用户名: 密码: 验证码:
巨大地震活动特征及其动力学机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在天然地震研究中,巨大地震(本文指8级以上地震)占有特别重要的位置,这首先是因为巨大地震具有极大的破坏性,是地震预测的首要对象。2004年以来全球特大地震活动频繁,地震及其次生灾害造成了巨大的人员伤亡和财产损失,因此开展全球地震活动,特别是巨大地震的预测研究已成为全球地球科学领域关注的焦点。
     从科学意义上看,巨大地震的孕育、发生需要特殊的构造环境和条件,包括地质构造环境与构造条件和地球内部物理条件。因此,本文首先地震活动性方面研究全球巨大地震,再对巨大地震的深部、浅部孕震环境中的一些重要问题进行数值模拟研究。
     在地震活动性方面,本文定量计算了全球及主要构造带地震活动的显著周期,分析了全球巨大地震活动的空间特征,总结归纳了板内和板缘巨大地震前中强地震活动的共性及差异性特点,研究了1976年以来全球8级以上巨大地震序列演化的统计特征。
     数值模拟方面,首先从区域应力应变场特征、动力学发震机制、大震间的黏弹性应力触发、库水载荷触发等方面研究了2008年汶川Ms8.0地震;其次,研究了板块俯冲带附近区域应力场特征,解释了逆冲型浅源巨大地震震源区附近俯冲角度比较小的原因,探讨了中深源地震的发生对浅源地震的影响。
     地震活动性方面的研究结果为:①全球地震活动的显著周期为45.5年,其次为32年;环太平洋地震带的显著周期为45.5年;低纬度环球剪切带为30.9年,其次为47.5年。②全球8级以上浅源地震中绝大多数为逆冲型,主要发生在俯冲型板块边界带上,其震源附近Benioff带倾角较小,俯冲板块的运动方向与海沟夹角较大;逆冲型巨大地震发生在两个板块接触部位,正断层型巨大地震发生在洋壳的侧坡上。③绝大多数板内和板缘巨大地震前出现两类地震空区(空段);板内巨大地震前长期阶段中强以上地震形成增强活动环分布区(也称增强区),主震位于活动环包围的空区内,增强区内地震分布不均匀,震群活动显著;板缘巨大地震前长期阶段表现为强震的集中活跃或异常平静;板内巨大地震前中短期阶段震群频度增多,并形成小震活动图像;中深源地震活动增强、震源深度增大是板缘特大浅源地震前中短期阶段的特有现象。④1976年以来全球8级以上地震以逆冲型破裂为主,序列类型以主-余型为主;前-主-余型地震和多震型地震均为逆冲型破裂;全球8.5级以上特大地震中29.4%具有7级前震,明显高于中强地震中有前震的比例。
     数值模拟方面的研究结果为:①在印度板块的强烈推挤作用和下地壳软流层的水平拖拽下,巴颜喀拉地块向东南的水平运动受到坚硬的四川盆地的阻挡,造成川西高原相对于四川盆地的差异性抬升,这是汶川高角度逆冲型地震发生的重要动力学成因;汶川地震受到的来自巴颜喀拉地块边界带7级以上大震的应力触发作用很小。地震孕育主要依赖于在背景应力场作用下,孕震断层自身的能量积累,地震间的触发作用仅仅是外因。地震强度和空间距离是影响触发作用的主要因素。本文从应力触发角度解释了龙门山南段未破裂的原因;汶川地震的初始破裂点位于紫坪铺水库蓄水时库伦应力的减少区和放水时的库仑应力的增加区,但引起的库仑应力变化量非常有限,库水载荷对汶川地震的发生没有明显的触发作用。②通过库仑应力计算,得到当俯冲带倾角为30。时,最容易产生逆冲型破裂;当倾角大于60。和小于10。时,发生逆冲型地震的可能性不大。③岩石圈分层结构的水平差异运动(或地幔和岩石圈的水平差异运动)对地形具有非常大的影响。
The great earthquakes(M≥8.0) play significant roles on behalf of the devastating destructive in disasters so its prediction is the primary object in the study of tectonic earthquakes. Frequently great shocks have caused severe seismic hazard since2004. Study on seismic activity, especially on the great earthquake prediction, has become a focus in the research field of seismology.
     While the preparation and occurrence of great earthquakes requires specific geological and tectonic environment, including geological settings, tectonic environment, as well as geophysical conditions inside the Earth. Therefore, in this paper we try to numerically simulate some issues of the deep and shallow seismogenic environments based on the statistical studies of the characteristics of great earthquake activities.
     In this paper, the great earthquakes were studied in two aspects of seismcity and numerical simulation.①In the aspect of seismic activity, firstly, we quantitatively calculated the seismicity periods of the globe and the main tectonic zones. Next, the spatial characteristics of the worldwide great earthquakes were studied. Then, the similarities and differences of seismic activity prior to the great intraplate and interplate shocks were researched. Finally, we analysis the statistical features of the great earthquake sequences.②In the aspect of numerical simulation, we firstly studied on the2008Wenchuan M8.0earthquake from the aspects of regional stress and strain field, the geodynamic mechanics of high-angle reverse fault slip, the influence from the Zipingpu reservoir, and the Coulomb stress triggering from the strong earthquakes in the boundary zones of the Bayan Har block since1900. Next, we made analysis of the regional stress field characteristics and explored the impact of deep focus earthquake on great shallow earthquakes. Finally, we explain why the great shallow shocks with thrusting-slip rupture occurred in the area where the dip-angle of the Benioff zone is rather small.
     The results of the study on seismic activity show that①There are two principal periodic components,45.5-year and32.0-year, in the global seismicity. For the Circum-Pacific seismic belt, the principal period is45.5-year. The principal periodic components are30.9-year and47.5-year in the seismicity of the low-latitude circum-earth zone.②Most of the great shallow shocks are the type of thrusting-slip rupture, which mainly occurred in the subduction plate boundary zones. In the source region the dip-angle of the subdution plate is small and the movement direction of the subduction plate is approximately vertical with the trench. The great shocks with thrusting-slip rupture occurred in the contact area of the two plates, while the great normal-fault events occurred in the oceanic crust.③Two types of gap usually appear before the most of the great intraplate and interplate shocks. The doughnut-shape pattern with large scale often appear around the source region prior to great intraplate shocks, which is the long-term background anomaly. The spatial distribution of seismic activity shows the heterogeneous features and the seismicity of earthquake swarms is significant. While in the long term prior to the great interplate earthquakes, the notable anomaly is the seismic strengthening or the obvious quiescence of strong shocks. In the short term the frequency of earthquake swarms increase and some seismic patterns are formed. While in the middle-short term prior to the great shallow interpolates events, the strengthening of deep and intermediate-depth earthquake activity in the subduction zone, showing an increased frequency, magnitude and depth, is the special anomaly.④Most of the global great shallow shocks since1976are the type of thrusting-slip rupture and most of the sequences are the type of main shock-aftershock. The types of foreshock-mainshock-aftershock and multiple mainshock sequences show the feature of thrusting-slip rupture. Statistical records show that17earthquakes with Mw≥8.5have occurred since1900globally. Five of these were preceded by a foreshock of M≥7.0, accounting for29.4%. This is significantly higher than the proportion of foreshocks identified before moderate or strong earthquakes.
     The results of numerical simulation research show that①Under strong subduction of Indian Plate and the horizontal drag of the lower crust, the horizontal southeast-ward movement of the Bayan Har block was counterworked from the Sich basin and caused the differential uplift of the western Sichuan plateau relative to Sichuan basin. It provides an essential geodynamic condition for the M8.0Wenchuan earthquake on high dip-angle reverse fault. The influence of stress triggering on the Wenchuan shock from the earthquakes with Ms≥7.0occurred in the boundary zones of the Bayan Har block from1900is very weak. Earthquake preparation depends on the seismogenic fault's own energy accumulation in the background stress field, and stress triggering between earthquakes is only external cause. Earthquake intensity and distance between shocks are the main factors affecting the Coulomb stress triggering. In addition, we explain why the southern section of the Longmenshan fault did not rupture based on the research of stress triggering. The seismic source of the Wenchuan earthquake is in the field where the static Coulomb changes are positive when the Zipingpu reservoir storage, as well as are negative when the reservoir sluice. But because of the remoteness from the reservoir, the magnitude of about0.0021MPa is too small. So the reservoir has no significant influence on the Wenchuan earthquake.②Results based on the Coulomb stress calculation show that the fault easily generates thrusting-slip rupture when the dip-angle is about30°, yet the possibility that the thrusting rupture of the fault is small when the dip-angle is larger then60°or less than10°.③The lithosphere horizontal movement differences in the hierarchy(or the differential horizontal movement of the Mantle and the lithosphere) has great influence on topography.
引文
白春华,徐文耀.2010.主磁场长期变化十年至百年尺度的周期.地球物理学报,53(4):904-911.
    白玉柱,徐杰,徐锡伟,等.2008年汶川8.0级地震地表位移场的数值模拟——映秀-北川断裂逆冲兼右旋走滑错动形成的地表位移场.地震地质,32(1),doi:10.3969/j.issn.0523-4957.2010.02.002.
    陈九辉,刘启元,李顺成等.汶川Ms8.0余震序列重新定位及其地震构造特征研究.地球物理学报,2009,52(2):390-397.
    陈久华.高温高压下矿物流变强度与深源地震机制.物理,38(7):471-475.
    陈连旺,张培震,陆远忠等.川滇地区强震序列库仑破裂应力加卸载小影碟数值模拟.地球物理学报,2008,51(5):1411-1421.
    陈颙.2009.汶川地震是由水库蓄水引起的吗?.中国科学D辑:地球科学,39(3):257-259
    陈颙.1978.用震源机制一致性作为描述地震活动性的新参数.地球物理学报,1978,21:140-159
    陈运泰,等.根据地面形变的观测研究1966年邢台地震的震源过程.地球物理学报,1975,18(3):164-181.
    陈运泰,黄立人,林邦惠,等.用大地测量资料反演的1976年唐山地震的位错模式.地球物理学报,1979,22(3):201-216.
    陈祖安,林邦慧,白武明,等.2008年汶川8.0级地震孕震机理研究.地球物理学报,52(2):408-417.
    程佳,刘杰,甘卫军等,1997年以来巴颜喀拉块体周缘强震之间的黏弹性触发研究,地球物理学报,54(8):1997-2010,DOI:10.3969/j.issn.0001-5733.2011.08.007.
    程佳,刘杰,甘卫军等,汶川地震同震形变场对川滇地区主要活动断裂地震发生趋势的影响,地震学报,31(5):477-490.
    程万正,张致伟,阮祥.紫萍铺水库区不同蓄水阶段的地震活动及成因分析.地球物理学进展,2010,25(3):759-767.
    崔效锋,谢富仁,张红艳.川滇地区现代构造应力场分区及动力学意义.地震学报,2006,28(50:451-461.
    崔永权,马胜利,刘力强.侧向应力扰动对断层摩擦影响的试验研究.地震地质,2005,27(4):645-652.
    戴黎明,李三忠,陶春辉,等.印度板块挤压驱动龙门山断裂带活动的三维数值模型.地球物理学进展,2011,26(1):41-51.
    戴黎明,李三忠等,俯冲带耦合作用对苏门答腊地区应变场影响的三维数值模拟,地球物理学报,53(8):1837-1851.
    邓启东,陈社发,赵小麟.1994.龙门山及其邻区的构造和地震活动及动力学.地震地质,16(4):
    邓启东,张培震,冉永康,等.2002.中国活动构造基本特征.中国科学(D辑),32(12):1020-1032.
    邓起东,张培震,冉勇康,杨晓平,闵伟,陈立春.2003.中国活动构造与地震活动.地学前缘,10(特刊):66-73.
    邓万明.1995.青藏高原新生代岩浆活动的大地构造位置——关于青藏高原非对称陆内俯冲作用的讨论,见:中国青藏高原研究会编,青藏高原与全球变化研究会论文集,北京:气象出版社,228-234.
    丁娜,关立行,文常保.2005Morlet小波对于压缩机故障信号的研究.电气自动化,28(4):7-10.
    杜芳,闻学泽,张培震,王庆良.2008年汶川8.0级地震前横跨龙门山断裂带的震间形变.地球物理学报,2009,52(11):2729-2738.
    范洪顺.1900年以来全球地震活动的初步分析[J].国际地震动态,2001,,(02):12-17.
    冯万鹏,许力生,许忠怀等.利于InSAR资料反演2008年西藏改则Mw6.4和Mw5.9地震的断层参数.地球物理学报,52(4):983-993.
    傅容珊.地球动力学[M].北京:高等教育出版社,2001.
    傅淑芳,刘宝诚.地震学教程[M].北京:地震出版社,1991.
    傅征祥,金学申,邵辉成,丁香.2005.中国大陆强地震成组活动迁移及其机理分析.地震,25(4):65-74.
    甘卫军,沈正康,张培震等.2004.青藏高原地壳水平差异运动的GPS观测研究[J],大地测量与地球动力学,24(1):29-35.
    高伟,刘蒲雄,许绍燮,彭克银,吕晓健.1996.地震与太阳、月亮位置的关系(二)强余震序列的某些时间特征[J].地震学报,18(3):333-339.
    谷继成,谢小碧,赵莉1982.强余震的空间分布规律及其理论解释[J].地震学报,4(4):380-388.
    谷继成,谢小碧,赵莉.1979.强余震的时间分布规律及其理论解释[J].地球物理学报,22(1):32-46.
    郭增建,马宗晋.1988.中国特大地震研究.[M]北京地震出版社:252-279.
    国家地震局《阿尔金活动断裂带》课题组,1992.阿尔金断裂带,北京:地震出版社.
    国家地震局地质研究所、国家地震局兰州地震研究所.1993.祁连山-河西走廊活动断裂系,北京:地震出版社.
    国家地震局地质研究所、宁夏回族自治区地震局,海原活动断裂带,北京:地震出版社,1990.
    国家地震局震害防御司.1995.中国历史强震目录(公元前23世纪—1911年).北京:地震出版社.
    何昌荣,周永胜,马瑾.2011.日本东北大地震—大自然给人类上的又一课.自然杂志,33(2):doi:10.3969/j.issn 0253-9608.2011.2.001.
    何岭松,李巍华.2002.用Morlet小波进行包络检波分析.振动工程学报,15(1):119-122.
    洪汉净,陈会先,赵谊,胡久常.2009.全球地震、火山分布及其变化特征.地震地质,31(4):573-583.
    黄玮琼,李文香,曹学锋.1994.中国大陆地震资料完整性研究之二——分区地震资料基本完整的起始年分布图像.地震学报,16(4):423-432.
    黄媛,吴建平,张天中,等.汶川8.0级大地震及其余震序列重新定位研究.中国科学D辑:地球科学,2008,38(9):1242-1249.
    嵇少丞,许志琴,王茜等.亚洲大陆逃逸构造与现今中国地震活动.地质学报,2008,82(12):1643-1667.
    姜秀娥,陈非比.1983.区域震群与唐山大震.地震学报,5(2):146-156.
    蒋海昆等.中国大陆地震序列.北京:地震出版社,2007,1-175
    解朝娣,吴小平,朱元清.大震地震波对云南地震活动的远场动态应力触发作用.地震研究,2009,32(4):357-365.
    解朝娣,朱元清,等.Ms8.0汶川地震产生的应力变化空间分布及其对地震活动性的影响.中国科学,2010,40(6):688-698.
    解朝娣,朱元清,雷兴林,等.用地震活动多参数扫描法探测汶川地震孕育的临界信息.地震学报,2010,32(6):659-669.
    解朝娣,朱元清,雷兴林,等.汶川8.0级地震的余震触发作用和对断层的应力加懈载作用.地震地磁观测与研究,2010,32(2):12-18.
    金森博雄,巨大地震的能量释放,《国外地震》,1979,1期.
    雷兴林,马胜利,闻学泽,苏金蓉,杜方.2008.地表水体对断层应力与地震时空分布影响的综合分析——以紫坪铺水库为例.地震地质,2008,30(4):1046-1064.
    李纲,刘杰,傅征祥,刘桂萍.运用细胞自动机模型模拟强震前地震活动的时间演化过程.地震,2004,24(1):34-41.
    李海兵,付小芳,van der Woerd J,等.汶川地震(Ms8.0)地表破裂及其同震右旋斜向逆冲作用.地质学报,2008,82(12):1623-1643.
    李丽,张国民,石耀霖.大陆地震的动力学模型研究.地震,1997,17(2):133-141.
    李钦祖,于立民,王吉易,万迪堃,陈绍绪.1994.成组活动是中国大陆强地震的一个基本特点.地震学报,6(1):1-17.
    李天袑,杜其方.1989.鲜水河断裂带炉霍段的水平位移和地震复发率,地震地质,11(4).
    李卫平,赵荣国.2007年世界灾害地震综述.国际地震动态,2008,No.2:36-40.
    李旭,韩渭宾.用细胞自动机模型模拟地震活动过程的时空分布,1997,4:36-43.
    李延栋,武功建,肖序常.1995.青藏高原岩石圈构造及其演化特点的再认识,见:中国青藏高原研究会编,青藏高原与全球变化研究会论文集,北京:气象出版社:200-208.
    林振山,邓自旺.1999.子波气候诊断技术的研究.北京:气象出版社
    刘桂萍,傅征祥,刘杰.摩擦时间依从的地震活动性细胞自动机模型.地球物理学报,2000,43(2):203-212.
    刘杰,刘桂萍,李丽.基于大陆地震活动特点建立的简化动力学模型—细胞自动机模型.地震,1999,19(3):230-238.
    刘静,张智慧,文力,等.汶川8级大地震同震破裂的特殊性及构造意义——多条平行断裂同时活动的反序型逆冲地震事件.地质学报,2008,82(12):1707-1722.
    刘蒲雄,郑大林,车时,等.2003.2001年11月14日昆仑山口西8.1级地震前地震性异常及其思考.地震学报,25(2):205-210.
    刘太中,荣平平,刘式达,等.气候突变的子波分析[J].地球物理学报,1995,38(2):158-162.
    刘正荣.根据地震频度率减预报地震的工作细则.地震,1984,1:32-37
    陆远忠,吕悦军,郑月君.强震孕育后期地震活动演化的定量表征.中国地震,1994,10(增刊):12-17.
    陆远忠,沈建文,宋俊高.1982.孕震空区与逼近地震.地震学报,4(4):327-336.
    陆远忠,王炜,沈建文.1983.孕震空区与逼近地震(续).地震学报,5(2):129-144.
    马宏生,周龙泉,邵志刚,等.全球及中国大陆周边强震活动状态研究[J].地震,2010,30(2):29-37.
    马宏生.川滇地区强震孕育的深部动力环境研究.中国地震局地球物理研究所博士学位论文,2007.
    马宗晋,杜品仁,任金卫,高详林.2006.低纬度环球剪切带及其与环太平洋带大地震的幕式活动.中国科学(D辑),36(4):326--331.
    马宗晋,傅征祥等.1982.1966-1976年中国九大地震,北京地震出版社.
    梅世蓉,宋治平,薛艳,1996.中国巨大地震前地震活动环形分布图像与规律.地震学报,18(4):413-419
    梅世蓉.1960.中国的地震活动性.地球物理学报,9(1).
    梅世蓉.1995.地震前兆场物理模式及前兆分布特征于机制研究进展.地震(增刊):2-22.
    梅世蓉.中国的地震活动性.地球物理学报,1960,9(1):1-19.
    梅世蓉等,中国巨大地震前地震活动环形分布图像与规律,地震学报,18(4),1996,413-419。
    倪四道,王伟涛,李丽.2010年4月14日玉树地震:一个有前震的破坏性地震.中国科学:地球科学,2010,40(5):535-537
    秦四清,张倬元.水库诱震机制新理论的探索:断层带弱化与岩体软化效应诱震理论.工程地质学报,3(1):35-44.
    任金卫,汪一鹏,吴章明等.1993.青藏高原北部库玛断裂带东西大滩全新世地震形变及其位移和速率,地震地质,15(3).
    申旭辉,汪一鹏,宋方敏.1993.小江断裂带西支中段的走滑运动,见:《活动断裂研究》编委会编,活动断裂研究(2)期,41-54,北京:地震出版社.
    沈显杰,张文仁,杨淑贞等.1990.青藏高原南北地体地幔热结构差异的大地热流证据,中国地质学院报,第21号,203-214.
    沈显杰,朱元清,石耀霖.青藏热流与构造热演化模型研究.中国科学B辑,1992,3:311-321.
    沈正康,王敏,甘卫军等.中国大陆现今构造应变率场及其动力学成因研究.地学前缘,2003,10(Suppl):93-100.
    石耀霖,朱元清,沈显杰.青藏高原构造热演化的主要控制因素.地球物理学报,1992,35(6):
    宋治平,尹祥础,等.包体模型的力学场特征及其在地震活动性解释中的应用。见:《地震短临预报的理论与方法——“八五”攻关三级课题论文集》,国家地震局科技监测司编,地震出版社,1997,P529-536.
    宋治平,武安绪,王梅,等.小波变换在前兆观测资料分析中的应用.中国地震,2004,20(1):31-38.
    宋治平,薛艳,梅世蓉等.2002.昆仑山口西8.1级地震的地震活动特征.地震,23(1):15-22.
    孙礼建,朱元清,杨光亮,等.断层端部及附近地应力场的数值模拟.大地测量与地球动力学,2009,29(2):7-12.
    孙文斌,和跃时.1994.西太平洋Benioff带的形态及其应力状态,地球物理学报,47(3):433-440.
    腾瑞增,金瑶全,李西侯等.1991.西秦岭北缘断裂带黄香沟断裂期次与地震复发周期,见:《活动断裂研究》编委会编,活动断裂研究(1)期,北京:地震出版社:96-104.
    汪一鹏,郑锡澜.1979.珠穆朗玛峰北坡叠瓦状构造及喜玛拉雅山隆起的讨论,见:中国科学院青藏高原综合科考队、中国登山队珠穆朗玛峰科学考察分队,珠穆朗玛峰科学考察报告——地质,北京:科学出版社,199-221.
    汪一鹏.1998.青藏高原活动构造基本特征.活动构造研究,Vol.6。北京:地震出版社.
    汪一鹏.2001.青藏高原活动构造基本特征,见:马宗晋、汪一鹏、张燕平主编,青藏高原岩石圈现今变动与动力学,北京:地震出版社,251-262.
    王碧泉,王春珍.1983.余震序列的时空特征.地震学报,5(4):383-396.
    王碧泉,杨锦英,王春珍.1979.强余震的准周期性.地震学报,1(2):154-165.
    王碧泉,郁曙君.1982.余震序列的研究及强余震的预测(综述)[J].国际地震动态,11:1-2.
    王辉,刘杰,石耀霖,张怀,张国民.鲜水河断裂带强震相互作用的动力学模拟研究.中国科学(D辑),2008,38(7):808-818.
    王俊国,王林瑛,吴晓芝,陈佩燕,白彤霞,何巧云.2004.华北地区强震前的信号震及其预测意义.地震,24(3):51-60.
    王敏,沈正康,牛之俊,等.2003.现今中国大陆地壳运动与活动地块模型研究[J].中国科学(D辑),33(增刊):21-32.
    王庆良,崔笃信,王文萍等.川西地区现今垂直地壳运动研究.中国科学D辑:地球科学,38(5):598-610.
    王仁,何国琦,殷有泉等.华北地区地震迁移规律的数学模拟,地震学报,1980,2(1).
    王卫民,赵连峰,李娟等.四川汶川8.0级地震震源过程.地球物理学报,2008,51(10):1361-1374.
    王子朝,马宗晋.1996.俯冲带深部物质的非均匀流变及其地球动力学意义.中国科学(D辑),26(2):179-186.
    吴开统,等(地球物理所).地震序列的基本类型及其在地震预报中的应用.地震战线,1971,7(11):45-51
    吴开统,岳明生,武宦英,等.海城地震序列的特征.地球物理学报,1976,19(2):95-109
    吴章明,汪一鹏,任金卫等.1994.西藏中部活动断层,见:《活动断裂研究》编委会编,活动断裂研究(3)期,北京:地震出版社,56-73.
    向宏发,虢顺民,张晚霞等,1995.红河断裂带南段断裂活动性转换的地震特征研究,见:《活动断裂研究》编委会编,活动断裂研究(4)期,北京:地震出版社,38-45.
    肖兰喜,朱元清,等.岩石圈流变强度与中国大陆构造运动关系的探讨.西北地震学报,2003,25(4):304-311.
    肖兰喜,朱元清,刘旭.华北地区地壳结构特征与强震孕育关系的探讨.地震学刊,1999,22-33.
    肖兰喜,朱元清,张少泉,等.邢台震区深部构造与强震孕育关系的探讨.地震学报,1999,21(6):597-607.
    熊熊,许厚泽,腾吉文.2001.青藏高原物质东流的岩石力学背景探讨.地震学报,26(5):457465.
    徐道一,杜品仁.天体运行与地震预报.北京:地震出版社,1980.
    徐纪人,赵志新,河野芳辉,等.日本南海海曹地震区域应力场及其板块构造力学特征.地球物理学报,2003,46(4):488-494.
    徐锡伟,闻学泽,叶建青,等.2008.汶川Ms8.0地震地表破裂带及其发震构造.地震地质,30(3):597-629
    徐锡伟,闻学泽,陈桂华,于桂华.2008.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义.中国科学,38(5):529-542.
    徐锡伟,张培震,闻学泽,秦尊丽,陈桂华,朱艾斓.2005.川西及其邻近地区活动构造基本特征与强震复发模型.地震地质,27(3):446-461.
    薛艳,宋治平,梅世蓉,马宏生.2008.印尼苏门答腊几次巨大地震前的地震活动异常特征.地震学报,30(3):321-325.
    薛艳,刘杰,宋治平.2005.印尼苏门答腊两次巨大地震序列特征对比分析.国际地震动态,10期:1-8.
    薛艳,梅世蓉.1999.唐山大震前一般震群与前兆震群时空演化特征研究.地震,19(2):184-189.
    薛艳,宋治平,梅世蓉,马宏生.2008.印尼苏门答腊几次巨大地震前的地震活动异常特征.地震学报,30(3):321-325.
    薛艳,宋治平,梅世蓉.2005.印尼苏门答腊9.0级地震前地震活动图像异常特征研究.中国地震, 21(3):311-319.
    杨志根,朱元清.四川汶川特大地震与板块运动.科学,2008,60(4):10-13.
    尹继尧,朱元清,宋治平,等.中国西部及邻区百年尺度周期的地震活动及其和太阳活动之间的负相关性.地球物理学报,2011,
    尹继尧,朱元清.日本9.0级地震断层分布和错动方式探讨.大地测量与地球动力学,2011,31(2):12-16.
    于泳,洪汉净,刘培洵,等.全球大地震时空分布与动力学机制的初步研究.地学前缘,2003,10(特刊):5-10.
    臧绍先,宁杰远.1994.俯冲带的负浮力及其影响因素.地球物理学报,37(2):174-183.
    张贝,石耀霖.紫萍铺水库对附近断层稳定性影响的探讨.中国科学院研究生院学报,2010,27(6):754-760.
    张诚,修济刚,邱同芝,雷可夫VI,曲克信.1993.全球强震震源机制,北京:万国出版社.
    张东宁,许忠怀.1995.青藏高原南部上地壳正断层地震活动的一种可能动解释,地震学报,17(2).
    张国民,耿鲁明,石耀霖.中国大陆强震轮回活动的计算机模型研究.中国地震,1993,9(1):20-32.
    张国民,汪素云,李丽,等.2002.中国大陆地震震源深度及其构造含义.科学通报,47(9):663-668.
    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪.2003.中国大陆的强震活动与活动地块.中国科学(D辑),33(增刊):12-20.
    张培震,王琦,马宗晋.2002a.中国大陆现今构造运动的GPS速度场与活动地块[J].地学前缘,9(2):430-441.
    张培震,闻学则,徐锡伟,等.2008年汶川8.0级特大地震孕育和发生的多单元组合模式.科学通报,2009,54(7):944-953.
    张培震,徐锡伟,闻学泽,冉勇康.2008.年汶川8.0级地震发震断裂带的滑动速率、复发周期和构造成因.地球物理学报,51(4):1066-1073.
    张勇,冯万鹏,许力生,等.2008年汶川大地震的时空破裂过程.中国科学D辑:地球科学,2008,38(10):1186-1194.
    张勇,许力生,陈运泰,等.2007年云南宁洱Ms6.4地震震源过程.中国科学(D辑),38(6):683-692.
    张永仙,1999.热应力三维数值模拟研究及热物质的运移在地震孕育过程中的作用探讨.中国地震局地球物理研究所,博士学位论文.
    张致伟,程万正,阮祥,等.汶川8.0级地震前龙门山断裂带的地震活动性和构造应力场特征,地震学报,2009,31(2):117-127.
    张竹棋,张培震,王庆良.龙门山高倾角逆断层结构与孕震机制.地球物理学报,2010,53(9):2068-2082,DOI:10.3969/j.issn.0001-5733.2010.09.007
    郑斯华,铃木次郎.1992.西藏高原及其周围地区地震的地震矩张量及震源参数的尺度关系,地震学报,14(4).
    郑斯华.1995.西藏高原地震的震源深度及其构造意义,中国地震,11(2).
    中国地震局监测预报司,2002.2001年昆仑山口西8.1级大地震,北京:地震出版社.
    中国地震局监测预报司.2007.亚洲地震概要.北京地震出版社:65-66.
    中国地震局震害防御司.1999.中国近代地震目录(公元1912年—1990年Ms≥4.7),北京:中国科学技术出版社.
    中国地震台网中心.2007.200年度我国地震趋势研究报告.中国地震趋势预测研究(2008年度),北京:地震出版社,1-121.
    钟增球,索书田,张利,等.岩石塑性流变学——大别-苏鲁高压超高压变质带的构造学.北京:中国地质大学出版社,2007:8-10.
    周斌,薛世峰,邓志辉等.水库诱发地震时空演化与库水加卸载及渗透过程的关系——以紫坪铺水库为例.地球物理学报,2010,53(11):2651-2670.
    周永胜,何昌荣.汶川地震区的流变结构与发震高角度逆断层滑动的力学条件,地球物理学报,2009,52(2):474-484.
    朱介寿.汶川地震的岩石圈深部结构与动力学背景.成都理工大学学报(自然科学版),2008,35(4):348-356.
    朱守彪,蔡永恩,刘杰,石耀霖.利用三维细胞自动机模拟地震活动性.北京大学学报(自然科学版),2006,42(2):206-210.
    朱守彪,张培震.2008年汶川Ms8.0地震发生过程的动力学机制研究.地球物理学报,52(2):418-427.
    朱元清,石耀霖,陆锦花.构造热演化的数值模拟方法.地球物理学报,1993,36(3):308-316.
    朱元清,石耀霖,沈显杰.青藏高原形成模式和目前热状态的研究中国科学院研究生院学报.1993,10(1):70-79.
    朱元清,石耀霖.地震活动性研究中的非线性动力学模型.地球物理学报,1991,34(1):20-31.
    朱元清,石耀霖.剪切生热与花岗岩部分熔融—关于喜玛拉雅地区逆冲断层与地壳热结构的分析.地球物理学报,1990,33(4):408-416.
    Achache J, Courtillot V and Zhou Y.1984. Paleographic and tectonic of southern Xizang since middle Gretaceous time:new paleomagnetic data and synthesis, J.G.R.,89,10311-10341.
    Astiz Luciana, Lay T and Kanamori H.1988. large intermediate-depth earthquakes and subduction process. Physics of the Earth and Planetary Interiors,53:80-166.
    Avouac J P and tapponnier P.1993. kinemtic model of active deformation in Central Asia[J]. Geophys Res Lett,20:895-898.
    Bai D H, Martyn J U, Max A M, et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience,2010, Published online:11 Appil 2010/doi: 10.1038/NGEO830.
    Deng B K, Zhou S Y, Wang R, et al. Evidence that the 2008 Mw7.9 Wenchuan earthquke could not have been induced by the Zipingpu Reservoir. Bulletion of the Seismological Society of America, Vol.100, No.5B,pp.2805-2814,Noverber 2010, doi:10.1785/0120090222
    Balakina L M. The Urup earthquake of October 13, 1963(M-8.4-8.5)in the lithosphere beneath the Kurile Island Arc, Physics of Solid Earth,25,781-792,1990.
    Beck J L. Weight-induced stresses and the recent seismicity at Lake Oroville, California. Bulletin of the Seismological Society of America,1976,66(4):1121-1131.
    Beck S., Barrientos S., Kausel E. and Reyes M.1998. Source characteristics of historic earthquakes along the central Chile subduction zone[J]. Journal of South American Earth Sciences,11(2):115-129.
    Beck SL and D.H. Christensen.1991. Rupture process of the February 4,1965, Rat Islands earthquake, J. Geophys. Res.,96,2205-2221.
    Benioff, Hugo. Global strain accumulation and release as revealed by great earthquakes[J]. The Geological Society of America,1951,62(4):331-338.
    Bercovici D. On the purpose of toroidal motion in a convecting mantle. Geophys Res Lett,1995,22: 3107-3110.
    Bridgman P W. Polymorphic transition and geological phenomenon. Am J Sci,1945,247A:90-97.
    Bufe C G, Varnes D J. Predictive modeling of the seismic cycle of the Greater San Francisco bay Region. J Geophys Res,1993,98:9872-9883
    Bundle J B, Klein W, Turcotte D L, Malamud B D.2000. Precursory seismic activation and critical-point phenomena. Pure Appl Geophys,157:2165-2182.
    Bundle J B, Turcotte D L, Shcherbakov R, Klein W, Sammis C. Statistical physics approach to understanding the multiscale dynamics of earthquake fault system. Res Geophys,41:1019, doi:10.1029/2003RG000135.
    Burridge R, Knopoff L. Model and theoretical seismicity. Bull. Seismol. Soc. Am.,1967, 57:341-371.
    Carder D S.1945. Seismic investigations in the Boulder Dam area,1940-1944, and the influence of reservoir loading on local earthquake activity. Bulletin of the Seismological Society of America,35(4):175-192.
    Chang C and Shackleton R. The Geological evolution of Xizang, London:The Royal Societery,1998.
    Chen P F, Bina C R and Okal E A.2001. Variations in slab dip along the subdecting Nazca plate, as related to stress patterns and moment release of intermediate-depth seismicity and to surface volcanism. Anelectronic journal of the earth sciences,2(3), Paper number 2001GC000153,ISSN:1525-2027.
    Chen P F, Bina C R and Okal E A.2004. A global survey of stress orientations in subducting slabs as revealed by intermediate-depth earthquakes. Geophys. J. Int.159:721-733.
    Chen Y, Li L, Li J, et al. Wenchuan earthquake:Way of thinking is changed. Episodes,2008,31(4): 374-377
    Chen Y, Liu J, Ge H K. Pattern characteristics of foreshock sequences. Pure appl Geophys,1999, 155(2-4):395-408
    Chung W Y, Liu C. The reservoir-associated earthquakes of April 1983 in western Thailand: Source modeling and implications for induced seismicity. Pure and Applied Geophysics, 1992,138(1):17-41.
    Densemore A L, Ellis M, Li Y, et al.2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau. Tectonics,26:TC4005, doi:10.1029/2006TC001987.
    Emile A. Ocal.1977.The July 9 and 23,1905, Mongolia earthquakes:A surface wave investigation, Earth and Planetary Science Letters,4(2):326-331.
    Engdahl E R, Villaseor A. Global seismicity:1900—1999[M]//Lee W H K, Kanamori H, Jennings P C, Kisslinger C eds. International Handbook of Earthquake and Engineering Seismology. San Diego:Academic Press,2002, Part A:665-690
    England P and Houseman G.1986. Finite strain calculations of continental deformation,2 Comparison with the India-Asia collision zone[J]. J. Geophys Res,91:3664-3676.
    England P and Molnar P.1997. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults[J]. Geophys J. Int,130:551-582.
    Fedotov S A.1965. Regularities of the distribution of strong earthuqaks in Kanchatka, the Kuri Island and northeast Japan[J]. Tr.Inst. Fiz. Zemli, Acad. Nauk SSSR,36:66-93.
    Fedotov S A.1968. The seismic cycle, quantitative seismic zoning, and long-term seismic forecasting. In:Medvedev S V, ed. Seismic Zoning in the USSR. Izdatel'stvo Nauka, Moscow, 133-166.
    Franco D, Govers R, Wortel R. Numerical comparison of different convergent plate contacts: subduction channel and subduction fault. Geophys. J. Int.,2007,271(1):435-450.
    Gaudemer Y et al. Partitioning of crustal slip between linked active faults, the eastern Qilian Shan, and evidence for a major sesmic gap, the Tianzhu gap, on the western Haiyuan fault, Gansu(China), Geophys.J.Int,120:599-645.
    Griggs D T, Baker DW. The origin of deep-locus earthquakes, in Properties of Matter under unusual conditions. New York; J Wiley,1968.23-42.
    Griggs D T. High-pressure phenomena with applications to geophysics, in Moden physics for the engineer, edited by L N ridenour. New York:McGraw-Hill,1954.72-305.
    Griggs D T. The sinking lithosphere and focal mechanism of deep earthquakes, in the Norrrre of tlte Solid Emtlz, edited by E C Robertson. New York:McGraw-Hill,1972.361-384.
    Gupta H K. A revies of recent studies of triggered earthquakes by artifical water reservoirs with special emphasis on earthquakes in Koyna, India. Earth-Science Reviews,2002,58(3/4):279-310.
    Gutenberg B and Richter C F. Earthquake magnitude, intensity, energy and acceleration(second paper)[J]. Bull Seismol Soc Am,1956,46:105-145.
    Gutenberg B, Richter C F. Frequency of earthquakes in California. Bull Seism Soc Amer,1944,34: 185-188
    Haeussler P and G Plafker.2003.Earthquakes in Alaska, U.S. Geol Surv. Open-File Rep.,95-624.
    Hainzl S, Kraft T. Wassermann J, et al.2006. Evidence for rainfall-triggered earthquake activity. Geophys Res Lett,33(LI9303):1-5.
    Hobbs B E, Ord A. Plastic instabilities:Implications for the origin of intermediate and deep focus earthquakes. J. Geophys res,1988,93:10521-10540.
    Johnson J M, Tanioka Y, Ruff L J, Satake K, Kanamori H and Sykes L.1994. The 1957 great Aleutian earthquake. Pageoph,142(1):3-26.
    Johson K M and Segall P, Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system, J. Geophys. Res.,2004, Vol.109, B10403, doi:10.1029/2004JB003096.
    Jones L M, Molnar P. Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on fault. J Geophys Res,1979,84:3596-3608
    Karato S, Wu P. Rheology of the upper mantle:a synthesis. Science,1993,260:771-778.
    Karig D E.1971. Structural history of the Mariana Island Arc system[J]. Geo Soc Am Bull,8: 323-344.
    Kelleher J.1972. Rupture zones of large South American earthquakes and some predictions[J]. J. Geophy. Res.77:2089-2103.
    Kelleher J.1972. Rupture zones of large South American earthquakes and some predictions[J]. J. Geophy. Res.77:2089-2103.
    Kelleher J.1972. Rupture zones of large South Amrican earthquakes and some predictions, J. Geophys. Res.,77:2087-2103.
    Kerr R A, Stone R. Two years later, new rumblings over origins of Sichuan quake. Science,2010, 327(5970):1184.
    Kidd, W.S.F. Molnar P.1988. Quaternary and active faulting observed on the 1985 Acadermia Sinica-Royal Society Geotraverse of Tibet, Phil Trans R.Soc.Lond,327(1594),337-363.
    King G C P, Stein R S, Liu J.1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America,84(3):935-953.
    Kuzin I P, L I Lobkovsky and O N Solovjova.2001. Characteristics of seismicity in the central kurile region, Izvestia, Phys. Solid Earth,37:464-473.
    Laura J P, David D N. Wavelet analysis of velocity dispersion of elasticinterface wave propagating along afracture. G R L,1995,22(11):1329-1332.
    Lei X L. Possible roles of the Zipingpu reservoir in triggering the 2008 Wenchuan earthquake. Jounal of Asian Earth Sciences.2011,40(2011):844-854.
    Li Q Z, Yu L M, Wand J L, Wan D K and Chen S X (1995).Grouping occurrences and probability prediction of the strong earthquakes in Chinese mainland. Journal of Seismological Research, 18(1):90-107.
    Li X, Zhou Z, Huang M, et al. Preliminary analysis of strong-motion recording from the magnitude 8.0 Wenchuan, China, earthquake of 12 May 2008. Seismol Res Lett,2008,79(6): 844-854.
    Liu L. Phase transformation,earthquakes and the descending lithosphere. Phys Earth Planet Inter, 1983,32:226-240.
    Lucianaet A, Lay T and Kanaori H.1988. Large intermediate-depth earthquakes and the subduction process, Physics of the Earth and Planetary Interiors,53(1988):80-166.
    Ma Z, Fu Z, Zhang Y, et al.1989. Earthquake Prediction, Nine Major Earthquake in China(1966-1976). Beijing:Seismological Press and Springer-Verlag:201-310.
    Ma Z, Jiang M.1987. Strong earthquake period and episodes in China. Earthquake Research in China,1(4):505-510.
    Main I G. Earthquakes as critical phenomena:implications for probabilistic seismic hazard analysis. Bull. Seism. Soc. Amer.,1995,85:1299-1308.
    Mallat s.1991. Zero-Crossings of a wavelet transform. IEEE Transaction on information theory, 37(4):1019-1033.
    Mallat S. Zero-Crossings of a wavelet transform. IEEE Transaction on information theory,1991, 37(4):1019-1033.
    Mccaffrey R. Statistica significance of the seismic coupling coefficient[J]. Bulletion of the Seismological Society of America,1997,87:1069-1073.
    Meade C, Jeanloz R. Acoustic emissions and shear instabilities during phase transformation in Si and Ge at ultrahigh pressure. Nature,1989,339:616-618.
    Melnick D,Moreno M, Lange D, Strecher M R., Echtler H P.2008. Tectonic control on the 1960 Chile earthquake rupture setment.7th International Symposium on Andean Geodynamics (ISAG 2008, Nice), Extended Abstracts:326-329.
    Mercier J L, Armijo R, Tapponnier P, et al.1987. Change from late Tertiary compression to Quaternary extension in southern Xizang during the India-Asia collision, Tectonics,6, 275-304.
    Minster J B and Jorden T H.1978. Present-day plate motions, J.G.R.83:531-5354.
    Mogi K (1988). Downward migration of seismic activity prior to some great shallow earthquakes in Japanese subduction zone—A possible intermediate-term precursor, PAGEOF,126: 447-463.
    Mogi K (1990). Seismicity before and after large shallow earthquakes around the Japannese islands. Tectonophysics,175:1-33.
    Mogi K.1973. Relationship between shallow and deep seismicity in the western Pacific region. Tectonophysics,17:1-22.
    Mogi K.1974. Active periods in the world's chief seismic belts. Tectonophysics,22:265-282.
    Mogi K.1979. Global variation of seismic activity. Tectonophysics,57:43-50.
    Mogi K.1987. Recent seismic activity in the Tokai(Japan) region where a large earthquake is expected in the near future. Tectonophysics,138:255-268.
    Mogi K. Seismic activity and earthquake prediction. In Proceedings of The Symposium on Earthquake Prediction Research,1977:203-314.
    Mogi K. Two kinds of seismic gaps. Pure Appl Geophys,1979,117:1172-1186
    Ogawa M. Shear instability in a visco-elastic material as the cause of deep-focus earthquakes. J. Geophys Res,1987,92:13801-13810.
    Okada Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol Soc. Am.,1992,82:1018-1040.
    Okada Y. Surface deformation caused by shear and tensile faults in a half-space. Bull. Seismol Soc. Am.,1985,75(4):1134-1154.
    Okal E A.2005. Are-evaluation of the great Aleutian and Chilean earthquakes of 1906 August 17. Geophys.J.Int,161:268-282.
    Omori F. On after-shocks of earthquakes. J Coll Sci Imp Univ Tokyo,1894b, (7):111-200
    Omori F. On after-shocks. Rep Imp Earthq Inv Com,1894a, (2):103-138(in Japanese)
    Pandey A P, Chadha R K. Surface loading and triggered earthquakes in the Koyna-Warna region, western India. Physics of the Earth and Planetary Interiors,2003,139(3/4):207-223.
    Papadimitriou E, Wen X Z, Karakostas V, et al. Earthquake triggering along the xianshuihe fault zone of west Sichuan, China, Pure Appl Geophys,2004,161:1683-1707.
    Peltzer G, Tapponnier P and Amrmijo R.1989. Magnitude of northern Quaternary left-lateral displacements along the northern edge of Tibet[J]. Science,246:1283-1289.
    Pollitz F F, Banerjee P, B "urgmann R. Postseismic relaxation following the great 2004 Summtra-Andaman earthquake on a compressible self-graviting Earth, Geophys J Int, 2006,167,397-420.
    Royden L H, Burchfiel B C, Robert D van der Hilst. The geological evolution of the Tibetan plateau. Science,2008(321):1054-1058.
    Royden L. Coupling and decoupling of crust and mantle in convergent orogens:implication for strain portioning in the crust. Journal of Geophysical Research,1996,101(8):17679-17705.
    Rulf L J.1992. Asperity distributions and large earthquake occurrence in subdection zones[J]. Tectonophysics,211:61-83.
    Ruppert N A, Lees J M, Kozyreva N P.2007. Seismicity, earthquakes and Structure along the Alaska-Aleutian and Kamchatka-Kurile Subduction Zones:A Review. Volcanism and Subduction:the Kamchatka Region Geophysical Monograph Series 172. Copyright 2007 by the American Geophysical Union.10.1029/172GM12.
    Scholz C H. Mechanisms of seismic quiescences. Pure Appl Geophys,1988,126:701-718
    Shao Z G, Wang R J, Wu Y Q, Zhang L P. Rapid afterslip and short-term viscoelastic relaxation following the 2008 Mw7.9 Wenchuan earthquake. Earthq Sci(2011)24:163-175.
    Sornette D and Sammis C G. Critical exponents from renomalization group theory of earthquakes: implications for earthquake prediction. J. Phys. I.,1995,5:607-619.
    Suyehiro S, Asada T, Ohtake M. Foreshocks and aftershocks accompanying a perceptible earthquake in central Japan—On a peculiar nature of foreshocks. Pap Meteorol Geophys, 1964,15:71-88
    Suyehiro S. Difference between aftershocks and foreshocks in the relationship of magnitude to frequency of occurrence for the great Chilean earthquake of 1960. Bull Seism Soc Amei,1966, 56(1):185-200
    Tapponnier P, Meyer B, Avouac J P, et al.1990a. Active thrusting and decoupling between upper crust and mantle in northeastern xizang, Earth and Planetary Science letters,97,382-403.
    Tapponnier P, Peltzer G, Le Dain A Y, et al.1982. Propagating extrusion tectonics in Asia:New insight from simple experiments with plasticine[J].Geology,10:611-616.
    Tiampo K F, Rundle J B, McGinnis S, et al. Mean-field threshold systems and phase dynamics:an application to earthquake fault systems. Europhys. Lett.,2002,60:481-487.
    Torrence C,Campo G P. A practical guide to wavelet analysis[J]. Bull Amer Meteor Soc,1998, 79(1):61-78.
    Umino N, Okada T, Hasegawa A. Foreshock and aftershock sequence of the 1998 M5.0 Sendai, northeastern Japan, earthquake and its implications for earthquake nucleation. Bull Seism Soc Amer,2002,92(6):2465-2477
    Utsu T.1957. Magnitudes of earthquakes and occurrence of their aftershocks. Z.S(Ser), 2(10):35-45.
    Utsu T.1961. A statistical study on the occurrence of aftershocks. G.M,30:521-605.
    Uyeda S and Miyashiro A.1974. Plate tectonics and the Japanese islands:Asynthesis[J]. Geo Soc Am Bull,5:1159-1170.
    Wells D L and Coppersmith K J.1994.New empirical Relationships among magnitude, rupture length, rupture width, Rupture area and surface displacement. Bulletion of the Seismological Society of America,84(4):974-1002.
    Wu, F.T., and H. Kanamori.1973. Source mechanism of February 4,1965, Rat Island earthqauke, J. Geohpys. Res.,78,6082-6092.
    Xu Z H, Ji S H, Li H, et al. Uplift of the Longmen shan range and the Wenchuan earthquake. Episodes,2008,31:291-301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700