用户名: 密码: 验证码:
二氧化钛基光催化材料的微结构调控与性能增强
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪,环境和能源问题是人类面临的最大挑战。半导体光催化技术,为我们提供了一种有效治理环境污染和高效利用太阳能的有效途径。纳米二氧化钛是最常用的半导体光催化材料,广泛应用于污水处理、空气净化、抗菌杀毒、光分解水制氢等领域。但是,二氧化钛光响应范围较窄,只能吸收太阳光中的紫外光,同时其量子效率偏低,阻碍了其实际应用和商业化发展。本博士论文围绕二氧化钛基光催化材料的组成、组织、结构与性能的关系,开展了系统深入的研究工作,在高活性二氧化钛的微结构调控、掺杂、复合、性能增强和新型光催化材料的制备等方面的研究中取得了创新性研究成果,其主要研究内容如下:
     第一,不同形貌二氧化钛的制备和光催化活性比较。首先,我们选用硫酸钛为前驱体,以氟化氢铵为形貌控制剂,通过一步水热法合成了几种不同形貌锐钛矿二氧化钛微结构,包括实心微球、空心球和暴露{001}晶面块状锐钛矿微晶。研究发现,表面氟化二氧化钛空心微球具有最好的光催化活性,而暴露{001}晶面块状锐钛矿微晶具有最好的比光催化活性。这主要是由于一方面空心微球有利于增强对光的吸收和利用效率;另一方面,二氧化钛空心球具有大的比表面积和分级多孔结构,有利于增强对污染物的富集和反应物与产物在催化材料中的扩散,从而增强光催化活性。随后,以钛酸盐纳米管为前躯体,在HF-H2O-C2H5OH的混合溶液中,采用一种无模板和表面活性剂的醇热法合成了暴露{001}面二氧化钛纳米片自组装形成的分等级花状超结构。该花状二氧化钛超结构在气相光催化降解丙酮和液相光催化降解甲基橙中表现出非常高的光催化活性,其活性明显高于国际标准光催化材料Degussa P-25。这主要是由该材料具有分等级多孔结构,暴露高活性{001}晶面和增强的光吸收能力引起的。
     第二,暴露高活性{001}面二氧化钛纳米片的制备及其光催化活性的研究。首先,以钛酸四丁酯为前驱体,在氢氟酸和水的混合溶液中通过一步水热法制备了表面氟化暴露不同比例{001}晶面的锐钛矿二氧化钛纳米片粉末材料。该材料在光催化分解空气中丙酮的实验中表现出增强的光催化活性,特别是表面氟化和暴露适当比例(~70%){001}晶面的二氧化钛纳米片显示出最高的光催化活性,其表观速率常数是P25样品的9倍多。这主要是由于表面氟化和暴露最佳比例的{001}晶面具有协同增强二氧化钛光催化活性的作用。随后,基于暴露{001}晶面表现出较高光催化活性,我们以钛片为基底,通过一步水热法合成了暴露{001}面花状二氧化钛微球薄膜。该花状二氧化钛微球薄膜在光催化降解偶氮染料溶液时,表现出光催化选择性,并且通过改变二氧化钛微球表面性质和{001}晶面的腐蚀程度能够进一步调控二氧化钛微球薄膜的光催化选择性。这主要是由于通过改变二氧化钛表面电荷性质,使二氧化钛优先吸附带相反电荷的污染物分子,从而选择性降解被吸附的污染物分子。
     第三,等离子光催化剂Ag-TiO2复合空心球的微波水热制备及其可见光催化活性。通过微波水热、化学诱导自转变和光还原的方法,制备了可见光响应的等离子体光催化剂Ag-TiO2复合空心球。这种金属-半导体纳米复合等离子体光催化剂在降解水中的罗丹明时显示出较高的可见光光催化活性和稳定性。这主要是由于吸附在二氧化钛空心球上的银纳米粒子具有表面等离子体效应,它能够吸收可见光,使复合催化剂具有可见光响应。在可见光照射下,银纳米颗粒的表面等离子体响应诱导产生光生电子-空穴对,银纳米粒子上的电子受到激发并转移到Ti02导带上,接着与溶液中的分子氧反应形成超氧自由基O2,然后质子化生成HOO·自由基,HOO·自由基与被捕获的电子结合生成H2O2,最后生成·OH自由基,这些活性基团都能降解和矿化罗丹明。
     第四,石墨烯修饰二氧化钛的制备及其增强光分解水产氢活性。首先,在H2O-C2H5OH混合溶液中,采用微波水热法合成了石墨烯修饰暴露{001}面锐钛矿二氧化钛纳米片复合光催化材料。该复合材料表现出较好的光催化活性,在以甲醇为牺牲剂和无Pt为助催化剂条件下光分解水产氢实验中,其产氢速率是纯二氧化钛纳米片的41倍多。这主要是由于石墨烯是较好的电子接受体,并且石墨烯的氧化还原电势位于二氧化钛导带底端和氢电极电势之间,因此能够促进二氧化钛导带上光生电子转移到石墨烯上,从而还原氢离子产氢,增强光催化分解水产氢活性。随后,采用两步水热反应策略,合成了层状MoS2/graphene复合二氧化钛光催化材料,该复合材料表现出极好的光催化分解水产氢活性,远远超过纯二氧化钛,MoS2与石墨烯单独复合Ti02的光分解水产氢活性。这主要是由于MoS2和石墨烯作为共催化剂的协同作用,包括减少载流子复合、增强界面载流子转移速率、增加反应活性位和光催化反应中心,从而极大地增强了二氧化钛的光催化分解水产氢活性。最后,对暴露{001}面二氧化钛纳米片进行氮元素掺杂,使其具有可见光分解水产氢活性。以TiN为原料,采用溶剂热法一步制备了氮自掺杂暴露65%{001)晶面锐钛矿二氧化钛纳米片光催化材料。该材料表现出非常高的可见光光催化分解水产氢活性和光催化氧化性。这主要是由于氮掺杂二氧化钛,降低了二氧化钛的禁带宽带,使其具有可见光响应;同时该材料暴露了高活性{001}晶面并具有较大的比表面积,从而增加反应物在催化材料中的吸附和提供更多活性中心位,因而增强了可见光光催化活性。
     第五,基于石墨烯半导体光催化材料的制备与性能研究。石墨烯具有均一的二维机构,优良的导电性,高的载流子迁移率和极高的比表面积,并且能够大规模廉价生产。因此,石墨烯已经作为各种功能化复合材料的重要组成部分。特别是石墨烯基半导体光催化材料在环境和能源方面的快速发展和广泛应用,引起了人们越来越多的关注。在本章中,以三聚氰胺聚合物和氧化石墨烯为前驱体,水合肼为还原剂,通过浸渍和化学还原相结合的方法,随后在550℃氮气氛围中热处理制备了graphene/C3N4复合光催化材料。该复合材料表现出非常高的光催化分解水产氢活性,其活性是纯g-C3N4光催化剂的3倍多。这主要是由于石墨烯作为电子传输通道,能够有效分离光生电子和空穴,降低它们的复合速率,增强其寿命,从而增强g-C3N4的可见光催化分解水产氢活性。随后,在此基础上进一步总结了石墨烯基半导体光催化剂的各种设计策略与制备方法,包括原位生长、溶液混合、水热和溶剂热等方法。进一步讨论了制备石墨烯基复合系统的光催化性能,主要涉及到环境和能源方面的应用,包括光催化降解污染物、光催化产氢、光催化杀菌;并且对石墨烯基半导体光催化剂今后的研究方向和挑战进行总结和展望。
     第六,各种半导体光催化材料羟基自由基产生速率的定量表征。以香豆素为探针分子,通过荧光(PL)光谱技术检测了氙灯照射下各种半导体光催化材料羟基自由基的产生速率,通过定量比较各种半导体材料在同样条件下羟基自由基的形成速率,可以间接确定光催化材料的光催化活性高低。结果显示P25和锐钛矿二氧化钛产生羟基自由基的速率远高于金红石二氧化钛、氧化锌、三氧化钨、硫化镉、钨酸铋和铋氧氯等其它半导体,我们进一步提出了“羟基自由基指数”的新概念,用于表征各种半导体光催化材料羟基自由基的形成速率和国际标准光催化材料Degussa P-25羟基自由基的形成速率的相对比值,为以后比较不同光催化剂的催化活性和设计与制备新型光催化剂提供了一条新的思路。
Energy and environmental issues are the biggest challenges in the21century. Semiconductor photocatalytic materials exhibit great potentials in environmental protection and solar energy conversion. TiO2nano-material is the most widely used material because of its wide potential application in waste water treatment, air purification, bacillus resistance and water splitting to generate hydrogen. However, owing to its low quantum efficiency and relatively wide band gap, which can only absorb the UV light, and thus greatly restricts its practical applications and commercial benefit. In this dissertation, our main ideas are tuning the electronic structure, surface property, band gap structure and photocatalytic performance of TiO2-based photocatalytic material, and developing highly activity semiconductor photocatalyst with modifying, doping and assembling to absorb visible light and to enhance the photocatalytic activity. The main points could be summarized as follows:
     Firstly, fabrication of TiO2photocatalysts with different morphology and comparison of their photocatalytic activity. Surface-fluorinated TiO2hollow microspheres and tabular-shaped anatase single mico-crystals with highly energetic (001) facets exposed were prepared by a one-step hydrothermal strategy using ammonium bifluoride (NH4HF2) as a morphology controlling agent. It was found that with increasing NH4HF2concentration, the average crystallite size and average pore size increase, whilst the specific surface area, pore volume and porosity steadily decrease. The TiO2hollow microsphere exhibits the highest photocatalytic activity for the photocatalytic decolorization of RhB in aqueous solution, and is higher than pure TiO2or P25due to the enhancement of crystallization, formation of hollow structures and surface fluorination. Subsequently, hierarchical flower-like TiO2superstructures (HFTS) self-assembled from anatase TiO2nanosheets with exposed {001} facets (up to87%) have been synthesized by a simple alcohothermal strategy in a HF-H2O-C2H5OH mixed solution using titanate nanotubes as precursor. The study shows that the activity of HFTS for photocatalytic oxidation decomposition of acetone in air and methyl orange (MO) in aqueous solution is greatly higher than that of commercial Degussa P25(P25) and tabular-shaped anatase TiO2obtained in pure water. A significant enhancement in the photocatalytic activity can be related to several factors, including hierarchical porous structure, exposed {001} facets, and the increased light-harvesting abilities.
     Secondly, we investage the effects of surface fluorination and exposed {001} facets on the photocatalytic decomposition of acetone in air and photocatalytic selectivity towards decomposition of azo dyes in water. Firstly, surface-fluorinated anatase TiO2nanosheets with dominant {001} facets were fabricated by a simple hydrothermal route in a Ti(OC4H9)4-HF-H2O mixed solution. All fluorinated TiO2nanosheets exhibit much higher photocatalytic activity than Degussa P-25TiO2(P25) and pure TiO2nanoparticles prepared in pure water. The fluorinated TiO2nanosheet with an optimal relative percentage of exposed anatase {001} facets exhibits the highest photocatalytic activity, and its photoactivity exceeds that of P25by a factor of more than9times due to the synergistic effect of surface fluorination and exposed {001} facets on the photoactivity of TiO2. Subsequently, the flower-like TiO2microspheres films were directly synthesized on the Ti foil in a dilute aqueous HF solution by a simple one-pot hydrothermal treatment. The photocatalytic selectivity of TiO2films towards decomposition of azo dyes in water can be tuned by modifying the surface of TiO2microspheres as well as by varying the degree of etching of {001} facets. In addition, the percentage of exposed {001} facets can be also controlled to some extent by adjusting the reaction time of the selective chemical etching. This is because that the selective photocatalytic degradation of charged contaminants can be tuned by altering the surface charge of TiO2depending on pH.
     Thirdly, microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2nanocomposite hollow spheres. Conventional TiO2photocatalyst possesses excellent activities and stabilities, but requires near-ultraviolet irradiation for effective photocatalysis thereby severely limiting its practical application. It is highly desirable to develop a photocatalyst that can use visible light in high efficiency under sunlight irradiation. Noble metal Ag nanoparticles can dramatically amplify the absorption of visible light and is therefore utilized to develop efficient visible-light-driven plasmonic photocatalysts. In this work, a visible-light-driven plasmonic photocatalyst Ag-TiO2nanocomposite hollow spheres was prepared using the template-free chemically-induced self-transformation method under microwave-hydrothermal condition, then reducing the Ag+ions on the surface of TiO2nanoparticles to Ag0species under xenon lamp irradiation. The surface plasmon absorption band of the silver clusters supported on the TiO2hollow spheres is observed. The prepared plasmonic photocatalyst exhibits a highly visible-light photocatalytic activity for the photocatalytic degradation of RhB aqueous solution. This is due to the fact that the photoexcited electrons at the silver nanoparticles are injected into the TiO2conduction band, and the injected electrons can be transferred to the ubiquitously present molecular oxygen to form first the superoxide radical anions, O2-, then on protonation yields the HOO radicals, and HOO· radicals and the trapped electrons combine to produce H2O2, finally forming HO·radicals. These active species will result in the degradation and mineralization of RhB. This study may provide new insight into design and preparation of advanced visible-light photocatalytic materials.
     Fourthly, enhanced photocatalytic H2-production activity of graphene-modified titania. Firstly, graphene-modified TiO2nanosheets with exposed (001) facets were prepared by microwave-hydrothermal treatment of graphene oxide and the hydrothermally-synthesized TiO2nanosheets with exposed (001) facets in an ethanol-water solvent. These nanocomposite samples showed high photocatalytic H2-production activity in aqueous solutions containing methanol as sacrificial reagent even without Pt co-catalyst. The potential of graphene/graphene-are deemed to be less negative than the conduction band of TiO2and more negative than H+/H2potential, which favors the electron transfer from CB of TiO2to graphene and the reduction of H+, thus enhancing photocatalytic H2-production activity. Subsequently, the proposed two-step hydrothermal synthesis of titania-based composite photocatalysts with layered MoS2/graphene co-catalyst afforded an effective photocatalyst for H2production. The TiO2/MoS2/graphene composite photocatalysts showed high photocatalytic H2-production activity with the rate as high as165.3μmol h-1for the sample having0.5%of co-catalyst that consisted of MoS2(95%) and of graphene (5.0%). The corresponding apparent quantum efficiency reached9.7%at365nm even without noble metal co-catalyst. At last, a novel and facile solvothermal route for the preparation of visible-light responsive nitrogen self-doped TiO2nanosheets with exposed{001} facet is proposed by treating TiN in a HNO3-HF ethanol solution. Due to nitrogen doping, the presence of highly reactive {001} facets and large specific surface area, nitrogen self-doped TiO2nanosheets with exposed {001} facets exhibited much higher visible-light photocatalytic H2-production activity than nitrogen doped TiO2microcrystallites with exposed{001} facets (ca.60%).
     Fifthly, we investigate graphene-based semiconductor photocatalysts. Graphene, a single layer of graphite, possesses a unique two-dimensional structure, high conductivity, superior electron mobility and extremely high specific surface area, and can be produced on a large scale at low cost. Thus, it has been regarded as an important component for making various functional composite materials. Especially, graphene-based semiconductor photocatalysts have attracted extensive attention because of their usefulness in environmental and energy applications. Firstly, graphene and graphitic carbon nitride (g-C3N4) composite photocatalysts were prepared by a combined impregnation-chemical reduction strategy involving polymerization of melamine in the presence of graphene oxide (precursors) and hydrazine hydrate (reducing agent) followed by thermal treatment at550℃under flowing nitrogen. Graphene sheets act as electronic conductive channels to efficiently separate the photogenerated charge carriers, and consequently, to enhance the visible-light photocatalytic H2-production activity of g-C3N4. Subsequently, we summarize the recent progress in the design and fabrication of graphene-based semiconductor photocatalysts via various strategies including in situ growth, solution mixing, hydrothermal and/or solvothermal methods. Furthermore, the photocatalytic properties of the resulting graphene-based composite systems are also discussed in relation to the environmental and energy applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation and photocatalytic disinfection. This chapter ends with a summary and some perspectives on the challenges and new directions in this emerging area of research.
     Sixthly, quantitative characterization of hydroxyl radicals produced by various photocatalysts. The·OH produced on various semiconductor photocatalysts in aqueous solution under Xenon lamp irradiation was quantitatively investigated by the photoluminescence technique using coumarin as a probe molecule. The formation rates of·OH on anatase TiO2and P25were much higher than that of·OH on the other semiconductors (such as rutile TiO2, ZnO, WO3, CdS, Bi2WO4and BiOCl, etc.). A new "OH-index" was introduced by comparing the relative-OH formation rate of the target photocatalyst to that of P25, which was proposed to compare oxidation activity of various photocatalysts. This study would provide new insights and understanding on the photocatalytic mechanism.
引文
[1]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature,1972,238:37-38.
    [2]高濂,郑珊,张青红著,纳米氧化钛光催化材料应用,北京:化学工业出版社,2002.
    [3]刘守新,刘鸿著,光催化及光电催化基础与应用,北京:化学工业出版社,2006.
    [4]周明华,介孔二氧化钛光催化剂的制备、表征及性能研究:[博士学位论文],武汉:武汉理工大学,2006.
    [5]余家国,光催化超亲水TiO2基薄膜自洁净玻璃的制备与表征:[博士学位论文],武汉:武汉工业大学,2000
    [6]余火根,纳米二氧化钛光催化材料的可控制备与光催化活性:[博士学位论文],武汉:武汉理工大学,2007.
    [7]刘升卫,新型光催化纳米材料的分等级组装、改性及其活性:[博士学位论文],武汉:武汉理工大学,2009.
    [8]韩世同,习海玲,史瑞雪等,半导体光催化研究进展,化学物理学报,2003,16:339-349.
    [9]A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C,2000,1:1-21.
    [10]H. Einaga, T. Ibusuki, S. Futamura, Improvement of catalyst durability by deposition of Rh on TiO2 in photooxidation of aromatic compounds, Environ. Sci. Technol.,2004,38:285-289.
    [11]A. L. Linsebigler, G. Lu, J. T. Jr. Yates, Photocatalysis on TiO2 surfaces:Principles, mechanisms, and selected results, Chem. Rev.,1995,95:735-758.
    [12]R. Wang, K. Hashimoto, A. Fujishima, et al., Photogeneration of highly amphiphilic TiO2 surfaces, Adv. Mater.,1998,10:135-138.
    [13]王俊尉,谷晋川,黄健盛,等,纳米二氧化钛制备技术的发展[J],矿业快报,2006,25:105-112.
    [14]雷闫盈,俞行,均匀沉淀法制备纳米二氧化钛工艺条件研究[J],无机盐工业,2001,33:3-5.
    [15]王英锋,李雪,刘云义,溶胶-凝胶法制备二氧化钛溶胶[J],合成化学,2008,16:705-708.
    [16]余家国,赵修建,叶晓川,等,溶胶—凝胶法制备TiO2纳米薄膜及其光催化性能的研究,光学技术,1998:17-19.
    [17]施尔畏,夏长泰,王步国,等,水热法的应用与发展[J],无机材料学报,1996,11:193-206.
    [18]肖逸帆,柳松,纳米二氧化钛的水热法制备及光催化研究进展[J],硅酸盐通报,2007,26:523-528.
    [19]H. G. Yang, H. C. Zeng, Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening, J. Phys. Chem. B,2004,108:3492-3495.
    [20]H. G. Yang, C. H. Sun, S. Z. Qiao, et al., Anatase TiO2 single crystals with a large percentage of reactive facets, Nature,2008,453:638-641.
    [21]魏绍东,干杏,气相法制备纳米二氧化钛的研究进展[J],中国涂料,2005,20):29-31.
    [22]H. Yamashita, M. Harada, A. Tanii, Preparation of efficient titanium oxide photocatalysts by an ionized cluster beam (ICB) method and their photocatalytic reactivities for the purification of water, Catal. Today,2000,63:63-69.
    [23]H. Pizem, C. N. Sukenik, U. Sampathkumaran, et al., Effects of substrate surface functionality on solution-deposited titania films, Chem. Mater.,2002,14:2476-2485.
    [24]M. R. Hoffmann, S. T. Martin, W. Choi, et al., Environmental application of semiconductor photocatalysis, Chem. Rev.,1995,95:69-96.
    [25]H. G. Yang, G. Liu, S. Z. Qiao, et al., Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets, J. Am. Chem. Soc.,2009,131,4078-4083.
    [26]X. G. Han, Q. Kuang, M. S. Jin, et al., Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc.,2009,131: 3152-3153.
    [27]余济美,具有高杀菌光活性介孔二氧化钛薄膜的制备方法,中国香港,02119304[P].2005-09-14.
    [28]桥本和仁,藤岛昭,图解光催化技术大全,东京:科学出版社,2003.
    [29]M. A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev.,1993.93:341-357.
    [30]A. V. Vorontsov, I. V. Stoyanova, D. V. Kozlov, Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide, J. Catal.,2000,189:360-369.
    [31]K. Nagaveni, G. Sivalingam, M. S. Hegde, et al., Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2, Environ. Sci. Technol.,2004,38: 1600-1604.
    [32]S. N. Frank, A. J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders, J. Phys. Chem.,1977,81:1484-1488.
    [33]S. N. Frank, A. J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powder, J. Am. Chem. Soc.,1977,99:303-304.
    [34]H. Zhang, X. J. Lv, Y. M. Li, et al., P25-graphene composite as a high performance photocatalyst, ACS Nano,2009,4:380-386.
    [35]Y. M. Xu, K. L. Lv, Z. G. Xiong, et al., Rate enhancement and rate inhibition of phenol degradation over irradiated anatase and rutile TiO2 on the addition of NaF:new insight into the mechanism, J. Phys. Chem. C,2007,111,19024-19032.
    [36]邓慧华,陆祖宏,半导体光催化杀菌的机理和应用,东南大学学报,1996,26:1-6.
    [37]C. X. Kronawitter, L. Vayssieres, S.H. Shen, et al., A perspective on solar-driven water splitting with all-oxide hetero-nanostructures, Energy. Environ. Sci.,2011,10:3889-3899.
    [38]张军,复合金属硫化物光催化剂的制备及其可见光活性研究[D],武汉:武汉理工大学,2010.
    [39]R. Asahi, T. Morikawa, T. Ohwaki, et al., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science,2001,293:269-271.
    [40]M. Kitano, K. Funatsu, M. Matsuoka, et al., Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetrons puttering deposition method and their photocatalytic reactivity under visible light irradiation, J. Phys. Chem. B,2006,110: 25266-25272.
    [41]Z. B. Wu, F. Dong, W. R. Zhao, Visible light introduced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride, J. Hazard. Mater., 2008,157:57-63.
    [42]J. L. Gole, J. D. Stout, C. Burda, et al., Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale, J. Phys. Chem. B,2004,108: 1230-1240.
    [43]J. C. Colmenares, M. A. Aramendia, A. Marinas, et al., Synthesis, characterization and photocatalytic activity of different metal-doped titania systems, Appl. Catal. A,2006,306: 120-127.
    [44]K. Lee, N. H. Lee, S. H. Shin, et al., Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO2 sols, Mater. Sci. Eng. B,2006,129: 109-115.
    [45]D. Dvoranova, V. Brezova, M. Mazura, et al., Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal. B,2002,37:91-105
    [46]W. Choi, A. Termin, M. R. Hoffinan, The role of metal ion dopants in quanyum-sized TiO2, J. Phys. Chem.,1994,98:13669-13679.
    [47]X. Z. Li, F. B. Li, Study of Au/Au3+-TiO2 Photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol.,2001,35:2381-2387.
    [48]T. Hirakawa, P. V. Kamat, Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation, J. Am. Chem. Soc.,2005,127:3928-3934.
    [49]V. Subramanian, E. E. Wblf, R. V. Kamat, Catalysis with TiO2/gold nanocomposites. Effeet of metal particle size on the Fermi level equilibration, J. Am. Chem. Soc.,2004,126:4943-4950.
    [50]T. A. Egerton, J. A. Mattinson, The influence of platinum on UV and 'visible' photocatalysis by rutile and Degussa P25, J. Photochem. Photobiol. A,2008,194:283-289.
    [51]X. Hou, X. Gu, Y. Hu, et al., Enhanced Pt/TiO2 thin films prepared by electron beam irradiation, Nucl. Instrum. Methods Phys. Res., Sect. B,2006,251:429-434.
    [52]Y. A. Cao, X. T. Zhang, W. S. Yang, et al., A bicomponent TiO2/SnO2 particulate film for photocatalysis, Chem. Mater.,2000,12:3445-3448.
    [53]W. Ho, J. C. Yu. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles, J. Mol. Catal. A,2006,247:268-274.
    [54]D. L. Liao, C. A. Badour, B. Q. Liao, Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methylorange, J. Photochem. Photobiol. A,2008, 194:11-19.
    [55]V. Keller, P. Benlllardt, F. Garin, Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts, J. Catal.,2003,215:129-138.
    [56]L. X. Yang, S. L. Luo, Y. Li, et al., High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst, Environ. Sci. Technol.,2010,44: 7641-7646.
    [58]N. Serpone, P. Maruthamuthu, P. Pichat, et al., Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol,2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem. Photobiol. A:Chem.,1995,85:247-255.
    [59]B. O. Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991.24:737-740
    [60]黄雪梅,王苑娜,成晓玲,等,二氧化钛可见光光催化技术研究进展,材料导报,2008,22:47-51.
    [61]P. Wang, B. B. Huang, X. Y. Qin, et al., Ag@AgCl:A highly efficient and stable photocatalyst active under visible Light, Angew. Chem. Int. Ed.,2008,47:7931-7933.
    [62]Z. G. Yi, J. H. Ye, N. Kikugawa, et al., An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater.,2010,9:559-564.
    [63]Y. P. Liu, L. Fang, H. D. Lu, et al., Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light, Catal. Commun.,2012,17:200-204.
    [64]J. C. Zhao, T. X. Wu, K. Q. Wu, et al., Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation:Evidence for the need of substrate adsorption on TiO2 particles, Environ. Sci. Technol.,1998,32:2394-2400.
    [65]J. G. Yu, X. X. Yu, Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres, Environ. Sci. Technol.,2008,42:4902-4907.
    [66]J. G. Yu, S. W. Liu, H. G. Yu, Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation, J. Catal.,2007,249: 59-66.
    [67]R. A. Caruso, A. Susha, F. Caruso, Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres, Chem. Mater., 2001,13:400-409.
    [68]X. M. Sun, J. F. Liu, Y. D. Li, Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres, Chem. Eur. J.,2006,12:2039-2047.
    [69]Y. D. Yin, R. M. Rioux, C. K. Erdonmez, et al., Formation of hollow nanocrystals through the nanoscale Kirkendall Effect, Science,2004,304:711-714.
    [70]H. C. Zeng, Synthetic architecture of interior space for inorganic nanostructures, J. Mater. Chem.,2006,16:649-662.
    [71]J. C. Yu, J. G. Yu, W. K. Ho, et al., Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders, Chem. Mater.,2002,14:3808-3816.
    [72]S. N. Subbarao, Y. H. Yun, R. Kershaw et al., Electrical and optical properties of the system TiO2-xFx, Inorg. Chem.,1979,18:488-492.
    [73]J. G. Yu, J. C. Yu, B. Cheng, et al., The effect of F--doping and temperature on the structural and textural evolution of mesoporous TiO2 powders, J. Solid State Chem.,2003,174:372-380.
    [74]J. S. Park, W. Choi, Enhanced remote photocatalytic oxidation on surface-fluorinated TiO2, Langmuir,2004,20:11523-11527.
    [75]M. Lewandowski, D.F. Ollis, Halide acid pretreatments of photocatalysts for oxidation of aromatic air contaminants:rate enhancement, rate inhibition, and a thermodynamic rationale, J. Catal.,2003,217:38-46.
    [76]H. Kim, W. Choi, Effects of surface fluorination of TiO2 on photocatalytic oxidation of gaseous acetaldehyde, Appl. Catal. B,2007,69:127-132.
    [77]J. Ryu, W. Choi, Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: The role of superoxides, Environ. Sci. Technol.,2004,38:2928-2933
    [78]K. Ishibashi, A. Fujishima, T. Watanabe et al., Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique, Electrochem. Commun.,2000,2:207-210.
    [79]Q. Xiao, Z. C. Si, J. Zhang et al., Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline, J. Hazard. Mater.,2008,150:62-67.
    [80]J. G. Yu, W. G. Wang, B. Cheng, et al., Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment, J. Phys. Chem. C,2009, 113:6743-6750.
    [81]P. Pichat, J. Disdier, C. Hoang-Van, et al., Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis, Catal. Today,2000,63:363-369.
    [82]J. G. Yu, S. W. Liu, M. H. Zhou, Enhanced photocalytic activity of hollow anatase microspheres by Sn4+incorporation, J. Phys. Chem. C,2008,112:2050-2057.
    [83]J. G. Yu, J. C. Yu, M. K. P. Leung, et al., Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania, J. Catal.,2003,217: 69-78.
    [84]K. S. W. Sing, D. H. Everett, R. A. W. Haul, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem.,1985,57:603-619.
    [85]S. J. Gregg, K. S. W. Sing, Adsorption, surface area and porosity, London, UK:Academic Press,1982.
    [86]M. Mrowetz, E. Selli, Enhanced photocatalytic formation of hydroxyl radicals on fluorinated TiO2, Phys. Chem. Chem. Phys.,2005,7:1100-1102.
    [87]J. S. Park, W. Choi, Remote photocatalytic oxidation mediated by active oxygen species penetrating and diffusing through polymer membrane over surface fluorinated TiO2, Chem. Lett., 2005,34:1630-1631.
    [88]J. G. Yu, H. G. Yu, H. T. Guo et al., Spontaneous formation of a tungsten trioxide sphere-in-shell superstructure by chemically induced self-transformation, Small,2008,4:87-91.
    [89]W. Ho, J. C. Yu, S. Lee, Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity, Chem. Commun.,2006,10:1115-1117.
    [90]J. G. Yu, G. H. Wang, B. Cheng et al., Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders, Appl. Catal. B, 2007,69:171-180.
    [91]A. T. Hochbaum, P. D. Yang, Semiconductor nanowires for energy conversion, Chem. Rev., 2010,110:527-546.
    [92]J. G. Yu, X. X. Yu, B. B. Cheng, et al., Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres, Cryst. Growth Des.,2009,9: 1474-1480.
    [93]H. Li, Z. Bian, J. Zhu, et al., Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity, J. Am. Chem. Soc.,2007,129:8406-8407.
    [94]X. Q. Gong, A. Selloni, Reactivity of anatase TiO2 nanoparticles:the role of the minority (001) surface, J. Phys. Chem. B,2005,109:19560-19565.
    [95]A. Selloni, Crystal growth:anatase shows its reactive side, Nat. Mater.,2008,7,613-615.
    [96]G. Liu, C. H. Sun, H. G. Yang, et al., Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity, Chem. Commun.,2010,46:755-757.
    [97]B. H Wu, C. Y. Guo, N. F. Zheng, et al., Nonaqueous production of nanostructured anatase with high-energy facets, J. Am. Chem. Soc.,2008,130:17563-17565.
    [98]F. Amano, O. O. Prieto-Mahaney, Y. Terada, et al., Decahedral single-crystalline particles of anatase titanium (Ⅳ) oxide with high photocatalytic activity, Chem. Mater.,2009,21:2601-2604.
    [99]Y. Alivov, Z. Y. Fan, A method for fabrication of pyramid-shaped TiO2 nanoparticles with a high {001} facet percentage, J. Phys. Chem. C,2009,113:12954-12957.
    [100]J. G. Yu, Q. J. Xiang, J. R. Ran, et al., One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets, CrystEngComm,2010,12:872-879.
    [101]J. G. Yu, Y. R. Su, B. Cheng, Template-free fabrication and enhanced photocatalytic activity of hierarchical titania, Adv. Fun. Mater.,2007,17:1984-1990.
    [102]J. G. Yu, L. J. Zhang, B. Cheng et al., Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania, J. Phys. Chem. C,2007,111: 10582-10589.
    [103]J. S. Chen, Y. L. Tan, et al., Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage, J. Am. Chem. Soc.,2010,132:6124-6130.
    [104]M. Liu, L. Y. Piao, W. M. Lu, et al., Flower-like TiO2 nanostructures with exposed {001} facets:Facile synthesis and enhanced photocatalysis, Nanoscale,2010,2:1115-1117.
    [105]J. G. Yu, Q. J. Xiang, M. H. Zhou, Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures, Appl. Catal. B,2009,90:595-602.
    [106]J. G. Yu, H. G. Yu, B. Cheng, et al., Preparation and photocatalytic activity of mesoporous anatase HO2 nanofibers by a hydrothermal method, J. Photochem. Photobio. A,2006,182: 121-127.
    [107]X. X. Yu, J. G. Yu, B. Cheng, et al., Synthesis of hierarchical flower-like AlOOH and TiO2/AlOOH superstructures and their enhanced photocatalytic properties, J. Phys. Chem. C, 2009,113:17527-17535.
    [108]C. Minero, G. Mariella, V. Maurino et al., Photocatalytic transformation of organic compounds in the presence of inorganic anions.1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system, Langmuir,2000,16:2632-2641.
    [109]C. Minero, G. Mariella, V. Maurino et al., Photocatalytic transformation of organic compounds in the presence of inorganic ions.2. Competitive reactions of phenol and alcohols on a titanium dioxide-fluoride system, Langmuir,2000,16:8964-8972
    [110]N. Murakami, Y. Kurihara, T. Tsubota, et al., Shape-controlled anatase titanium (IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol, J. Phys. Chem. C,2009,113:3062-3069.
    [111]T. Ohno, K. Sarukawa, M. Matsumura, Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions, New J. Chem.,2002,26:1167-1170.
    [112]T. Taguchi, Y. Saito, K. Sarukawa, et al., Formation of new crystal faces on TiO2 particles by treatment with aqueous HF solution or hot sulfuric acid, New J. Chem.,2003,27:1304-1306.
    [113]Y. Shiraishi, N. Saito, T. Hirai, et al., Adsorption-driven photocatalytic activity of mesoporous titanium dioxide, J. Am. Chem. Soc.,2005,127:12820-12822.
    [114]S. W. Liu, J. G. Yu, M. Jaroniec, Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets, J. Am. Chem. Soc., 2010,132:11914-11916.
    [115]X. B. Chen, S. H. Shen, L. J. Guo, et al., Semiconductor-based photocatalytic hydrogen generation, Chem. Rev.,2010,110:6503-6570.
    [116]Y. Tian, T. Tatsuma, Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles, J. Am. Chem. Soc.,2005,127:7632-7637.
    [117]X. Chen, H. Y. Zhu, J. C. Zhao, et al., Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports, Angew. Chem. Int. Edit. 2008,47:5353-5356.
    [118]Y. Tian, T. Tatsuma, Plasmon-induced photoelectrochemistry at metal nanoparticles supported on TiO2, Chem. Commun.,2004,1810-1811.
    [119]K. Matsubara, T. Tatsuma, Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces, Adv. Mater.,2007,19:2802-2806.
    [120]L. Du, A. Furube, H. Yamamoto, et al., Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems:dependence on TiO2 particle size, J. Phys. Chem. C,2009,113:6454-6462.
    [121]K. Awazu, M. Fujimaki, C. Rockstuhl, et al., A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide, J. Am. Chem. Soc.,2008,130:1676-1680.
    [122]J. G. Yu, W. Liu, H. G. Yu, A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity, Cryst. Growth Des.,2008,8:930-934.
    [123]J. G. Yu, G. P. Dai, B. B. Huang, Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays, J. Phys. Chem. C,2009,113: 16394-16401.
    [124]J. G. Yu, J. F. Xiong, B. Cheng, et al., Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Appl. Catal. B,2005, 60:211-221.
    [125]B. Cheng, Y. Le, J. G. Yu, Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires, J. Hazard. Mater.,2010,177:971-977.
    [126]J. G. Yu, J. Zhang, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1-xCdxS solid solution, Green Chem., 2010,12:1611-1614.
    [127]J. G. Yu, L. F. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets, J. Phys. Chem. C,2010,114:13118-13125.
    [128]J. G. Yu, Y. Hai, B. Cheng, Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification, J. Phys. Chem. C,2010,115:4953-4958.
    [129]M. J. Allen, V. C. Tung, R. B. Kaner, Honeycomb carbon:a review of graphene, Chem. Rev., 2010,110:132-145.
    [130]J. H. Liu, Z. C.Wang, L. W. Liu, et al., Reduced graphene oxide as capturer of dyes and electrons during photocatalysis:surface wrapping and capture promoted effciency, Phys. Chem. Chem. Phy.,2011,13:13216-13221.
    [131]G. X. Wang, J. Yang, J. Park, et al., Facile synthesis and characterization of graphene nanosheets, J. Phys. Chem. C,2008,112:8192-8195.
    [132]Y. Q. Sun, Q. Wu, G. Q. Shi, Graphene based new energy materials, Energy Environ. Sci., 2011,4:1113-1132.
    [133]D. H. Wang, D. W. Choi, J. Li, et al., Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion, ACS Nano,2009,3:907-914.
    [134]Y. H. Ng, A. Iwase, A. Kudo, et al., Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting, J. Phys. Chem. Lett.,2010,1: 2607-2612.
    [135]L. Jia, D. H. Wang, Y. X. Huang, et al.. Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation, J. Phys. Chem. C,2011,115:11466-11473.
    [136]I. V. Lightcap, T. H. Kosel, P. V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst matstoring and shuttling electrons with reduced graphene oxide, Nano Lett.,2010,10:577-583.
    [137]J. C. Liu, H. W. Bai, Y. J. Wang, et al., Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications, Adv. Funct. Mater.,2010,20:4175-4181.
    [138]Q. Li, B. D. Guo, J. G. Yu, et al., Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, J. Am. Chem. Soc.,2011, 133:10878-10884.
    [139]K. F. Zhou, Y. H. Zhu, X. L. Yang, et al., Preparation of graphene-TiO2 composites with enhanced photocatalytic activity, New J. Chem.,2011,35:353-359.
    [140]J. J. Guo, S. M. Zhu, Z. X. Chen, et al., Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst, Ultrasonics Sonochem.,2011,18:1082-1090.
    [141]J. G. Yu, T. T. Ma, S. W. Liu, Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel, Phys. Chem. Chem. Phy., 2011,13:3491-3501.
    [142]J. G. Yu, T. T. Ma, G. Liu, et al., Enhanced photocatalytic activity of bimodal mesoporous titania powders by C60 modification, Dalton Trans.,2011,40:6635-6644.
    [143]K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., An electric field effect in atomically thin carbon films, Science,2004,306:666-669.
    [144]A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater.,2007,6:183-191.
    [145]F. Zou, Y. Yu, N. Cao, et al., A novel approach for synthesis of TiO2-graphene nanocomposites and their photoelectrical properties, Scripta Materialia,2011,64:621-624.
    [146]Y. H. Zhang, Z. R. Tang, X. Z. Fu, et al., TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:Is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano,2010,4:7303-7314.
    [147]Y. G. Li, H. L. Wang, L. M. Xie, et al., MoS2 nanoparticles grown on graphene:An advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc.,2011,133:7296-7299.
    [148]B. Hinnemann, P. G. Moses, J. Bonde, et al., Biornimetic hydrogen evolution:MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc.,127,2005:5308-5309.
    [149]T. F. Jaramillo, K. P. Jorgensen, J. Bonde, et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, Science,2007,317:100-102.
    [150]J. Bonde, P. G. Moses, T. F. Jaramillo, et al., Hydrogen evolution on nano-particulate transition metal sulfides, Faraday Discuss,2008,140:219-231.
    [151]P. G. Moses, B. Hinnemann, H. Topsoe, et al., The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions:A density functional study, J. Catal.,2007,248:188-203.
    [152]X. Zong, H. J. Yan, G. P. Wu, et al., Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc.,2008,130: 7176-7177.
    [153]S. Kanda, T. Akita, M. Fujishima, et al., Facile synthesis and catalytic activity of MoS2/TiO2 by a photodeposition-based technique and its oxidized derivative MoO3/TiO2 with a unique photochromism, J. Colloid Interf. Sci.,2011,354:607-610.
    [154]K. Chang, W. X. Chen, L. Ma, et al., Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries, J. Mater. Chem.,2011,21:6251-6257.
    [155]K. Chang, W. X. Chen, Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries, J. Mater. Chem., 2011,21:17175-17184.
    [156]G. Liu, H. G. Yang, X. Wang, et al., Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN, J. Am. Chem. Soc.,2009,131: 12868-12869.
    [157]L. F. Qi, J. G. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets, Phys. Chem. Chem. Phys.,2011,13:8915-8923.
    [158]X. C. Wang, K. Maeda, A. Thomas, et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater.,2009,8:76-80.
    [159]X. C. Wang, K. Maeda, X. F. Chen, et al., Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc.,2009,131:1680-1681.
    [160]Y. J. Zhang, A. Thomas, M. Antonietti, et al., Activation of carbon nitride solids by protonation:morphology changes, enhanced ionic conductivity, and photoconduction experiments, J. Am. Chem. Soc.,2009,131:50-51.
    [161]J. S. Zhang, X. F. Chen, K. Takanabe, et al., Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization, Angew. Chem. Int. Edit.,2010,49:441-444.
    [162]Y. Wang, J. S. Zhang, X. C. Wang, et al., Boron- and fluorine-containing mesoporous carbon nitride polymers:metal-free catalysts for cyclohexane oxidation, Angew. Chem. Int. Edit., 2010,49:3356-3359.
    [163]Y. Di, X. C. Wang, A. Thomas, et al., Making metal-carbon nitride heterojunctions for improved photocatalytic hydrogen evolution with visible light, ChemCatChem,2010,2:834-838.
    [164]Q. J. Xiang, J. G. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev.,2012,41:782-796.
    [165]S. M. Paek, E. Yoo,I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett.,2009,9:72-75.
    [166]A. N. Cao, Z. S. Liu, S. Chu, et al., A facile one-step method to produce graphene-CdS quantum dots nanocomposites as promising optoelectronic materials, Adv. Mater.,2010,22: 103-106.
    [167]Y. Q. Sun, C. Li, Y. X. Xu, et al., Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst, Chem. Commun.,2010,46: 4740-4742.
    [168]Q. J. Xiang, J. G. Yu, M. Jaroniec, Preparation and enhanced visible-light Pphotocatalytic H2-production activity of graphene/C3N4 composites, J. Phys. Chem. C,2011,115:7355-7363.
    [169]Q. J. Xiang, J. G. Yu, M. Jaroniec, Enhanced photocatalytic H2-production activity of grapheme-modified titania nanosheets, Nanoscale,2011,3:3670-3678.
    [170]S. W. Liu, J. G. Yu, W. G. Wang, Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2, Phys. Chem. Chem. Phys.,2010,12:12308-12315.
    [171]S. C. Yan, Z. S. Li, Z. G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation, Langmuir,2010,26:3894-3901.
    [172]X. S. Li, W. W. Cai, J. H. An, et al., Large-area synthesis of high-quality and uniform graphene films on copper foils, Science,2009,324:1312-1314.
    [173]K. S. Kim, Y. Zhao, H. Jang, et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature,2009,457:706-710.
    [174]H. Bai, C. Li, G. Q. Shi, Functional composite materials based on chemically converted graphene, Adv. Mater.,2011,23:1089-1115.
    [175]X. Y. Zhang, H. P. Li, X. L. Cui, et al., Graphene/TiO2 nanocomposites:synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, J. Mater. Chem.,2010,20:2801-2806.
    [176]T. G. Xu, L. W. Zhang, H. Y. Cheng, et al., Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B.,2011, 101:382-387.
    [177]J. T. Zhang, Z. G. Xiong, X. S. Zhao, Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation, J. Mater. Chem.,2011,21:3634-3640.
    [178]C. Xu, X. Wang, J. W. Zhu, Graphene-metal particle nanocomposites, J. Phys. Chem. C, 2008,112:19841-19845.
    [179]K. Morishige, T. Hamada, Iron oxide pillared graphite, Langmuir,2005,21:6277-6281.
    [180]D. H. Wang, R. Kou, D. Choi, et al., Ternary self-Assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage, ACS Nano,2010,4: 1587-1595.
    [181]J. Yan, Z. J. Fan, T. Wei, et al., Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon.2010,48:3825-3833.
    [182]D. Du, J. Liu, X. Y. Zhang, et al., One-step electrochemical deposition of a graphene-ZrO2 nanocomposite:preparation, characterization and application for detection of organophosphorus agents, J. Mater. Chem.,2011,21:8032-8037.
    [183]C. Nethravathi, T. Nisha, N. Ravishankar, et al., Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide, Carbon,2009,47: 2054-2059.
    [184]X. M. Geng, L. Niu, Z. Y. Xing, et al., Aqueous-processable noncovalent chemically converted graphene-quantum dot composit flexible and transparent optoelectronic films, Adv. Mater.,2010,22:638-642.
    [185]E. P. Gao, W. Z. Wang, M. Shang, et al., Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite, Phys. Chem. Chem. Phys.,2011,13:2887-2893.
    [186]A. Mukherji, B. Seger, G. Q. Lu, et al., Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production, ACS Nano,2011,5: 3483-3492.
    [187]Y. S. Fu, X. Wang, Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation, Ind. Eng. Chem. Res.,2011,50: 7210-7218.
    [188]X. F. Zhang, X. Quan, S. Chen, et al., Constructing graphene/InNbO4 composite with excellent adsorptivity and charge separation performance for enhanced visible-light-driven photocatalytic ability, Appl. Catal. B,2011,105:237-242.
    [189]F. Zhou, R. Shi, Y. F. Zhu, Significant enhancement of the visible photocatalytic degradation performancesof γ-Bi2MoO6 nanoplate by graphene hybridization, J. Mol. Catal. A, 2011,340:77-82.
    [190]H. Zhang, X. F. Fan, X. Quan, et al., Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light, Environ. Sci. Technol.,2011,45: 5731-5736.
    [191]M. S. Zhu, P. L. Chen, M. H. Liu, Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst, ACS Nano,2011,5: 4529-4536.
    [192]T. N. Lambert, C. A. Chavez, B. Hernandez-Sanchez, et al., Synthesis and characterization of titania-graphene nanocomposites, J Phys. Chem. C,2009,113:19812-19823.
    [193]N. Li, G. Liu, C. Zhen, et al., Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly, Adv. Funct. Mater.,2011,21:1717-1722.
    [194]Y. Park, S. H. Kang, W. Choi, Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion, Phys. Chem. Chem. Phys.,2011,13:9425-9431.
    [195]J. Du, X. Y. Lai, N. L. Yang, et al., Hierarchically ordered macro/mesoporous TiO2-graphene composite films:improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities, ACS Nano,2011,5:590-596.
    [196]Z. Zhu, S. J. Guo, P. Wang, et al., One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets, Chem. Commun.,2010,46:7148-7150.
    [197]J. S. Chen, Z. Y. Wang, X. C. Dong, et al., Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities, Nanoscale,2011,3:2158-2161.
    [198]N. J. Bell, H. N. Yun, A. J. Du, et al., Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite, J. Phys. Chem. C,2011,115:6004-6009.
    [199]S. J. Ding, J. S. Chen, D. Y. Luan, et al., Graphene-supported anatase TiO2 nanosheets for fast lithium storage, Chem. Commun.,2011,47:5780-5782.
    [200]P. Wang, Y. M. Zhai, D. J. Wang, et al., Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties, Nanoscale,2011,3: 1640-1645.
    [201]J. F. Shen, B. Yan, M. Shi, et al., One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets, J. Mater. Chem.,2011,21:3415-3421.
    [202]X. B. Meng, D. S. Geng, J. A. Liu, et al., Non-aqueous approach to synthesize amorphous/crystalline metal oxide-graphene nanosheet hybrid composites, J. Phys. Chem. C, 2010,114:18330-18337.
    [203]Y. H. Ng, I. V. Lightcap, K. Goodwin, et al., To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J. Phys. Chem. Lett., 2010,1:2222-2227.
    [204]T. D. Nguyen-Phan, V. H. Pham, E. W. Shin, et al., The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites, Chem. Eng.J.,2011,170:226-232.
    [205]H. J. Zhang, P. P. Xu, G. D. Du, et at., A Facile one-Step synthesis of TiO2/graphene composites for photodegradation of methyl orange, Nano Res.,2011,4:274-283.
    [206]T. Kamegawa, D. Yamahana, H. Yamashita, Graphene coating of TiO2 nanoparticles loaded on mesoporous silica for enhancement of photocatalytic activity, J. Phys. Chem. C,2010,114: 15049-15053.
    [207]Y. Y. Liang, H. L. Wang, H. S. Casalongue, et al., TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials, Nano Res.,2010,3:701-705.
    [208]G. D. Jiang, Z. F. Lin, C. Chen, et al., TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon,2011,49: 2693-2701.
    [209]W. Q. Fan, Q. H. Lai, Q. H. Zhang, et al., Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution, J. Phys. Chem. C,2011,115: 10694-10701.
    [210]O. Akhavan, E. Ghaderi, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys. Chem. C,2009,113: 20214-20220.
    [211]C. Chen, W. M. Cai, M. C. Long, et al., Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction, ACS Nano,2010,4:6425-4632.
    [212]B. J. Li and H. Q. Cao, ZnO@graphene composite with enhanced performance for the removal of dye from water, J. Mater. Chem.,2011,21:3346-3349.
    [213]T. F. Yeh, J. M. Syu and C. Cheng, et al., Graphite oxide as a photocatalyst for hydrogen production from water, Adv. Funct. Mater.,2010,20:2255-2262.
    [214]M, Ksibi, S. Rossignol, J. M. Tatibouet, et al., Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light, Mater. Lett.,2008, 62:4204-4206.
    [215]Y. Nosaka, S. Komori, K. Yawata, et al., Photocatalytic·OH radical formation in TiO2 aqueous suspension studied by several detection methods, Phys. Chem. Chem. Phys.,2003,5: 4731-4735.
    [216]K. Ishibashi, A. Fujishima, T. Watanabe, et al., Quantum yields of active oxidative species formed on TiO2 photocatalyst, J. Photochem. Photobiol. A,2000,134:139-142.
    [217]G. Louit, S. Foley, J. Cabillic, et al., The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography, Radiat. Phys. Chem.,2005,72:119-124.
    [218]H. J. Halpern, C. Yu, E. Barth, M. Peric, et al., In situ detection, by spin trapping, of hydroxyl radical markers produced from ionizing radiation in the tumor of a living mouse, Proc. Natl. Acad. Sci. USA,1995,92:796-800.
    [219]O. I. Aruoma, Deoxyribose assay for detecting hydroxyl radicals, Methods Enzymol.,1994, 233:57-66.
    [220]C. H. Tsai, A. Stern, J. F. Chiou, et al., Rapid and specific detection of hydroxyl radical using an ultraweak chemiluminescence analyzer and a low-level chemiluminescence emitter: application to hydroxyl radical-scavenging ability of aqueous extracts of food constituents, J. Agric. Food Chem.,2001,49:2137-2141.
    [221]T. Hirakawa, Y. Nosaka, Properties of·O2- and·OH formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions, Langmuir,2002,18,3247-3254.
    [222]H. Czili, A. Horvath, Applicability of coumarin for detecting and measuring hydroxyl radicals generated by photoexcitation of TiO2 nanoparticles, Appl. Catal. B,2008,81:295-302.
    [223]J. G. Yu, W. G. Wang, B. Cheng, et al., Preparation and photocatalytic activity of multi-modally macro/mesoporous titania, Res. Chem. Intermediat,2009,35:653-665.
    [224]Y. Y. Li, J. P. Liu, X. T. Huang, et al., Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres, Cryst. Growth Des.,2007,7:1350-1355.
    [225]J. Q. Yu, A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4, Adv. Funct. Mater.,2006,16:2163-2169.
    [226]Z. T. Deng, D. Chen, B. Peng, et al., From bulk metal Bi to two-dimensional well-crystallized BiOX (X= Cl, Br) micro- and nanostructures:synthesis and characterization, Cryst. Growth Des.,2008,8:2995-3003.
    [227]X. Fang, G. Mark, C. Sonntag, OH radical formation by ultrasound in aqueous solutions Part 1:the chemistry underlying the terephthalate dosimeter, Ultrasonics Sonochem.,1996,3: 57-63.
    [228]G. L. Newton, J. R. Milligan, Fluorescence detection of hydroxyl radicals, Radiat, Phys. Chem.,2006,75:473-478.
    [229]M. Gratzel, Photoelectrochemical cells, Nature,2001,414:338-344.
    [230]H. Park, W. Choi, Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors, J. Phys. Chem. B,2004,108:4086-4093.
    [231]O. Carp, C. L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem.,2004,32:33-177.
    [232]J. Ovenstone, Preparation of novel titania photocatalysts with high activity, J. Mater. Sci., 2001,36:1325-1329.
    [233]X. X. Yu, J. G. Yu, B. Cheng, et al., One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties, Chem-Eur. J.,2009,15:6731-6739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700