落叶松综纤维素等为原料,通过木材液化、热固性树脂化、物理发泡制备了木质基热固性树脂泡沫,并进一步在高温下炭化,制备了木质基蜂窝状泡沫炭,产物由孔泡壁、韧带及节点组成的不规则六边形或五边形孔泡构成,孔泡尺寸在100~300μm之间,表观密度在0.02g/cm3左右,经800℃高温处理后,比表面积达到400m2/g以上,微观孔隙以微孔为主,平均孔径在1.88~1.99nm之间。
     以木质基热固性树脂泡沫为前驱体,分别以KOH和H3P04为活化剂,经高温活化制备了木质基网状泡沫炭,产物由相互连接的韧带和节点组成的不规则六边形或五边形孔泡构成,孔泡间相互贯通,表观密度为0.02~0.80g/cm3,经700℃氢氧化钾活化的网状泡沫炭比表面积可达到1100m2/g,孔径呈双峰分布特征,微孔主要集中在0.44~0.45nm,中孔主要集中在3~4.5nm之间,经800℃活化后,比表面积甚至可达到近2000m2/g。
     以钛酸四丁酯为钛源,以网状泡沫炭为载体,通过溶胶-凝胶法合成了TiO2/泡沫炭复合光催化剂,泡沫炭的高比表面积促进了反应物的富集,泡沫炭抑制了TiO2由锐钛型向金红石型的转变,使TiO2的平均粒径由9.2nm减小到7.1nm,提高了催化剂的比表面积,从而明显提高了TiO2的光催化性能,复合催化剂的气相甲苯降解率最高可达到近90%。复合催化剂的比表面积以微孔为主,最高比表面积为394.97m2/g,微孔表面积最高为339.64m2/g,微孔对于提高催化性能起着更为关键的作用。
As materials science and technology continues to evolve, a variety of materials with different properties emerged. The research of carbon materials has attracted considerable attention in the field of materials science, physics and chemical industry with the discovery of some novel carbon materials, e.g., Fullerenes and carbon nanotubes. As a novel carbon materials, Carbon foam has some advantage, for example, a high surface area, developed porosity, light weight, high temperature resistance, and corrosion resistant. Its thermal conductivity, electrical conductivity can be adjusted with different raw materials and preparation technology as requested, so it has been used in catalysis, purification, medical, aerospace, military and civilian industries widely. To date, Carbon foam was prepared by submitting coal tar pitch, petroleum mesophase pitch and polymer to cracking foaming, physical foaming method and template method mainly. Related researches have been focused on the selecting of raw and improving of preparation technology for the past few years.
     For carbonaceous adsorbents, a large number of open micropores are essential for fast adsorption kinetics. In this thesis, wood sawdust, a low cost and renewable material, was used as raw to prepare wood based porous carbon foam, wood based honeycomb carbon foam, and wood based reticulated carbon foam with a developed pore structure, which underwent liquefaction, resinification of liquefied wood, foaming, carbonization and activation steps. TiO2/carbon foam photocatalysis composite was obtained from reticulated carbon foam then. In research, the samples were characterized by TG and DTG, XRD, TEM, SEM, nitrogen adsorption at77K and adsorption or degradation of toluene gas, and so on.
     Research status of carbon foam and liquefaction of wood were summarized. Then the research background, programs, contents, innovation point and the main method of this study were led to according to research in these areas.
     Larch wood sawdust, birch wood sawdust and larch holocellulose were used as raw materials to prepare wood-based porous carbon foam through the liquefaction of wood, thermoplastic resinification, pyrolysis of thermoplastic resins and carbonization process. The bulk density of products was between0.34and0.50g/cm3. The surface area reached to400m2/g or more after the products treated at800℃. The micropore is the main structure and the average pore diameter is between1.85to2.35nm.
     Wood-based thermosetting resin foam was prepared from larch wood sawdust, birch wood sawdust and larch holocellulose through the liquefaction of wood, thermosetting resinification, physical foaming, then underwent carbonization at high temperature to give wood-based honeycomb carbon foam. The carbon foam was formed by the irregular hexagonal or pentagonal bubble which contained cell wall, ligaments and nodes. The cell size was between100and300μm and the bulk density was about0.02g/cm3. The surface area reached to400m2/g or more after the products treated at800℃. The micropore is the main structure and the average pore diameter is between1.88to1.99nm.
     Wood based reticulated carbon foam was prepared by potassium hydroxide or phosphoric acid activation method from wood based thermosetting resin foam under high temperature. The carbon foam was formed by the irregular hexagonal or pentagonal bubble interconnected each other. The bulk density was between0.02and0.80g/cm3. Surface area was up to1100m2/g by potassium hydroxide activation at700℃, and twin peaks with micropore of0.44to0.45nm and mesopore of3to4.5nm were shown. Surface area was even up to2000m2/g by activation at800℃.
     TiO2carbon foam photocatalysis composite was given by sol-gel method through tetrabutyl titanate deposited on the reticulated carbon foam. Concentration of reactants was promoted due to high surface area of carbon foam, and carbon foam inhibited TiO2from anatase to rutile transformation and the average particle size decreased from9.2nm to7.1nm. Surface area of catalyst and photocatalytic activity of TiO2increased obviously. The highest degradation percentage to toluene gas was up to90%on photocatalysis composite. The micropore is the main structure. The highest surface area was394.97m2/g and the micropore area was339.64m2/g. Micropore played a more critical role for improving photocatalytic activity.
引文
[1]石德珂.材料科学基础.第二版.北京:机械工业出版社,2003:1
    [2]W. F. Knippenberg, B. Lersmacher. Carbon Foam. Philips Technical Review.1976,36(4): 93-103
    [3]肖正浩,周颖,肖南,邱介山.泡沫炭的研究进展.化工进展.2008,27(4):473-477,507
    [4]王小宪,李铁虎,魏宏艳,等.泡沫炭的制备和性能.材料导报.2005,19(5):11-13
    [5]张伟,王成扬,王妹先,林起浪,冀拥斌.石油系中间相沥青基泡沫炭的制备与结构研究.炭素技术.2006,25(5):22-27
    [6]N. C. Gallego, J. W. Klett. Carbon foams for thermal management. Carbon.2003,41: 1461-1466
    [7]Y. L. J. Jamin. Enhanced heat transfer using porous carbon foam. Dissertation for the Degree of Master in University of Calgary.2005:1-10
    [8]S. P. Rawal, K. S. Johnson, K. Makowski. Multifunctional carbon-carbon foam-core space radiator development. AIP Conference Proceedings.2005,746(1):3-9
    [9]J. B. Joo, P. Kim, W. Kim, J. Yi. Preparation and application of mesocellular carbon foams to catalyst support in methanol electro-oxidation. Catalysis Today.2008,131:219-225
    [10]H. Kim, J. C. Jung, D. R. Park, H. Lee, J. Lee, S. H. Lee, S.-H. Baeck, K.-Y. Lee, J. Yi, I. K. Song. Preparation of H5PMo10V2O40 catalyst immobilized on nitrogen-containing mesostructured cellular foam carbon (N-MCF-C) and its application to the vapor-phase oxidation of benzyl alcohol. Catalysis Today.2008,132:58-62
    [11]N. Ohtal, Y. Nishil, T. Morishita, Y. Ieko, A. Ito, M. Inagaki. Preparation of microporous carbon foams for adsorption/desorption of water vapor in ambient air. New Carbon Materials.2008,23(3):216-220
    [12]D. Lee, J. Lee, J. Kim, J. Kim, H. B. Na, B. Kim, C.-H. Shin, J. H. Kwak, A. Dohnalkova, J.W. Grate, T. Hyeon, H.-S. Kim. Simple fabrication of a highly sensitive and fast glucose biosensor using enzymes immobilized in mesocellular carbon foam. Advanced Materials. 2005,17:2828-2833
    [13]K. Maslov, V. K. Kinra. Damping capacity of carbon foam. Materials Science and Engineering A.2004,367:89-95
    [14]M. Grujicic, B. Pandurangan, C. L. Zhao, S. B. Biggers, D. R. Morgan. Hypervelocity impact resistance of reinforced carbon-carbon/carbon-foam thermal protection systems. Applied Surface Science.2006,252:5035-5050
    [15]Y. Chen, B.-Z. Chen, L.-W. Ma, Y. Yuan. Effect of carbon foams as negative current collectors on partial-state-of-charge performance of lead acid batteries. Electrochemistry Communications.2008,10:1064-1066
    [16]Y. Chen, B.-Z. Chen, L.-W. Ma, Y. Yuan. Influence of pitch-based carbon foam current collectors on the electrochemical properties of lead acid battery negative electrodes. J Appl Electrochem.2008,38:1409-1413
    [17]K. Lafdi, O. Mesalhy, A. Elgafy. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications. Carbon.2008,46:159-168
    [18]S. Vijaykant, A. K. Agrawal. Liquid fuel combustion within silicon-carbide coated carbon foam. Experimental Thermal and Fluid Science.2007,32:117-125
    [19]W. Ford. Method of ma king cellular refractory thermal insulating material. US3121050. 1964-02-11
    [20]J. Googin, J. Napier, M. Scrivner. Method for manufacturing foam carbon products. US3345440.1967-10-03
    [21]R. D. Klett. High temperature insulating carbonaceous material. US3914392.1975-10-21
    [22]G. Griffith. Carbon Foam:A Next-Generation Structural Material. Industrial Heating. 2002-11-11
    [23]X. J. Yang, Q. F. Zha, H. N. Li, X. J. Li, X. L. Cheng. Carbon foam produced from fluid catalytic cracking slurry at atmospheric pressure. New Carbon Materials,2008,23(2): 154-158
    [24]S. Z. Li, Y. Z. Song, Y. Song, J. L. Shi, L. Liu, X. H. Wei, Q.G. Guo. Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch.Carbon.2007,45:2092-2097
    [25]R.V.R.A. Rios, M. Martinez-Escandell, M. Molina-Sabio, F. Rodriguez-Reinoso. Carbon foam prepared by pyrolysis of olive stones under steam. Carbon.2006,44:1448-1454
    [26]M. X. Liu, L. H. Gan, F. Q. Zhao, X. Z. Fan, H. X. Xu, F. R. Wu, Z. J. Xu, Z. X. Hao, L. W. Chen. Carbon foams with high compressive strength derived from polyarylacetylene resin. Carbon.2007,45:3055-3057
    [27]甘礼华,刘明贤,王曦,田辞.正戊烷发泡法制备多孔碳泡沫材料.同济大学学报(自然科学版).2008,36:1552-1555
    [28]J. E. Hampsey, Q.Y. Hu, L. Rice, J. B. Pang, Z. W. Wu, Y. F. Lu. A general approach towards hierarchical porous carbon particles. Chem. Commun.,2005,3606-3608
    [29]M. X. Liu, L. H. Gan, C. Tian, J. C. Zhu, Z. J. Xu, Z. X. Hao, L. W. Chen. Dual template approach for the synthesis of hierarchically mesocellular carbon foams. Chinese Chemical Letters.2009,20:123-126
    [30]W. R. Pekala, R.W. Hopper. Low-density microcellular carbon foams Journal of Materials Science.1987,22:1840-1844
    [31]J.W. Lee, K. N. Sohn, T. W. Hyeon. Low-cost and facile synthesis of mesocellular carbon foams. Chem. Commun.,2002,2674-2675
    [32]M. X. Liu, L. H. Gan, F. Q. Zhao, X. Z. Fan, H. X. Xu, X. Z. Fan, C. Tian, X. Wang, Z. J. Xu, Z. X. Hao, L. W. Chen. Carbon foams prepared by an oil-in-water emulsion method. Carbon 2007,45:2710-2712
    [33]王鹏,吕永根,辛诚,杨常玲,舒练兵,潘鼎.超临界流体制备中间相沥青泡沫炭炭素技术2008,27:1-4
    [34]C. Chen, E.B. Kennel, A.H. Stille, P.G. Stansberry, J.W. Zondlo. Carbon foam derived from various precursors. Carbon.2006,44:1535-1543
    [35]J. Klett, R. Hardy, E. Romine, C. Walls, T. Burchell. High-thermal-conductivity, mesophase-pitch-derived carbon foams:effect of precursor on structure and properties. Carbon 38 (2000) 953-973
    [36]M. X. Wang, C. Y. Wang, W. Zhang. Reducing the microcracks of mesophase-pitch-based carbon foams by long-time-coking method. J. Mater. Sci.,2006,41:6100—6102
    [37]G.L. Vignoles, S. Delettrez, C. Gaborieau, G. Chollon, F. Langlais. Reinforced carbon foams prepared by chemical vapor infiltration:A process modeling approach. Surface & Coatings Technology.2008,203:510-515
    [38]Q. W. Zhang, X. Zhou, H. S. Yang. Capacitance properties of composite electrodes prepared by electrochemical polymerization of pyrrole on carbon foam in aqueous solution. Journal of Power Sources.2004,125:141-147
    [39]J. B. Joo, P. Kim, W. Y. Kim, J. H. Yi.Preparation and application of mesocellular carbon foams to catalyst support in methanol electro-oxidation. Catalysis Today,2008,131: 219-225
    [40]J. Klett. High Thermal Conductivity Graphite Foams for Compact Lightweight Radiators. May 9,2002. http://www.acm-nevada.com/Technical/Radiator%20Graphite-Foam.pdf
    [41]W. Shih. Integrally Stiffened Carbon-Foam Core Hot Structure. http://www.winbmdo.com/scripts/sbir/abstract.asp?Phase=1&int=02&log=0676,(2002) (accessed 03 June 2004)
    [42]W. Kowbel. Low Cost Carbon Foam Thermal Protection System. http://www.winbmdo.com/scripts/sbir/abstract.asp?Phase=1&int=01&log=0447,(2001) (accessed 03 June 2004)
    [43]R. Lucas. Carbon Foam Innovative Processing. http://www. winbmdo.com/scripts/sbir/abstract.asp?Phase=1&int=022&log=0385, (2002) (accessed 03 June 2004)
    [44]Ultramet. Thermal Protection Design, http://www.ultramet.com/old/therm.htm, (2004) (accessed 03 June 2004)
    [45]Fiber Materials. Thermal Protection Systems", http://www.fibermaterialsinc.com/tps.htm, (2004) (accessed 03 June 2004)
    [46]L, Thompson. High Temperature Structures. http://sdcmr.sdsu.edu/high_temperature_stratures.htm,2002 (accessed 03 June 2004)
    [47]S. J. Choi, B V. Sankar.A micromechanical method to predict the fracture toughness of cellular materials. International Journal of Solids and Structures,2005,42:1797-1817
    [48]G. Rosebrock, A. Elgafy, T. Beechem, K. Lafdi Study of the growth and motion of graphitic foam bubbles. Carbon.2005,43:3075-3087
    [49]A.M. Druma, M.K. Alam, C. Druma. Analysis of thermal conduction in carbon foams. International Journal of Thermal Sciences.2004.43:689-695
    [50]T. Beechem, K. Lafdi, A, Elgafy. Bubble growth mechanism in carbon foams. Carbon, 2005,43:1055-1064
    [51]A. Demirbas. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage.,2001,42:1357-1378
    [52]A. Demirbas. The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis. Fuel Process Technol.2007,88: 591-597
    [53]J. LeDe. Solar thermochemical conversion of biomass. Sol. Energy.1999,65 (1):3-13
    [54]N. Meng, Y.C. Leung Dennis, K.H.Leung Michael, K. Sumathy.An overview of hydrogen production from biomass. Fuel Process. Technol.2006,87:461-472
    [55]A.J. Ragauskas, C. K. Williams, B.H. Davison, G. Britovsek, J. Cairney. The Path Forward for Biofuels and Biomaterials. Science.2006,311:484-489
    [56]M. I. Hoffert et al., Advanced Technology Paths to Global Climate Stability:Energy for a Greenhouse Planet. Science.2002,298:981-987
    [57]S. Pacala, R. Socolow. Stabilization wedges:Solving the climate problem for the next 50 years with current technologies. Science.2004,305:968-972
    [58]M. Tymchyshyn, C. B. (Charles) Xu. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds. Bioresource Technology.2010,101: 2483-2490
    [59]A. Nakamura, H. Miyafuji, S. Saka. Influence of reaction atmosphere on the liquefaction and depolymerization of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. Journal of Wood Science..2010,56(3):256-261
    [60]I.S. Goldstein. The hydrolysis of wood. TAPPI J.1980,63:141-143
    [61]V.S. Chang, M.T. Holtzapple. Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Eng Biotechnol.2000,38:53-87
    [62]W.S. Mok, M.J. Jr Antal. Uncatalyzed solvolysis of whole biomass hemicelluloses by hot compressed liquid water. Ind Eng Chem Res.1992,31:1157-1161
    [63]S. Saka, R. Konishi. Chemical conversion of biomass resources to useful chemicals and fuels by supercritical water treatment. In:Bridgewater AV (ed) Progress in thermochemical biomass conversion. Blackwell, Oxford,2001,1338-1348
    [64]J.Yamazaki, E. Minami, S. Saka. Liquefaction of beech wood in various supercritical alcohols. J Wood Sci.2006,52:527-532
    [65]G.J. Kwon, S. Kuga, K. Hori, M. Yatagai, K. Ando, N. Hattori. Saccharifi cation of cellulose by dry pyrolysis. J Wood Sci.2006,52:461-465
    [66]T. Hosoya, H. Kawamoto, S. Saka. Infl uence of inorganic matter on wood pyrolysis at gasifi cation temperature. J Wood Sci.2007,53:351-357
    [67]M.A.Connor, J. Piskorz. Workshop report:chemical from biomass. In:Bridgewater, A.V. (Ed.), Advances in Thermo-Biomass Conversion. Blackie, New York,1994.1502-1504
    [68]Y. Sun, J. Cheng. Dilute acid pre-treatment of rye straw and bermudagrass for ethanol production. Bioresour. Technol.1984,2:115-163
    [69]M. Neureiter, H. Danner, L. Madzingaidzo, H. Miyafuji, C. Thomasser, J. Bvochora, S. Bamusi, R.Braun. Lignocellulose feedstocks for the production of lactic acid. Chem. Biochem. Eng. Q.2004,18 (1):55-63
    [70]X. Yan, F. Jin, H. Enomoto, T. Moriya, H. Kishida, H. Higashijima. A new hydrothermal process for improving acetic acid yield from cellulosic biomass. In:14th International Conference on the Properties of Water and Steam in Kyoto,2004,724-728
    [71]C. Amen-Chen, H. Pakdel, C. Roy. Production of monomeric phenols by thermochemical conversion of biomass:a review. Bioresour. Technol.2001,79:277-299
    172] S. Karagoz, T. Bhaskar, A. Muto, Y. Sakata. Effect of Rb and Cs carbonates for the production of phenols from liquefaction of wood biomass. Fuel.2004,83:2293-2299
    [73]M. Tymchyshyn, C. Xu. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds. Bioresource Technology.2010,101:2483-2490
    [74]H.E. Fierz-David. The liquefaction of wood and some general remarks on the liquefaction of coal. Chem. and Indust. Rev.1925,44:942-944
    [75]H. R. Appell, Y. C. Fu, S. Friedman. Conversion of cellulosic waste to oil. Bureau of Mines Report of Investigation, Pittsburgh Energy Research Center. Pittsburgh, PA.1971-07:560
    [76]P. McKendry. Energy production from biomass (part 2):conversion technologies Bioresource Technology.2002,83:47-54
    [77]D.S. Scott, J. Piskorz. The continuous flash pyrolyis of biomass. Canadian Journal of Chemical Engineering.1984,62:404-12
    [78]S. A. Rezzoug, R. Capart. Liquefaction of wood in two successive steps:solvolysis in ethylene-glycol and catalytic hydrotreatment. Applied Energy.2002,72:631-644
    [79]A. Demirbas. Combustion systems for biomass fuel. Energy Source Part A.2007,29: 303-312
    [80]J.M. Encinar, F.J. Beltran, A. Ramiro, J.F. Gonzalez. Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives:influence of variables. Fuel Process Technol.1998,55:219-233
    [81]A. Demirbas. Current technologies for the thermo-conversion of biomass into fuels and chemicals. Energy Source Part A.2004,26:715-730
    [82]A. Demirbas. Production of gasoline and diesel fuels from bio-materials. Energy Source Part A.2007,29:753-760
    [83]M.M. Kucuk, A. Demirbas. Biomass conversion processes. Energy Convers Manage 1997,38:151-165
    [84]R. Thamburaj. Fast pyrolysis of biomass for green power generation. In:Proceedings of the first world conference and exhibition on biomass for energy and industry, Sevilla,2000, 6:5-9
    [85]D. Mohan, C.U. Pittman, P.H. Steele. Pyrolysis of wood/biomass for bio-oil:a critical review. Energy Fuels.2006,20:848-89
    [86]T. Bridgwater. Pyrolysis of biomass. IEA bioenergy:task 34. Birmingham, UK: Bioenergy Research Group, Aston University,2007
    [87]A. Demirbas. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manage 2001,42:1357-78
    [88]A. Demirbas. Progress and recent trends in biofuels. Prog Energy Combus Sci.2007,33: 1-18
    189] A. Demirbas, G. Ann. An overview of biomass pyrolysis. Energy Source Part A 2002,24: 471-482
    [90]A. Demirbas. Producing bio-oil from olive cake by fast pyrolysis. Energy Source Part A 2008,30:38-44
    [91]A.V. Bridgwater. Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J.2003,91:87-102
    [92]W. L. H. Hallet, N. A. Clark. A model for the evaporation of biomass pyrolysis oil droplets. Fuel.2006,85:532-544
    [93]M. Balat. Mechanisms of thermochemical biomass conversion processes. Parti:reactions of pyrolysis. Energy Sources Part A 2008,30:620-635
    [94]A. Demirbas. The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis. Fuel Proc Technol.2007,88:591-597
    [95]A. Demirbas. Conversion of corn stover to chemicals and fuels. Energy Source Part A 2008,30:788-796
    [96]C. Wang, Z.K. Du, J.X. Pan, J.H. Li, Z.Y. Yang. Direct conversion of biomass to bio-petroleum at low temperature. Journal of Analytical and Applied Pyrolysis.2007,78: 438-444
    [97]C. Wang, J.X. Pan, J.H. Li, Z.Y. Yang. Comparative studies of products produced from four different biomass samples via deoxy-liquefaction. Bioresource Technology,2008,99: 2778-2786
    [98]L. Wu, S.P. Guo, C. Wang, Z.Y. Yang. Production of alkanes (C7-C29) from different part of poplar tree via direct deoxy-liquefaction. Bioresource Technology.2009,100: 2069-2076
    [99]G. Knothe, K.R. Steidley. Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel.2005,84:1059-1065
    [100]A. Demirbas. Partly chemical analysis of liquid fraction of flash pyrolysis products from biomass in the presence of sodium carbonate. Energy Convers Manage.2002,43: 1801-1809
    [101]A.V. Bridgwater. Biomass fast pyrolysis. Biblid.2004,8(2):21-49
    [102]D. Mohan, C.U. Pittman, P.H. Steele. Pyrolysis of wood/biomass for bio-oil:a critical review. Energy Fuels.2006,20:848-889
    [103]A.V. Bridgwater. Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J.2003,91:87-102
    [104]S. Gust. Combustion experiences of fast pyrolysis fuel in intermediate size boilers. In: Bridgwater AV, Boocock DGB, editors. Developments in thermochemical biomass conversion. London, UK:Blackie Academic and Professional,1997,481-488
    [105]R. Shaddix, S. Huey. Combustion characteristics of fast pyrolysis oils derived from hybrid poplar. In:Bridgwater AV, Boocock DGB, editors. Developments in thermochemical biomass conversion. London, UK:Blackie Academic and Professional, 1997,465-480
    [106]A. Oasmaa, M. Kyto, K. Sipila. Pyrolysis liquid combustion tests in an industrial boiler. In:Bridgwater AV, editor. Progress in thermochemical biomass conversion. Oxford, UK: Blackwell Science,2001,1468-1481
    [107]J. Zheng, W. Yi, N. Wang. Bio-oil production from cotton stalk. Energy Convers Manage 2008,49:1724-1730
    [108]N. Shiraishi, S. Onodera, M. Ohtani, T. Masumoto. Mokuzai Gakkaishi.1985,31:418
    [109]H. K. Ono, K. Sudo, H. Karasawa. in Abstracts of Poster Papers 1987 International Meeting, Adhesion Society. Williamsburg. VA,1987,35-37
    [110]Y. Yao, M. Yoshioka, N. Shiraishi. Mokuzai Gakkaishi.1993,39:930
    [111]L. Lin, Y. Yao, M. Yoshioka, N. Shiraishi. Physical properties of moldings from liquefied wood resins. J. Appl. Poly. Sci.1995,55:1563-1571
    [112]H. Ono. Application of phenolated wood substances to adhesives Ⅱ. Wood-adhesives from phenolated woody substances. Mokuzai Kogyo.1994,49:8-13
    [113]M. A. E.Santana, M. G. D. Baumann, A. H. Conner. Phenol-folmaldehyde plywood adhesive resins prepared with liquefied bark of black wattle (Acacia mearnsii). J. Wood Chem and Tech.1996,16:1-19
    [114]Y. Seta, M. Yoshioka, N. Shiraishi. in Abstracts of 43th Annual Meeting of Japan Wood Research Society, Morioka,1993,183
    [115]M. Yoshioka, N. Shiraishi. in Proceedings of the International Symposium of Chemical Modification of Wood, Kyoto,1991,19-24
    [116]N. Shiraishi, H. Kishi. J. Appl. Polym. Sci.1986,32:3189
    [117]H. K. Ono, K. Sudo. in Proceedings of the International Symposium of Chemical Modification of Wood, Kyoto,1991,13-18
    [118]H. Hanashima, A. Matumoto, and K. Hasegawa. in Abstracts of 43th Annual Meeting of Japan Wood Research Society. Morioka.1993,182
    [119]N. Tsujimuto. Wood-phenol resin fiber. In:Shiraishi N Kajita H Norimoto M (Ed.): Recent Research on Wood and Wood-Based Materials. London and New York: Elsevier,Applied Science,1993,169-185
    [120]Y. Seta, M. Yoshioka, N. Shiraishi. Characterization of liquefied wood prepared in the presence of phenol. In:Abstracts of the 43th Annu. Meet, of the Japan Wood Res. Soc. 1993,183
    [121]M. H. Alma, M. Yoshioka, Y. Yao, N. Some characterizations of hydrochloric acid catalyzed phenolated wood-based materials. Mokuzai Gakkaishi.1995,41:741-748
    [122]M. H. Alma, M. Yoshioka, Y. Yao, N. Shiraishi. The preparation and flow properties of HCl-catalyzed phenolated wood and its blend with commercial novolak resin. Holzforschung.1996,50:85-90
    [123]L. Lin, M. H. Alma, M. Yoshioka, Y. Yao, N. Shiraishi. Liquefaction of wood in the presence of phenol and some properties of the liquefied wood obtained. In:Abstracts of Kyoto Conference on cellulose. Kyoto.1994,121
    [124]M. H. Alma, M. Yoshioka, Y. Yao, N. Shiraishi. Preparation of oxalic acid-catalyzed resinified phenolated wood and its characterization. Mokuzai Gakkaishi.1995, 41:1122-1131
    [125]G. Y. Li, T. F. Qin, A. Ikeda. Preparation and Characterization of Phenolated Wood Using Sulfiric Acid as a Catalyst Ⅰ:Liquefaction Behavior of Plantation Wood. Chinese Forestry Science and Technology.2002,1:63-66
    [126]G Y. Li, T. F. Qin, A. Ikeda. Preparation and Characterization of Phenolated Wood Using Sulfuric Acid as a Catalyst Ⅱ:FT-IR and GPC Characterization. Chinese Forestry Science and Technology.2003,2:43-49
    [127]L, Lin, M. Yoshioka, Y. Yao, N. Shiraishi. J. Appl. Polym. Sci.1994,52:1629
    [128]L. Lin, M. Yoshioka, Y. Yao, N. Shiraishi. Proceedings of the International Symposium on the Utilization of Fast-Growing Trees, China Forestry Publishing House, Nanjing,1994, 101
    [129]L. Lin, M. Yoshioka, Y. Yao, N. Shiraishi. J. Appl. Polym. Sci.1995,53:1563
    [130]L. Lin, M. Yoshioka, Y. Yao, N. Shiraishi. J. Appl. Polym. Sci.1995,58:1297
    [131]L. Z. Lin, Y. G. Yao, M. Yoshioka, N. Shiraishi. Liquefaction Mechanism of Lignin in the Presence of Phenol at Elevated Temperature without Catalysts Studies on β-O-4 Lignin Model Compound. Part 1. Structural Characterization of the Reaction Products. Holzforschung.1997,51:316-324
    [132]L. Z. Lin, M. Yoshioka, Y. G. Yao, N. Shiraishi. Liquefaction Mechanism of Lignin in the Presence of Phenol at Elevated Temperature without Catalysts Studies on β-O-4 Lignin Model Compound Part 2. Reaction Pathway. Holzforschung.1997,51:325-332
    [133]L. Z. Lin, M. Yoshioka, Y. G. Yao, N. Shiraishi. Liquefaction Mechanism of Lignin in the Presence of Phenol at Elevated Temperature without Catalysts Studies on-0-4 Lignin Model Compound Part 3.Multi-Condensation. Holzforschung,1997,51:333-337
    [134]L. Z. Lin, Y. G. Yao, N. Shiraishi. Liquefaction Mechanism of b-O-4 Lignin Model Compound in the Presence of Phenol under Acid Catalysis Part 1. Identification of the Reaction Products. Holzforschung.2001,55:617-624
    [135]L. Z. Lin, S. Nakagame, Y. G. Yao, M. Yoshioka, N. Shiraishi. Liquefaction Mechanism of b-O-4 Lignin Model Compound in the Presence of Phenol under Acid Catalysis Part 2. Reaction Behavior and Pathways. Holzforschung.2001,55:625-630
    [136]L. Z. Lin, Y. G. Yao, M. Yoshioka, N. Shiraishi. Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohydrate Polymers.2004,57:123-129
    [137]Y. Kurimoto, S. Doi, Y. Tamura. Species Effects on Wood-Liquefaction in Polyhydric Alcohols. Holzforschung.1999,53:617-622
    [138]Y. Yao. Liquefaction of wood and other biomass in the presence of alcohols and its application. Doctor's thesis, Faculty of Agri., Kyoto Univ.1996,6-33
    [139]Y.Yao, M. Yoshioka, N. Shiraishi. Combined liquefaction of wood and starch in a polyethylene glycol/glycerin blended solvent Mokuzai Gakkaishi.1993,39:930-938
    [140]H. H. Lee, T. E. Peart. Supercritical carbon dioxide extraction of resin and fatty acids from sediments at pulp mill sites. J Chromatogr A.1992,594:309-315
    [141]C. J. Martino, P. E. Savage. Supercritical water oxidation kinetics, products, and pathways for CH3-and CHO-substituted phenols. Ind Eng Chem Res.1997, 36:1391-1400
    [142]K. Takahashi, Y. Sato, K. Kato, S. Nishi. Decomposition of aromatic polyamide using supercritical water. Polym Prepr.1999,48:3288-3289
    [143]M. Yalpani. Supercritical fluids:puissant media for the modification of polymers and biopolymers. Polymer.1993,34:1102-1105
    [144]H. Yuan, S. V. Olesik. Supercritical fluid and enhanced-fluidity liquid extraction of phenolics from river sediment. J Chromatogr A.1997,764:265-277
    [145]T. Adschiri, S. Hirose, R. Malaluan, K. Arai. Noncatalytic conversion of cellulose in supercritical and subcritical water. J Chem Eng Jpn.1993,26:676-680
    [146]K. Arai. Biomass conversion in supercritical water for chemical recycle. Energy Resources.1995,16:175-180
    [147]B. M. Kabyemela, M. Takigawa, T. Adschiri, R. M. Malaluan, K. Arai. Mechanism and kinetics of cellulose decomposition in sub-and supercritical water. In:Proc 4th international symposium on supercritical fluids, Sendai, Japan,1997,11-14
    [148]M. Sasaki, B. Kabyemela, T. Adschiri, R. Malaluan. Cellulose hydrolysis in supercritical water. In:Proc 4th international symposium on supercritical fluids, Sendai, Japan,1997, 11-14
    [149]D. K.Shen, S. Gu, B. Jin, M. X. Fang, Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresource Technology.2011, 102:2047-2052
    [150]S. Sensoz. Slow pyrolysis of wood barks from Pinus brutia Ten. and product compositions. Bioresource Technology.2003,89:307-311
    [151]H. Darmstadt, D. Pantea, L. Summchen, U. Ronald, S. Kaliaguine, C. Roy. Surface and bulk chemistry of charcoal obtained by vacuum pyrolysis of bark:influence of feedstock moisture content. Journal of Analytical and Applied Pyrolysis.2000,53:1-17
    [152]刘守新,李海潮,张世润.木质生物能源利用技术研究.中国林副产.2001,58(8):37-39
    [153]周义德,王芳,岳峰.我国生物质资源化利用新技术及其进展.节能.2004,10:8-11
    [154]蒋建新,殷宁,孙润仓.林产化学加工工程教育与生物质产业的发展.高等农业教育.2008,6:61-63
    [155]S. Marta, B. Antonio. Sustainable porous carbons with a superior performance for CO2 capture. Fuertes Energy Environ Sci.2011,4:1765-1771
    [156]G. Tondi, V. Fierrob, A. Pizzia, A.Celzard. Tannin-based carbon foams. Carbon.2009,47: 1480-1492
    [157]K. Prabhakaran, P. K. Singh, N. M. Gokhale, S. C. Sharma. Processing of sucrose to low density carbon foams. J Mater Sci.2007,42:3894-3900
    [158]R. V. R. A. Rios, M. Martinez-Escandell, M. Molina-Sabio, F. Rodriguez-Reinoso. Carbon foam prepared by pyrolysis of olive stones under steam. Carbon.2006,44: 1448-1454
    [159]A. R. Rutledge, R. A. Venditti, J. J. Pawlak, S. Patel, L. Cibils. Carbonized starch microcellular foam-cellulose fiber composite structures. BioResources.2008,3: 1063-1080
    [160]A. Eksilioglu, N. Gencay, M. F. Yardim, E. Ekinci. Mesophase AR pitch derived carbon foam:Effect of temperature, pressure and pressure release time. J Mater Sci.2006,41: 2743-2748
    [161]W. Q. Li, H. B. Zhang, X. Xiong. Properties of multi-walled carbon nanotube reinforced carbon foam composites. J Mater Sci.2011,46:1143-1146
    [162]M. X. Wang, C. Y. Wang, W. Zhang. Reducing the microcracks of mesophase-pitch-based carbon foams by long-time-coking method. J Mater Sci.2006,41:6100-6102
    [163]P. Lorjai, S. Wongkasemjit, T. Chaisuwan. Preparation of polybenzoxazine foam and its transformation to carbon foam. Mater Sci Eng A.2009,527:77-84
    [164]K. Gell, J. M. van Groenigen, M. L. Cayuela. Residues of bioenergy production chains as soil amendments:Immediate and temporal phytotoxicity. J Hazard Mater.2011,186: 2017-2025
    [165]S. Sensoz. Slow pyrolysis of wood barks from Pinus brutia Ten. and product compositions. Bioresour Technol.2003.89:307-311
    [166]H. Darmstadt, D. Pantea, L. Summchen, U. Ronald, S. Kaliaguine, C. Roy. Surface and bulk chemistry of charcoal obtained by vacuum pyrolysis of bark:influence of feedstock moisture content. J Anal Appl Pyrolysis.2000,53:1-17
    [167]D. C. Huang, Q. L. Liu, W. Zhang, J. Ding, J. J. Gu, S. M. Zhu, Q. X. Guo, D. Zhang. Preparation of high-surface-area activated carbon from Zizania latifolia leaves by one-step activation with K2CO3/rarefied air. J Mater Sci.2011,46:5064-5070
    [168]刘振海.热分析导论.北京:化学工业出版社.1991:33-51
    [169]陈镜泓,李传儒.热分析及其应用.北京:科学出版社.1985:16-96
    [170]高崑玉.精细化学品分析.北京:化学工业出版社.2002:233-257
    [171]周玉,武高辉.材料分析测试技术——材料X射线衍射与电子显微分析.哈尔滨:哈尔滨工业大学出版社.1998:108-198
    [172]谢涛,谌凡更,詹怀宇.木材液化及其在高分子材料中的应用.纤维素科学与技术2004,12(2):49-50
    [173]王小军,杨俊和,詹亮,乔文明,张睿,梁晓怿,凌立成.中间相沥青基泡沫炭的制备、结构及性能.材料科学与工程学报.2008,26(3):390-394
    [174]T. Q. Li, C. Y. Wang, B. X. An, H. Wang. Preparation of graphitic carbon foam using size-restriction method under atmospheric pressure. Carbon.2005,43:2030-2032
    [175]G P. Shulman, H. W. Lochte. Thermal degradation of polymers. II. Mass spectrometric thermal analysis of phenol-formaldehyde polycondensates. J Appl Polym Sci.1966,10: 619-635
    [176]Z. Katovic. Curing of resole-type phenol-formaldehyde resin. J Appl Polym Sci.1967, 11:85-93
    [177]J. Ozaki, W. Ohizumi, A. Oya. A TG-MS study of poly(vinyl butyral)/phenol-formaldehyde resin blend fiber. Carbon.2000,38:1515-1519
    [178]K. G. Mansanray, A. E. Ghaly. Thermal degradation of rice husks in nitrogen atmosphere. Bioresource Technol.1998.65:13-20
    [179]F. Shafizadeh, W. F. DeGroote. Combustion characteristics of cellulosic fuels. Thermal uses and properties of carbohydrates and lignins. Academic Press. New York,1976,1-8
    [180]G H. Doh, S.Y Lee, I. A. Kang, Y. T. Kong. Thermal behavior of liquefied wood polymer composites (LWPC). Compos Struct.2005,68:103-108
    [181]Q. Lin, M. Zheng, T. Qin, R. Guo, P. Tian. Preparation of solid carbon spheres by pyrolysis of allyl COPNA-BMI resin. J Anal Appl Pyrol.2010,89:112-116
    [182]Q. Wang, X. Liang, R. Zhang, C. Liu, X. Liu, W. Qiao, L. Zhan, L. Ling. Preparation of polystyrene-based activated carbon spheres with high surface area and their adsorption to dibenzothiophene. New Carbon Mater.2009,24:55-60
    [183]X. Ma, G. Zhao. Preparation of carbon fibers from liquefied wood. Wood Sci Technol. 2010,44:3-11
    [184]I. Michio, F. Kang. Carbon materials science and engineering-from fundamentals to applications. Beijing:Tsinghua University Press,2006:35-36
    [185]H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, Y. Sato. XRD analysis of carbon stacking structure in coal during heat treatment. Fuel.2004,83:2427-2433
    [186]C. L. Liu, Q. G. Guo, J. L. Shi, L. Liu. Microstructure evolution in preparation of carbon fibers from phenolic resin. New Carbon Mater.2004,19:124-128
    [187]H. Aso, K. Matsuoka, A. Sharma, A. Tomita. Structural analysis of PVC and PFA carbons prepared at 500-1000℃ based on elemental composition, XRD, and HRTEM. Carbon.2004,42:2963-2973
    [188]M. J. Prauchner, V. M. D. Pasa, N. D. S. Molhallem, C. Otani, S. Otani, L. C. Pardini. Structural evolution of Eucalyptus tar pitch-based carbons during carbonization. Biomass Bioenerg.2005,28:53-61
    [189]S. J. Gregg, K. S. W. Sing. Adsorption, surface area and porosity, second ed. Academic Press. New York,1982,233-239
    [190]C. Chang, J. R. Tackett. Characterization of phenolic resins with thermogravimetry-mass spectrometry. Thermochimica Acta.1991,192:181-190
    [191]K. Prabhakaran, P. K. Singh, N. M. Gokha le, S. C. Sharma. Processing of sucrose to low density carbon foams. J Mater Sci.2007,42:3894-3900
    [192]M. Inagaki, T. Ibuki, T. Takeichi. Carbonization behavior of polyimide films with various chemical structures. J Appl Polym Sci.1992,44:521—525
    [193]S. Liu, R. Wang. Modified activated carbon with an enhanced nitrobenzene adsorption capacity. J Porous Mater.2011,18:99-106
    [194]左宋林,刘军利,杨建校,蔡旋.磷酸活化法活性炭性质对亚甲基蓝吸附能力的影响.林产化学与工业.2010,30(4):1-6
    [195]C. L. Lu, S. P. Xu, Y. X. Gan, S. Q. Liu, C. H. Liu. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon.2005,43:2295-2301
    [196]刘守新,刘鸿.光催化及光电催化基础与应用.北京:化学工业出版社.2006,1-10
    [197]张汝冰,刘宏英,李凤生.纳米材料在催化领域的应用及研究进展.化工新型材料.1999,27(5):3-5
    [198]于向阳,程继健,杜永娟.二氧化钛光催化材料.化学世界.1999,(1):567-570
    [199]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展.环境科学技术进展.1997,5(3):50-55
    [200]S. X. Liu, X.Y. Chen, X. Chen A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. Journal of Hazardous Materials. 2007,143:257-263
    [201]刘守新,陈曦.Ti02/活性炭负载型光催化剂的溶胶2凝胶法合成及表征.催化学报.2008,29:19-24
    [202]S. X. Liu, X. Y. Chen. Preparation and characterization of a novel activated carbon-supported N-doped visible light response photocatalyst (TiO2-yNy/AC). J Chem Technol Biotechnol.2007,82:453-459
    [203]孙剑VOCs去除光/热催化功能炭吸附材料的Sol-Gel法制备.东北林业大学.硕士学位论文:40-45
    [204]罗沙Gd、Pt、ACF改性Ti02的制备及性能研究.东北林业大学.硕士学位论文:25-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700