用户名: 密码: 验证码:
海上多功能工作平台结构设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海上多功能工作平台结构设计关键技术的研究是非常复杂和具有实际意义的课题,其有益于提高我国海洋工程结构的设计能力和研发水平。本文以琼州海峡跨海大桥工程为背景,针对跨海大桥施工特点,并通过对自升式海洋平台设计理论和方法的研究,完成了海上多功能工作平台的方案设计。采用理论研究、模型试验、数值仿真等多种方法手段,全面深入地研究了平台结构设计直接计算方法、平台极限承载能力分析方法、桩腿结构空间KK管节点疲劳性能以及桩腿结构选型优化设计等海上多功能工作平台结构设计中涉及到的关键技术问题。本文研究的主要内容包括:
     (1)根据国内外已有自升式海洋平台的结构型式和特点,在广泛阅读国内外文献,深入分析已有研究成果的基础上,对平台结构设计所涉及的关键技术进行了消化、吸收和总结。根据琼州海峡跨海大桥工程的基本建设条件和施工特点,提出了海上多功能工作平台的总体设计方案。设计的海上多功能工作平台具备在复杂恶劣的海洋环境中安全高效地完成跨海大桥建设中的深水打桩及基槽整平等施工作业的能力,作业最大水深达到80米。模块化技术的引入使海上多功能工作平台的总体方案更加符合大型海洋工程装备发展趋势,使平台真正具备了“多功能性、多用途性、良好经济性”的特点。
     (2)深入分析海上多功能平台的结构型式和海上作业特点,并研究了海上多功能工作平台结构设计直接计算方法,在此基础上,采用有限元分析软件ANSYS,结合相关海洋平台设计建造规范建立了海上多功能工作平台结构强度分析模型。根据对平台风、浪、流等环境载荷的计算方法和准则的研究,提出了海上多功能工作平台最不利环境载荷的计算分析方法。对海上多功能工作平台自存、升降、正常工作及拖航等四种工况下的结构强度进行了分析。根据计算分析结果可以全面了解平台结构各工况下的受力特性,所采用的结构设计直接计算方法可用于平台的结构设计、强度评估以及结构优化等方面。
     (3)以非线性有限元为基础,采用了静力弹塑性分析方法对海上多功能工作平台极限承载能力进行了研究,重点分析了自存工况下平台受到0°、45°、90°三种不同方向环境载荷作用下平台的极限承载能力,以及平台后服役期考虑碰撞损伤、构件缺失、腐蚀、海生物附着和桩基沉降五种损伤的缺陷平台的极限承载能力,得到了对海上多功能工作平台结构极限承载能力最不利的工况,并通过平台强度储备系数评价了各种损伤对平台极限承载能力的影响程度,提出了有价值的建议。
     (4)采用模型试验与数值仿真两种方法对海上多功能工作平台桁架式桩腿结构的典型节点型式——空间KK型管节点的疲劳性能进行了相关研究。试验研究主要是通过开展空间KK型管节点在轴力作用下的疲劳性能试验,重点研究KK型管节点在轴力作用下沿着焊缝周围的热应力区内的热点应力分布、节点的应力集中系数,以及初始疲劳裂纹出现位置和裂纹扩展规律等。基于ANSYS平台建立了空间KK型管节点疲劳性能仿真分析模型,分析研究了空间KK型管节点的几何参数对其疲劳性能的影响,提出了提高空间KK型管节点疲劳性能的设计意见。
     (5)研究了基于有限元法的海洋平台桁架式桩腿结构选型优化设计的方法。应用ANSYS程序的参数化设计语言建立了以降低结构质量减小制造成本为优化目标,以桩腿构件的截面尺寸和桩腿结构的形状参数为设计变量,遵照设计规范中的强度、刚度和稳定性等多约束条件的平台桁架式桩腿结构优化设计模型,并编译了结构优化分析程序。以海上多功能平台设计方案为基础对海洋平台桩腿结构进行了选型优化设计。优化结果表明通过结构优化得到的桩腿设计方案可有效减少结构质量提高平台的经济性,并且采用合理的桩腿结构,不仅可以有效降低用钢量,而且能有效的控制平台的应力和位移响应。
     (6)对海上多功能工作平台的结构强度分析、极限承载能力分析、空间KK型管节点数值仿真分析和桩腿结构选型优化均是以有限元分析软件ANSYS作为计算分析平台,并根据具体的研究内容和研究方法调用合适的程序模块或编译合理的分析程序完成本文相关研究工作。提出了一套基于ANSYS计算平台研究和解决海上多功能工作平台结构设计中的关键技术问题的方法和思路。
The topic of the research on key technologies for multi-purpose jack-up platform structure design is very complex and has practice significance, and it is beneficial to improve the design ability and research level of Chinese ocean engineering structure. In this thesis, taken the Chinese Qiongzhou strait bridge construction project as the research background, and considered the characteristics of bridge construction, the multi-purpose jack-up platform scheme design was completed according to the design theories and methods of offshore jack-up platform. Kinds of methods included theoretical research, model test and numerical simulation were used to research the key technologies of multi-purpose jack-up platform structure design such as the calculation method for the platform structure design, the ultimate load bearing capacity analysis method, the fatigue properties of tubular KK-joints of leg structure and the optimum lectotype design of leg structure. The main research contents of the thesis include:
     (1) According to the structural types and characteristics of existing jack-up platforms,based on the comprehensive reading of references and the thorough analysis of existing research results, the methods and related research on key technologies of jack-up platform structure design were digested, absorbed and summarized. On the basis of the construction condition and characteristics of Qiongzhou strait bridge construction project, the general design plan of multi-purpose jack-up platform was proposed. The multi-purpose jack-up platform should be able to complete a lot of bridge construction tasks, such as deep water pilling and foundationtrench leveling, in complex and harsh ocean environment safely and efficiently. The maximum operating water depth of the platform reaches80meters. The application of the modular technology made the general design plan of multi-purpose jack-up platform accord with the development trend of large marine engineering equipments, and the multi-purpose jack-up platform really have the characteristics of multi-purpose, versatility and good economy.
     (2) The structural types and offshore operation characteristics of multi-purpose jack-up platform were deeply analyzed and the structure design calculation methods of the platform were studied. On this basis, the multi-purpose jack-up platform structure strength analysis model were established by the finite element analysis software ANSYS as well as related marine platform design rules and construction rules. According to the research on calculation methods and principles of wind, wave and current to the platform, the worst environmental load calculation analysis method of the platform were put forward. The structure strength was analyzed under the conditions of survival, lift, normal operation and towage. According to the results, the mechanical characteristics of the platform under different conditions can be fully understood, the structure design calculation method offered by the thesis can be applied to the structure design, strength evaluation and structure optimization of the platform.
     (3) Based on the nonlinear finite element method, the ultimate load bearing capacity of multi-purpose jack-up platform were studied by static pushover analysis method. The ultimate bearing capacities of the platform were analyzed in both intact situation and damaged situations under the direction of0°,45°and90°environment load. The damaged situations contain collision injury, missing component, corrosion, marine growth attachment and pile foundation settlement. The worst cases of the ultimate load bearing capacity of the platform in different situations were obtained. The Reserve Strength Ratios (RSR) of the platform in different situations were calculated to evaluate the effects of the ultimate bearing capacities of the platform, and some valuable proposals were given.
     (4)Using the model test and numerical simulation methods, the fatigue properties of multi-planar tubular KK-joints which are the typical joint type in the truss legs of the multi-purpose jack-up platform was carried. The main tasks of experiment study are:testing the fatigue properties of KK-joints model under axial loading, obtaining the hot spot stress (HSS) distribution and the stress concentration factors(SCF) along the weld toe in the HSS region, finding the initial fatigue crack position and crack propagation law, etc.. Based on ANSYS software, the simulation models of the multi-planar tubular KK-joints were established to analyze the fatigue properties, and some geometric parameters which influence the fatigue properties of KK-joints were investigated. The proposals improved the fatigue properties of KK-joints were given.
     (5) Based on the finite element method, the methods of the lectotype optimization design of platform leg structure were studied. The platform leg optimization design model were established with ANSYS parametric design language in order to reduce weight and manufacturing cost, with the section sizes and shapes of the legs as the design variables, the strength, stiffness and stability of the design specifications as constraint conditions, and the optimized structural analysis program were compiled. The optimization results showed that optimized design scheme of legs can effectively reduce the structure weight and improve the economical efficiency of the platform, and, the use of reasonable leg structure can not only reduce the total steel quantity but also control stresses and displacement responses of the platform effectively.
     (6) In this thesis, the finite element analysis software ANSYS were chosen as the main calculation and analysis platform for the structure strength analysis, ultimate load bearing capacity analysis, tubular KK-joints numerical simulation analysis and leg structure optimum lectotype design of multi-purpose jack-up platform. According to the specific research contents and methods, the appropriate program modules were chosen and the reasonable analysis programs were compiled for the completion of related research work. The methods and ideas, which to study and solve the key technologies of multi-purpose jack-up platform structure design based on ANSYS platform were proposed.
引文
[1]琼州海峡跨海大桥申报立项[J].广东交通,2010,(01):34.
    [2]陈宏,李春祥.自升式钻井平台的发展综述[J].中国海洋平台,2007,12:1-6.
    [3]汪张棠,赵建亭.自升式钻井平台在我国海洋油气勘探开发中的应用和发展[J].船舶.2008,2:10-15.
    [4]汪张棠,赵建亭.我国自升式钻井平台的发展与前景[J].中国海洋平台.2008,8:8-13.
    [5]陈宏.自升式钻井平台的最新进展[J].中国海洋平台,2008,10:1-7.
    [6]孟昭瑛,任贵永.海上自升式平台工作原理和基本特性[J].中国海洋平台.1994,12:167-170.
    [7]任贵永.海洋活动式平台[M].天津:天津大学出版社,1989.
    [8]马志良,罗德涛.近海移动式平台[M].北京:海洋出版社,1993.
    [9]Kennedy, J.L.. NEW JACK UP WILL DRILL, LAY PIPELINE, AND SET STRUCTURES OFFSHORE[J]. Oil and Gas Journal,1974,72(12):p.104,109-110,112.
    [10]Giblon, R.P. and V.U. Minorsky. EVOLUTION OF THE DESIGN OF A JACK-UP TYPE OFFSHORE STRUCTURE[J]. Marine Technology,1975,12(1):p.50-59.
    [11]Ives, G. TILT-UP/JACK-UP FOR DEEP NORTH SEA[J]. Petroleum Engineer International,1975,47(5):p.64,66,70-64,66,70.
    [12]Tubb, M.. NEW JACK-UP DESIGN FOR SEVERE SEAS[J]. Ocean industry,1981, 16(6):p.53,56-57.
    [13]JACK-UP DESIGN FOR 500 TO 600-FT DEPTHS[J]. Ocean industry,1982, p.59,62-59, 62.
    [14]Springett, C.N. Jackups for the nineties. What should the industry expect? In Society of Petroleum Engineers of AIME[C]. In (Paper) SPE.1990:Dallas, TX, USA. p.573-582.
    [15]Bunce, J.W. and P.J. George. A jackup-installed platform for marginal fields[C]. In SPE Reprint Series.2006.
    [16]Bandas, John. The design of a self-propelled jack-up drilling rig for the Chukchi sea[C]. In Marine Technology for Our Future:Global and Local Challenges, OCEANS 2009.
    [17]徐寿钦.超浅吃水自升式钻井平台《港海一号》研究设计[C].见:第一届全国船舶与海洋工程学术会议2000.上海.
    [18]郭洪升,潘斌.胜利作业三号自升式修井作业平台的研制[C].见:第一届全国船舶与海洋工程学术会议2000.上海.
    [19]郭洪升.胜利作业三号自升式修井作业平台的总体性能研究[D].上海交通大学硕士学位论文,2001.
    [20]郭洪升.”中油海5”自升式钻井平台总体研究设计[J].船舶,2009,20(3):1-5.
    [21]何炎平.”航工平1”自升式抛石整平平台设计[J].中国海洋平台,2004,19(2):20-23.
    [22]吴晓源.自升式抛石整平平台结构设计与强度分析[D].上海交通大学硕士学位论文.上海交通大学,2004.
    [23]王翔,刘榕,罗农.自升式抛石整平平台船的设计与应用[J].水运工程,2005(11):9-13.
    [24]陈宏.”BMC375"型自升式平台简况及设计特点[J].中国海洋平台,2010,25(5):1-4,10.
    [25]王运龙.自升式海洋钻井平台方案评价指标体系及评价方法[J].上海交通大学学报,2007,41(9):1445-1448,1453.
    [26]王运龙.自升式钻井平台方案设计技术研究[D].大连理工大学博士学位论文,2008.
    [27]王运龙,纪卓尚.自升式钻井平台方案评价指标体系及评价方法研究[J].船舶与海洋工程学报(英文版),2009,8(1):46-52.
    [28]王运龙,林焰,纪卓尚.自升式钻井平台方案设计系统分析和结构模型[J].中国造船,2009,50(4):149-155.
    [29]王运龙,纪卓尚,林焰.自升式钻井平台主尺度建模研究[J].船舶与海洋工程学报(英文版),2009,8(3):211-215.
    [30]周煜.自升式海洋平台设计方案评价体系研究[D].大连理工大学硕士学位论文.大连理工大学,2005.
    [31]于雁云.自升式钻井平台参数化设计技术及应用[C].见:2006中国数字化造船论坛.北京,2006.
    [32]孙景海.自升式平台升降系统研究与设计[D].哈尔滨工程大学硕士学位论文.哈尔滨工科大学,2010.
    [33]王涛,陆晟,赵寅.ZP350D自升式钻井平台桩腿围阱区域的细化研究与设计[J].船舶设计通讯,2010(4):45-49.
    [34]王瑜.基于有限元分析的自升式平台桁架腿选型优化设计[J].船舶设计通讯,2010(4):60-64.
    [35]张浦阳.海上自升式钻井平台插/拔桩机理及新型桩靴静/动承载力研究[D].天津大学博士学位论文.天津大学,2008.
    [36]褚国栋,胡瑞华.桩基导管架平台在台风及海浪作用下的随机响应分析[J].海洋工程,1989,7(3):12-23.
    [37]房营光,郭世荣,陈尤霞.浪流冲击下圆柱-平台-土体-水流系统的动力响应分析[J].地震工程与工程振动,1997,17(4):57-64.
    [38]Bea R G.. Selection of environmental criteria for offshore platform design[C]. In Proceeding of 5th annual offshore technology conference. In OTC 1839,1973,185-196.
    [39]Jin W L, LIH B, Song Z G..Math model for offshore platform structural vibration by sea ice[C]. In Proceeding of ISOPE, Brest, Franee, May,1999.
    [40]Jin W L, Zheng Z.S, LIHB.. Hybrid analysis approach for stochastic response of offshore jacket platforms[J]. In China Ocean Engineering,2000,14(2):p.143-152.
    [41]张金平,段艳丽,刘学虎.海洋平台波浪载荷计算方法的分析和建议[J].石油矿场机械,2006,35(3):10-14.
    [42]季春群,孙东昌.自升式平台上外载荷的分析计算[J].海洋工程,1995,13(3):19-24.
    [43]Wintersteinsr. Estimating extreme response of jackup structures from limited time-domain simulation[C]. In Proceeding of 13rd OMAE,1993,2:p.251.
    [44]Karunakaran D. Prediction of extreme dynamic response of a jack-up platform using nonlinear time domain simulations[C]. In Proceeding of 13rd OMAE,1993,2:259.
    [45]张剑波,刘健.冰激动载荷下自升式平台桩腿结构的安全评估[J].石油大学学报(自然科学版),2005,29(5):76-79,83.
    [46]王立忠,张韶光.冰区自升式平台桩腿动强度的安全评估研究[J].中国海洋平台,2005,20(5):12-16.
    [47]郭峰玮.基于实验数据分析的直立结构挤压冰荷载研究[D].大连理工大学博士学位论文,2010.
    [48]王秀勇,肖熙,张世联.海洋平台地震响应分析[J].中国海洋平台,1997,12,(4):150-152.
    [49]常向东,环文林.海洋石油平台的地震危险性分析[J].海洋工程,1989,7(1):8-14.
    [50]俨岳,冯军.地震荷载作用下桩基导管架结构的响应[J].中国海洋平台,1992,7(3):99-101.
    [51]张立福,罗传信.海洋桩基平台地震随机响应分析[J].海洋工程,1992,10(3):74-81.
    [52]李宏男,林皋.导管架海洋平台在多维地震动作用下的随机反应[J].海洋工程,1992,10(4):25-30.
    [53]Bea R G. Earthquake Criteria for Platform in the Gulf of Mexico[C]. In Proceeding of 8th Annual offshore Technology Conference, OTC2675,1976, p.657-679.
    [54]魏巍.导管架式海洋平台地震破坏状态分析研究[D].中国海洋大学博士学位论文.青岛:中国海洋大学,2004.
    [55]于国友.海上自升式钻井平台几何非线性静力分析[D].天津大学硕士学位论文.天津大学,1989.
    [56]刘刚等.大开口自升式海洋平台的设计与强度分析[J].中国海洋平台,2001,16(3):12-16.
    [57]林钟明,陈瑞峰,姚艳萍.自升式平台的结构强度分析[J].中国造船,2005,46(z1):308-313.
    [58]栗文彬,自升式平台整体结构的有限元分析研究[D].中国农业大学硕士学位论文.中国农业大学,2006.
    [59]]Berge, B. And Penzien, J. "Three-Dimensional Stochastic Response of Offshore Towers to Wave Forces, "[C]. In OTC2050(May 1974):p.173-190.
    [60]Hsien Hua Lee and Ruey-Ji Wu. Vibration Mitigation of Structures in the MarineEnvironment[J]. Ocean Engineer,1996,23:p.741-759.
    [61]陈茂华.非线性波浪载荷作用下自升式平台响应研究[D].哈尔滨工程大学硕士学位论文.哈尔滨工程大学,1999.
    [62]李茜,杨树耕.采用ANSYS程序的自升式平台结构有限元动力分析[J].中国海洋平台,2003,18(4):41-46.
    [63]李东升.自升式钻井平台结构振动特性计算与分析[D].上海交通大学硕士学位论文,2001.
    [64]姚艳萍等.自升式平台桩腿的局部开孔分析[J].中国造船,2004,45(z1):393-402.
    [65]张剑波,刘健.冰激动载荷下自升式平台桩腿结构的安全评估[J].石油大学学报(自然科学版),2005,29(5):76-79,83页.
    [66]Kwan, C.T.. ULTIMATE BENDING CAPACITY OF LATTICE LEGS FOR JACK-UP DRILLING PLATFORMS [J]. American Society of Mechanical Engineers (Paper),1976(76-Pet-26).
    [67]Gu, G. and Y. Huang. Calculating model of structural analysis for jack-up rig legs[J]. China Ocean Engineering,1993,7(4):p.409-416.
    [68]李强.基于桩土相互作用的自升式平台桩靴强度研究[D].大连理工大学硕士学位论文.大连理工大学,2008.
    [69]任宪刚,李春第,杨红敏.海洋自升式钻井平台桩靴研究[J].石油矿场机械,2009,38(12):18-22.
    [70]Martin, C.M. and G.T. Houlsby. Combined loading of spudcan foundations on clay: Laboratory tests[J]. Geotechnique,2000,50(4):p.325-338.
    [71]刘东.自升式平台桩腿桩靴参数化建模与分析研究[D].大连理工大学硕士学位论文.大连理工大学,2007.
    [72]孙永泰.自升式海洋平台齿轮齿条升降系统的研究[J].石油机械,2004,32(10):23-26.
    [73]王泉.自升式修井平台升降装置强度安全可靠性分析[J].石油矿场机械,2002,31(4):1-5.
    [74]樊敦秋,崔希君,曹宇光.自升式平台齿轮齿条升降系统受力分析[J].石油矿场机械,2010(12):27-30.
    [75]许滨,中仲翰,吕聪.渤海八号导管架生产平台极限承载力分析[J].中国海洋平台,1994:276-281.
    [76]许滨,中仲翰.海洋导管架平台的极限强度分析[J].海洋工程,1994,12(3):8-16.
    [77]D.J.Petruska, E.P.Berek, R.W.Ingeroll and J.B.Valdivieso. Assessment of Vermillion 46-A Platform[C]. In OTC 7475,1994, Vol 3:p.65.
    [78]Niasar.J.M.et al. Ultimate Strength Analysis of Jacket Type Offshore Platforms Due to Wave, Current and Wind Loading[C]. In ASME Conference Proceedings,2008,2008(48180): p.779-786.
    [79]邵炎林,何炎平,关宇.构造形式对导管架平台极限承载力的影响[J].中国海洋平台,2005,20(4):第29-32页.
    [80]刘海丰,陈国明,林红.老龄自升式平台极限承载能力分析[J].中国造船,2008,49(z2):421-426.
    [81]肖仪清.海洋平台结构极限承载力分析、损伤影响及其软件[D].哈尔滨建筑大学硕士学位论文.哈尔滨建筑大学,1998.
    [82]张兆德,韩晓风,冯永训.后服役期导管架式海洋平台的极限承载力分析[J].石油机械,2007,35(10):1-4,32.
    [83]刘锦昆,王树青,韩雨连.老龄导管架式海洋平台极限承载力分析[J].中国造船,2008,49(z2):380-384.
    [84]邢金有,隋智享.老龄平台极限强度评估[J].中国海洋平台,2004,Vol.19,No.2:35-37.
    [85]梁园华.海洋平台结构中K型管节点疲劳强度分析[D].大连理工大学硕士学位论文,2002.
    [86]付艳霞.KK型管节点应力集中系数研究[D].天津大学硕士学位论文.天津大学,2007.
    [87]邵永波,胡维东.轴力作用下多平面KK圆管节点焊接部位应力集中系数的计算方法[C].见:中国钢协结构稳定与疲劳分会2008年学术交流会.沈阳,2008.
    [88]张宝峰.海洋平台K型管节点的疲劳裂纹扩展分析Ⅰ:试验测试[J].计算力学学报,2007,24(5):643-647.
    [89]曲淑英.海洋平台K型管节点的疲劳裂纹扩展分析Ⅱ:数值分析[J].计算力学学报,2007,24(6):800-804.
    [90]张恩国.自升式平台管节点疲劳损伤研究[D].大连理工大学硕士学位论文.大连理工大学,2008.
    [91]Chou F S. A minimization scheme for the motions and forces of an ocean platform in random seas[J]. SNAME Trans,1977(85):p.32-50.
    [92]Onoufriou, T. Overview of Advanced Structural and Reliabilty Techniques for Optimum Design of Fixed Offshore Platforms [J]. Journal of Construct Steel Research,1997, Vol.44, No.3:p.181-201.
    [93]Farkas, J. Optimum Design of Circular Hollow Section Beam-Columns[C]. In ISOPE,1992, Vol.4:p.494-499.
    [94]Tom Lassen. Optimum Design of Three-Dimensional Framework Structures [J]. Journal of Structural Engineering,1993, Vol.119, No.3:p.713-727.
    [95]Kleiber M. Siemaszko A,Stocki R.Interactive stability-oriented reliability-based design optimization[J]. Comput.Methods Appl.Mech.Engrg,1999(168):p.243-253.
    [96]封盛.海洋平台结构优化设计理论和方法研究[D].大连理工大学博士学位论文,2000.
    [97]宋玉普,封盛,康海贵.考虑结构一桩一土相互作用的导管架平台优化设计[J].海洋工程,2000,5(2):18-23
    [98]顾元宪,马红艳,姜成,等.海洋平台结构动力响应优化设计与灵敏度分析[J].海洋工程,2001,No.1.7-13.
    [99]郭军,肖熙,朱静.海洋工程结构的多目标模糊优化设计[J].海洋工程,1994,vol.12, No.4:1-7.
    [100]王瑜.基于有限元分析的自升式平台桁架腿选型优化设计[D].天津大学硕士学位论文.天津大学,2009.
    [101]唐寰澄.世界著名海峡交通工程[M].北京:中国铁道出版社,2004.
    [102]中交公路规划设计院有限公司.琼州海峡建设条件出版稿[Z],2007.
    [103]中交公路规划设计院有限公司,琼州海峡跨海公路通道——桥梁工程方案研究[Z],2007.
    [104]贺伟莲.大型桥梁深水基础选型研究[D].同济大学硕士学位论文,2007.
    [105]张鸿,翟世鸿,杨炎华.深水、厚软基跨海桥梁复合基础逆作法[J].中外公路,2010,30(1):191-193.
    [106]中国船级社.海上移动式平台入级与建造规范[S].北京:人民交通出版社,2005.
    [107]孙东昌,潘斌.海洋平台模块化设计与建造的研讨[J].中国海洋平台,2000,15(1):26-27.
    [108]王勖成,绍敏.有限单元法基本原理和数值方法[M].清华大学出版社,1996.
    [109]李人宪.有限元法基础[M].国防工业出版社,2004.
    [110]朱伯芳.有限单元法原理与应用[M].中国水利水电出版社,1998.
    [111]徐志海,胡健.自升式平台的操作工况[J].船舶设计通讯,2010(1):62-64.
    [112]张金平,段艳丽,刘学虎.海洋平台波浪载荷计算方法的分析和建议[J].石油矿场机械,2006,35(3):10-14.
    [113]竺艳蓉.海洋工程波浪力学[M].天津:天津大学出版社,1991.
    [114]王亚磊.在役自升式平台作业状态下强度评估[D].天津大学硕士学位论文.天津大学,2009.
    [115]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2000.
    [116]欧进萍.海洋平台结构安全评定——理论、方法与应用[M].北京:科学出版社,2003.
    [117]Ship/platform collision incident database[R]. Research Report 053, HSE,2001.
    [118]侯保荣.钢铁设施在海洋浪花飞溅区的腐蚀行为及其新型包覆防护技术[J].腐蚀与防护,2007,28(4):174-175.
    [119]王建雷,耿铂.浅海钢质平台的腐蚀与控制[J].石油化工腐蚀与防护,2008,25(4):60-62.
    [120]黄宗国,蔡如星.海洋污损生物及其防污[M].北京:海洋出版社,1984.
    [121]赖尔富,R.,全战胜.在北海石油和天然气平台上的海生物[J].国外舰船技术(材料类),1984(03):34-37.
    [122]姚平等.中国南海东方气田海上平台水下钢结构腐蚀与防护研究[J].全面腐蚀控制,2010(01):8-14.
    [123]韩晓风.导管架平台的极限承载力分析[D].中国海洋大学硕士学位论文.中国海洋大学,2007.
    [124]钱坤,尹新生,朱珊.上部结构刚度对地基不均匀沉降的影响与分析[J].吉林建筑工程学院学报,2009,26(3):11-14.
    [125]孙富旺.就位抛砂对CB151井场及坐底式采油平台基础沉降的影响[J].海岸工程,2001,20(4):27-35.
    [126]姜萌.近海工程结构物:导管架平台[M].大连:大连理工大学出版社,2009.
    [127]American Welding Society. Structural welding code-steel [S]. ANSI/AWS, D1.1-2000, Miami, USA,2000.
    [128]X.-L.Zhao, S.Herion, J.A.Packer, R.S.Puthli, GSedlacek, Wardenier J. et al. Design guide for circular and rectangular hollow section welded joints under fatigue loading [M]. CIDECT, TUV,2001.
    [129]Wylde J G, McDonald A. The influence of joint dimensions on the fatigue strength of welded tubular joints [J]. International Journal of Fatigue,1980,2(1):p.31-36.
    [130]Department of Energy (DEn). Offshore Installations:Guidance on design and construction[S]. HMSO, UK,1984.
    [131]van Wingerde AM, Wardenier, J and Packer JA.. Commentary on the draft specification for fatigue design of hollow section joints[C]. The 8th International Symposium on Tubular Structures, Singapore, August,1998:p.117-127.
    [132]梁醒培,王辉.基于有限元法的结构优化设计——原理与工程应用[M].北京:清华大学出版社,2010,2.
    [133]钱令希.工程结构优化设计[M].北京:科学出版社,2011.
    [134]李芳,凌道盛.工程结构优化设计发展综述[J].工程设计学报,2002,9(5):229-235.
    [135]博奕创作室ANSYS 10.0经典产品高级分析技术与实例详解[M].北京:中国水利水电出版社,2005.
    [136]博嘉科技.有限元分析软件—ANSYS融会与贯通仁[M].北京:中国水利水电出版社,2002.
    [137]张亚欧,谷志飞,宋勇ANSYS7.0有限元分析实用教程[M].北京:清华大学出版社,2004.
    [138]宋勇,艾宴清,梁波,等.精通ANSYS7.0有限元分析[M].北京:清华大学出版社,2003.
    [139]封盛,宋玉普,康海贵.导管架平台优化设计中约束的有效处理[J].海洋工程,2001,18(3):20-24.
    [140]孙东昌,潘斌.海洋自升式移动平台设计与研究[M].上海交通大学出版社,2008,3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700