用户名: 密码: 验证码:
脉冲电磁法理论研究与硬件实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术与电子技术的发展,TEM方法近年来从仪器到方法均获快速发展,应用领域被迅速拓宽。为了进一步提高时间域电磁法在油气勘探和开发中的应用效果,需要通过研究不同的观测方式和资料处理算法以进一步提高观测效率、提高资料质量和成像的分辨能力。
     经典的瞬变电磁正演计算建立在阶跃脉冲激励的基础上,因此在瞬变电磁方法中,发射装置大多采用阶跃电流为初始激励源,理想的阶跃电流为瞬时关断,但由于仪器固有的过渡效应,实际上并非瞬时关断,关断电流均为斜阶跃波,这将影响二次场的观测,影响浅层的分辨率,甚至导致解释的错误。为了减小这种影响,要对观测到的晚期信号进行校正,常规的校正方法有坐标移动法、Fitterman法和Eaton法。这几种方法使用范围不同,也各有局限性。在实际操作中,需要尽量缩小关断时间,但这样就对仪器提出了更高的要求,实现也变得更困难,在大功率强电流勘探中表现尤为突出。另外,由于阶跃电流信号源的产生需要先建场,发射装置要求较高的功率供给,难以实现系统的小型化。因此,现用的时域电磁法普遍采用的观测方式是大功率发射机、大极距发射源、大偏移距、小道集观测仪器,野外资料采集时布设困难、资料采集速度慢、不能进行多偏移据观测和叠加。
     本论文针对目前瞬变电磁方法采用阶跃电流为初始激励源及观测方式的不足,提出采用新型大功率脉冲发射装置作为功率源的时域电磁勘探方法,利用多道电磁数据采集系统在地面进行阵列观测,构建脉冲时域电磁勘探系统。利用脉冲源轻便易布设的特点,利用电磁脉冲源与地震子波相似的特点,实现拟地震方式的观测和资料处理,诸如多偏移距观测、叠加处理与成像等,可望大大提高电磁勘探的构造分辨能力。
     本文首先在介绍瞬变电磁发射技术的基础上,分析了以阶跃信号为激励源的瞬变电磁方法所面临的问题;提出了以拟高斯脉冲信号为激励源的瞬变电磁方法,介绍了拟高斯电磁脉冲场源的原理,推导了拟高斯电磁脉冲场源时域和频域的电流方程。
     在前人研究的基础上,第三章推导了均匀半空间中脉冲源激励下频率域和时间域的电磁响应正演公式,推导了频率域视电阻率的表达式;编程实现了脉冲偶极源激励下均匀半空间模型频率域和时间域电磁响应的正演计算和频率域视电阻率计算;通过对算例结果进行分析,分别讨论了在电偶极源、磁偶极源激励下,不同地层电阻率对水平电场分量、磁场分量响应的感生电动势曲线影响的规律,定性给出在不同观测方式下不同电磁场分量受地层电阻率变化的敏感程度。
     第四章考虑层状地层模型,利用数值法求解偶极源激励下电磁场的分布特性,探求偶极源激励下电磁场在层状半空间中响应的基本规律;采用Laplace变换推导了脉冲源激励下时间域和频率域的电磁响应正演公式。编程实现了脉冲电偶极源激励下层状半空间模型时间域电磁响应的正演计算。通过对算例结果进行分析,详细讨论了在电偶极源、磁偶极源激励下,不同观测距及观测方式下电磁场分量对异常体进行识别的分辨率的影响以及对采集装置的要求。
     理论研究的结果表明,采用拟高斯脉冲信号为激励源的电磁方法是完全可行的。根据理论研究得出的频率范围以及对采集装置采样率的要求,提出了大功率电磁脉冲场源和地面电磁采集阵列的硬件实现方案和参数。大功率电磁脉冲场源需要重点研究解决以下问题:发射大功率电磁脉冲信号,支持接地和中心回线两种发射方式,最大瞬时功率不低于100kw:对发射电流信号进行16位/1M的记录;与采集装置GPS卫星同步,精度优于±100ns。地面电磁采集阵列重点解决以下问题:采集盒子采用网络编址;使用GPS卫星信号实现大面积全系统、不间断同步;无线实时监测采集盒子的采集状态和质量;24位/300khz模数转换;SD卡数据存储;每个盒子均可独立工作。
     按照设计方案,本论文完成了原理样机的研制,在第五章和第六章给出了大功率脉冲场源和地面电磁采集阵列原理样机的详细实现过程。
     野外试验及资料分析结果表明:(1)地面大功率电磁脉冲场源实现了对地发射大功率的电磁脉冲发射,频谱丰富,支持接地导线和回线两种发射方式,与加拿大凤凰公式V8系统的成功配接,证明大功率脉冲场源软硬件设计的方案是合理的,发射信号的同步性和一致性达到了预定的功能和指标要求;(2)地面电磁采集系统与V8系统记录的感生电动势形态基本一致,通过对记录数据进行分析,得到了与理论分析吻合的波形和频率响应特征,验证了理论计算的正确性和原理样机设计方案的可行性。
     理论和实验研究的结果表明:采用拟高斯大功率电磁脉冲作为激励源,利用多道电磁数据采集系统在地面进行阵列观测的时域电磁勘探方法可行;研制的大功率脉冲场源和地面采集阵列系统体积小、易于铺设,很好地弥补了传统电磁方法采用阶跃信号作为激励源的不足,具有广阔的应用前景
The transient electromagnetic method (TEM) has made considerable progress due to rapid development of computer and electronic technique. In order to achieve better performance in oil and gas exploration and development, it need to research different observe ways and data processing algorithms of TEM to further improve observation efficiency, improve data quality and the resolution of imaging.
     The forward Modeling of classic TEM method based on the excitation of step electromagnetic pulse signal, so most transmitter of TEM instruments transmitting step current waveform. The ideal step current needs turning off instantaneous, but it is no way to get ideal step current for the transition effect of the transmitter instrument. In fact, the transmitting waveform of most transmitters are ramp wave, which is disadvantageous for observing the secondary electromagnetic field and raising the resolution of shallow, or even cause inexplicable errors. In order to reduce the adverse effect, it is necessary to reduce the turn-off time as short as possible. But the shorter of the turn-off time, the transmit instrument become more difficult to realize, especially in the demand of transmitting high-power and large current. Although some calibration methods such as Shifting coordinate, Fitterman, Eaton, which had been proposed to reduce the adverse effect by correcting the late signal, but it is impossible to select one method adapt to any circumstances. In addition, transmitting step electromagnetic pulse signal need to build high electric field firstly, so it is difficult to achieve system miniaturization for the demand of higher power supply. Accordingly, almost all of the time-domain electromagnetic detecting e instruments composed of a high power transmitter with long polar distance and several recording devices with long offset, which follow with high difficulties of laying devices and inefficient of recording data, so it is impossible to observe with Multi-offset and data processing such as multiple stacking.
     In this paper, aim to overcome the defects of the traditional TEM method based on the step pulse electromagnetic excitation, a novel TEM method based on high power quasi-gauss-pulse excitation is presented. The exploration system of quasi-gauss-pulse TEM composed of a high power quasi-gauss-pulse source and multi-channel electromagnetic data acquisition boxes. For the quasi-gauss-pulse source's important characteristics of light and similar to the seismic wavelet, some mature technology of seismic exploration can be used in the new TEM method, such as multi-offset observation, data stack processing and imaging, by which the proposed method may achieve better performance than the state-of-the-art methods, in terms of the detecting resolution
     In the first two chaps, by introducing the transmitting technology of TEM, the problem of the TEM method based on the step current excitation is analyzed; Then, by introducing the transmitting principle of quasi-gauss-pulse electromagnetic signal and deriving the current equation in frequency domain and time domain of the source, the TEM method based on high power quasi-gauss-pulse excitation is presented
     In Chapter3, based on the studies of previous, the forward formulas both in frequency domain and time domain of quasi-gauss-pulse electromagnetic response in the homogeneous half-space are derived, by which apparent resistivity equation is derived; Then, by programming and analyzing the results of forward formulas and apparent resistivity equation, the changing law of electric field component and induced electromotive force of magnetic field component correspond to different resistivity of media is revealed, and the sensitivity of electromagnetic components' changing correspond to different resistivity of media under different observation modes is summarized qualitatively.
     In Chapter4, the quasi-gauss-pulse electromagnetic response in the half-space layered media model is studied by numerical methods. Firstly, the forward formulas both in frequency domain and time domain are derived by Laplace algorithms; Then, by programming and analyzing the results of forward formulas, the resolution of detecting abnormal media is discussed in detail under different conditions.The conditions including electric dipole source or magnetic dipole source, different observing distances and method. The requirements of data acquisition system is presented at last.
     The results of above study show that it is feasible to adopt quasi-gauss-pulse electromagnetic signal as excitation source in TEM method. According to the frequency range and the requirements of data acquisition system, the development scheme and technology specification of high-power pulsed-field source and ground electromagnetic acquisition arrays is designed. The high-power pulsed-field source solving the following problems:transmitting large power electromagnetic pulse signal, supporting two transmitting modes of grounding conductor and loop-line, the maximum instantaneous power is not lower than100kw; recording the emission current signal in the feature of16bit/1M; GPS timing and synchronization (the precision of synchronizing with the GPS superior to±100ns). Ground electromagnetic acquisition arrays resolving the following problems:network addressing; GPS timing and synchronization (the precision superior to100ns); telemetry for real time status control and QC;24bit/300kHz data acquisition; data stored in CF card; each unit can work independently.
     According to the design scheme, the theory prototype of the instruments had been developed, which is introduced in detail in chapter5and chapter6. Field experiments and the results of analyzing data show that:(1) The High-power pulsed-field source can transmit high-power electromagnetic pulse to the ground with rich spectrum, supporting two transmitting modes of grounding conductor and loop-line. It is also successfully connected with the V8system developed by Canadian Phoenix Co., which prove that the plan of High-power pulsed-field source is reasonable.(2) The Ground electromagnetic acquisition system achieved the same performance with the the V8system in the aspect of recording waveform, which are consistent with the result of theoretical study.
     In this paper, a new TEM method based on the excitation of quasi-gauss-pulse electromagnetic pulse signal is proposed and several theoretical results are presented, through which a series of TEM instrument is developed. Compared to the traditional TEM detecting instrument based on the excitation of quasi-gauss-pulse electromagnetic pulse signal, the proposed TEM method achieved enhanced performance with respect to signal-noise-ratio,weight and bulk, which have good prospect.
引文
[1]Nabighian M N Electromagnetic methods in appl ied Geophysics-Theory 1988
    [2]蒋邦远.实用近区磁源瞬变电磁法勘探[M).北京:地质出版社,1998.
    [3]牛之琏.时间域电磁法原理[M).长沙:中南Ⅰ业大学出版社,1992.
    [4]李琳.瞬变电磁测深的理论与应用[M].西安:陕西科学技术出版社,2002.
    [5]刘桂芹.简述瞬变电磁法(TEM)的研究现状、进展与问题.物探化探计算技术.2007增刊,108—110
    [6]陈明生.电偶源瞬变电磁测深研究—瞬变电磁场的求解方法.煤田地质与勘探.1999
    [7]杨云见,王绪本,何展翔.瞬变电磁法中的斜阶跃波效应及常规的几种校正方法分析.物探化探计算技术.2006
    [8]何展翔,罗延钟,西方地面瞬变电磁理论的发展现状[J],国外地质勘探技术,1989年1期
    [9]Wait J. R.:1951, Transient EM Propagation in a conducting medium. Geophysics, V.16, P.213-221
    [10]Yost W. J.:1952, the interpretation of electromagnetic reflection data in geophysical exploration, Par 1, General theory. Geophysics, V.17 P.89-108.
    [11]Bhattacharyya B. K.:1957, Propagation of transient EM Waves in a medium of finite conductivity:Geophsics. V.22, P.75-88.
    [12]Negi J. G.:1962, Inhomogeneous cylindrical ore body in presence of a time varying magnetic field. Geophysics, V.27 P386-392.
    [13]Wait J.R. and Spies K. p.:1969, Quasi-static transient response of a conduction permeable sphere. Geophysics, V.34 P.729-738.
    [14]Nelson P.H., and Morris D. B.:1969, theoretical response of time domain airbone EM system. Geophysics. V.34 P.729-738.
    [15]Nebighian M. N., and Davidson M. J.:1969, the electromagnetic pulse method----Theory and Interpretation:Presented at the 39th Annual International SEG Meeting, Calgary, September 14—18.
    [16]Morrison H. F., Phillis R. J. and O' Briea, D. P.:1969, Quantitative interpretation; transient EM fields over a layered half-space. Geophys. Prosp., V.17. P.82-101.
    [17]Verma. S. k.:conduct973, Time dependent electromagnetic field of an infinite conducting cylinder excited by a long currentcarrying cable. Geophysics, V.38. P.369-379.
    [18]Wait J. R.:1971, Transient excitation of the earth by a line source of current. Proc Inst. of Electrical and Electronic Engineers left, V.59, P1287-1283.
    [19]Mallick K.:1972, Conducting sphere in EM INPUT field. Gephys. Prosp. V.30 P.293-303.
    [20]San Filipo W. A., Eaton P. A., and Hohmann G. W.1984. The transient EM response of a prism in a conductive half-space:54th Annual International SEG Meeting. P.54-67.
    [21]李金铭,电法勘探方法发展概况[J] 物探与化探,1996,04
    [22]何展翔,罗延钟,西方地面瞬变电磁理论的发展现状[J],国外地质勘探技术,1989年1期
    [23]史明娟,罗延钟,瞬变电磁法二、三维正演理论的发展[J],国外地质勘探技术,1996年2期
    [24]陈载林,黄临平,陈玉梁等我国瞬变电磁法应用综述[J],铀矿地质,2010期
    [25]严良俊,胡文宝等电磁勘探方法及其在南方碳酸岩地区的应用[M],石油工业出版社,2001
    [26]Wannamaker, P. E., Hohmann, G. W., and San Filipo,W. A.,1984, Electromagnetic modeling of three dimensional bodies in layered earths using integral equations:J. Geophysics,49,60-74.
    [27]Wang Zhigangl·2, He Zhanxiangl, and Wei Wenbo2,3D Modeling and Born approximation inversion for the borehole surface electromagnetic method, APPLIED GEOPHYSICS, Vol.4, No.2 (June 2007), P.84-88
    [28]吕国印.瞬变电磁法的现状与发展趋势[J].物探化探计算技术,2007,29(增刊):111-115
    [29]付志红:电磁探测特种电源技术的研究 博士论文 2007 4
    [30]薛国强,李貅,底青云.瞬变电磁法理论与应用研究进展[J].地球物理学进展,2007,22(4):1195-1200
    [31]朴化荣:电磁测深法原理,地质出版社,1988.10,27
    [32]王兴泰.工程与环境物探新方法新技术.地质出版社.2003年第2版.
    [33]蒋邦远.实用近区磁源瞬变电磁法勘探.地质专报.1997.
    [34]程德福.近区磁源瞬变电磁法信号检测技术研究.博士论文,2002.11.
    [35]嵇艳鞠.浅层高分辨率全程瞬变电磁系统中全程二次场提取技术研究.博士论文.2004.6.
    [36](澳)布塞利G等人编著,将邦远译.瞬变场法野外工作方法和数据处理解释手册.北京:
    地质出版社.1992.
    [37]Misac N. Nabighian. Electromagnetic Methods in Applied Geophysics, Time Domain Electromagnetic Prospecting Methods, Volume 2, Chapter 6,1994:427-458.
    [38]Eaton, P. A, Hohmann, G. W., A rapid inversion technique for transientelectromagnetic sounding,physics of the Earth and Planetary Interiors,1989,53.
    [39]戴远东等.在瞬变电磁法大地电磁测量中高TcSQUID探头与常规探头的比较.低温物理学报.1996.2:18(1)
    [40]何继善,柳建新.一种用于瞬变电磁法的组合闪光式场源.实用新型专利.CN2595079Y.2003.12.
    [41]Derek N. Dyck, Geoff Gilbert, Behzad Forghani, and Jon P. Webb. An NDT Pulse Shape Study
    With TEAM Problem 27. IEEE Transactions on magnetics,2004.3, 40(2):1406-1409.
    [42]刘国栋.电磁法及电法仪器的新进展和应用[J].石油地球物理勘探,2004,39(增刊):46-51
    [43]付志红,周雒维,苏向丰:瞬变电磁发射机中的电流脉冲整形技术[J],电力电子技术,第40卷第1期:108-111
    [44]周逢道.海洋瞬变电磁探测发射技术研究.博士论文,2010.6
    [45]付一奎,杨永明,付志红,苏向丰:瞬变电磁发射机的无源恒压钳位技术[J],传感器与微系统,2011年第30卷第8期:46-49
    [46]谭国贞,付志红,周雒维,罗强:瞬变电磁发射机控制系统设计[J],电测与仪表,第43卷第483期:8-12
    [47]徐立忠.基于ATEM-Ⅱ的改进型电磁法发射系统设计与实现[D].长春,吉林大学,2008.
    [48]周国华,林君,周逢道等.浅海底瞬变电磁探测发射系统研究[J].电力电子技术,2006,40(5):58-61.
    [49]王静ATTEM发射机发射电流下降沿记录关键技术研究[D].长春:吉林大学,2004.
    [50]周逢道,林君,周国华等.瞬变电磁探测发射电流波形记录单元设计[J],吉林大学学报(工学版),2009,39(02):0541-0545.
    [51]Zhou Fengdao, Linjun, Liu Changsheng. Study on work parameters of seafloor towed survey using transient electromagnetic systems[C]. PIERS 2007 Beijing China.
    [52]胡文宝;严良俊,王军民,徐振平,罗明璋等.一种探测金属套管外地层电阻率的井中时域脉冲电磁法.发明专利 2011/7
    [53]严良俊,胡文宝.种井中电磁波CT场源的时域特性分析。江汉石油学院学报,1999,21(4)。
    [54]王林章.螺线管电感的计算与测量[J].电测与仪表,1982,(11)12-17
    [55]林文华,付瑞谦.倍压电路的实验研究[J].黑龙江大学(自然科学学报),1996,(02)092-04
    [56]孙鹞鸿. 电解电容器的脉冲放电特性[J]. 电力电容器 ,2001,(02)27-29
    [57]杨桂希 储能放电用高压大容量铝电解电容器[J].电子元件与材料1997(6)0044-04
    [58]孙小平.高性能大功率可控硅整流脉冲电源[J].沈阳航空工业学院学报,1994,(02)0018-08
    [59]张智星译:拉卜拉士原理及题解,晓园出版社,1986,(10)
    [60]陈后金.信号与系统[M],高等教育出版社,2008,11
    [61]E.B. Postnikov:About Calculation of the Hankel Transform Using Preliminary Wavelet Transform, Copyright 2003 Hindawi Publishing Corporation Journal of Applied Mathematics 2003:6(2003)319-325.
    [62]A. E. Siegman, Quasi fast Hankel transform, Optics Lett.1(1977),13-15.
    [63]Li Yu, Meichun Huang, and Mouzhi Chen, Wenzhong Chen, Wenda Huang and Zhizhong Zhu, Quasi-discrete Hankel transform, March 15,1998/Vol. 23, No.6/OPTICS LETTERS,409-411
    [64]D. W. Zhang, X. C. Yuan, N. Q. Ngo and P. Shum, Fast Hankel transform and its application for studying the propagation of cylindrical electromagnetic fields. OPTICS EXPRESS 17 June 2002/Vol.10, NO.12,521-525
    [65]游开明.一种新的快速汉克尔变换算法,衡阳师范学院学报(自然科学)1999.12,20(6),28-33.
    [66]江少恩.基于快速汉克尔变换数值求解波方程,数值计算与计算机应用, 1997.7,(3)161-166.。
    [67]王华军.正余弦变换的数值滤波算法[J],工程地球物理学报,2004,1(4):329-336
    [68]徐振平,胡文宝等.磁场数值滤波法正演[J],石油天然气学报,011.1:63-67
    [69]徐振平,胡文宝等.一种高精度瞬变电磁响应正演的数值滤波算法[J],石油物探,2011.3:213-217
    [70]秦伟刚.光电耦合隔离技术与应用[J].仪器仪表学报,2006(6):2603-2604.
    [71]张宝生,王念生.基于高线性度模拟光耦器件HCNR200模拟量隔离板[J].仪表技术,2005(5):59-60.
    [72]AN SANG HOU. A Wide Bandw idth Isolation Amplifier Design Using Current Conveyors[J]. Analog Integrated Circuits and Signal Processing, 2004,40:31-38.
    [73]邱吉冰,赵伟.电流小信号隔离采集板的设计与实现[J].自动化仪表,2007(4):61-63.
    [74]李海波,林辉.线性光揭在电流采样中的应用[J].光电器件,2003(11):37-38.
    [75]赵军祥,李建辉,常青,张其善.GPS授时校频方法研究与试验结果.北京航空航天大学学报.2004.8.30(8):762-766.
    [76]龚庆武,刘美观,左克锋等.GPS同步采样装置中防止干扰GPS秒脉冲信号的措施.电力系统自动化.2000.1.24(1):45-47.
    [77]张海雯,张鹏.高性能GPS时间同步装置研制. 电力自动化设备.2003.4.23(4):37-40.
    [78]曾祥君,尹项根,林干,周延龄.晶振信号同步GPS信号产生高精度时钟的方法及实现.2003.4.27(8):49-53.
    [79]石福升.GPS卫星定位系统在地学仪器中时间同步技术研究.地学仪器.1997.8.11(4):19-22.
    [80]王淑玲,林君,段清明.基于GPS的瞬变电磁系统同步测量控制器研究.石油仪器.2001.15(1):13—15.
    [81]PHOENIX GEOPHYSICS. System 2000. net用户手册.2008.6
    [82]Compact Flas h Associat ion. CF+ and Compact Flash Specification Revision 2.0 [Z].1998-2003.
    [83]倪其昌,向麦黄.SST 48CF系列Compact Flash Card及其与8051单片 机的接口.国外电子元器件.2000.4:31-32
    [84]新华龙电子有限公司,C8051F060中文数据手册[Z]
    [85]http://www.com/../4MSPS,24-Bit Analog-to-Digital Converter ADS1675
    [86]http://www.pdf.la/Product_INA128.html
    [87]Bonnie Baker用模拟增益级前端实现△-∑转换器增益少量提升的设计方案.国外电子元器件.2007.9:68-70
    [88]杨星海:江海鹰:刘峰:王玉泰;魏长智:刘振.一种心音信号采集程控放大滤波装置[P]. [中国专利]:CN202005762U,2011-10-12
    [89]邵在平.程控放大技术在数据采集系统中的应用[J].测井技术.2003年S1期:59-61
    [90]李振杰;韩丰田;姬中华.陷波器对系统稳定性影响的分析[J].河南科学.2005年08期:582-585
    [91]郑江信;同军军;刘豫.新型窄带二次陷波器[P].[中国专利]:CN201854246U,2011-06-01
    [92]石坚;杨永明.50Hz陷波器在脑电数据采集系统中的应用[J].重庆大学学报(自然科学版).2005年08期:25-27
    [93]郭其贵.一种50Hz陷波器的设计及效果[J].石油地球物理勘探.1988年05期:626-629
    [94]罗珊;孙峥;蒋新胜;马光彦.多通道、大容量同步数据采集系统的硬件设计.仪器仪表学报.2006年S2期:1406-1407
    [95]王月明;徐葭生.雷达动目标检测(MTD)专用集成电路的设计[J].1994年01期:55-62
    [96]王林泉;皮亦鸣;陈晓宁;肖欣.基于FPGA的超高速FFT硬件实现[J].电子科技大学学报.2005年2期:152-155
    [97]Samsung Electronics.CM OS sdram device operations[EB/OL] (2007-07-06) [2008-02-16]http://www.samsung.com/g lo bal/system/ business/semiconductor/ family/2007/7/2/044975sdr-device-operation-jul-06.pdf,2007.
    [98]Hy nix Semico nduct or.4Ba nk x 2M x 16bits synchronous DRAM [EB/OL]. (2005-08-01) [2008-02-16]http://www.hynix.com/ dat asheet/pdf/dram/HY57V281620E(L-S)T(P)-Series(Rev.1.4) pdf,2005.
    [99]Jon P,Mazur D. IBIS evolves:Keeping pace with signal integrity issues[M]. [s.l]:Printed Circuit Fabrication,1998
    [100]Johnso n H, Graham M沈立,朱来文,陈宏伟译.高速数字设计[M].北京:电子工业出版社,2004
    [101]谢聪.DSP与SDRAM之间信号传输延时的分析及应用[J].计算机与数字工程.2008年11期:185-187[102] Atmel Cor po ration. AT 25128A/256A Complete [Z].2007.
    [103]代乐,王双全.两种数据存储方式在英飞凌单片机系统中的应用[J]电子元器件应用,2008,10(10):28-32.
    [104]左自强,曹晓珑.TMS320LF2407与AT25256的SPI接口实现[J].电子元器件应用,2005,7(9):64-67.
    [105]李哗.关于FAT16与FAT32的应用,中国海上油气(工程),1999,(2)
    [106]梁国和.一种SD卡与主控设备之间的数据交互方法及系统[P]. [中国专利]2010-11-24
    [107]Cummings Clifford E. Synthesis and scripting techniques for design ing m ult-i asynchronous c lo ck designs [A].SNUG2001 [C]. San Jo se:Synopsys Users Group Conference,2001.
    [108]Cummings Clifford E, Peter Alfke. Simulation and synthesis techniques for asynchronous FIFO design with asynchronous pointer comparisons [A]. SNUG2002 [C]. San Jose:Synopsys Users Group Conference, 2002.
    [109]Dally William J, Poulton JohnW. Digital system s engineering [M]. Cambridge University Press,1998.
    [110]Jonathan, Corbet, Alessandro Rubini, Greg Kroah-Hartman. Linux设备驱动程序(第三版)[M].中国电力出版社,2005
    [111]孙琼.嵌入式Linux应用程序开发详解[M].北京:人民邮电出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700