用户名: 密码: 验证码:
不同倍性鱼线粒体全基因组及肝脏转录组中线粒体相关基因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂交和多倍化是基因组进化的重要驱动力,是物种多样化和产生新物种的重要途径。人工多倍体鱼的研究不仅在水产育种上具有重要的研究价值,在生物学基础理论研究方面也具有重要的意义,对不同倍性鱼的分子生物学研究可以帮助理解进化中物种发生多倍化或基因组复制的遗传机理以及物种在多倍化发生早期的分子遗传状况,同时由于杂交多倍体鱼含有不同的基因组,使其成为很好的研究线粒体母性遗传和核质互作的模型。线粒体是真核生物的能量工厂,具有自己的遗传系统—线粒体基因组(mitochondrial DNA, mtDNA),其正常功能的运行需要线粒体基因组和核基因组的协同作用。线粒体DNA具有小型性、自主性和多态性等特点。对线粒体DNA的研究除了能揭示线粒体DNA的结构、基因表达及其功能外,还在核质互作、分子进化规律、物种起源与分化等方面具有重要的意义。本文应用多种分子生物学技术,结合相关的生物信息学知识对不同倍性鲫鲂的线粒体基因组和四倍体鲫鲤及其亲本肝脏转录组中的线粒体相关核基因进行了较系统的探讨和研究,并对两种鲤科鱼类翘嘴鲌和黄尾鲴的线粒体DNA全序列进行了系统分析。本论文的主要研究内容如下:
     1.对天然雌核发育红鲫、三倍体鲫鲂和四倍体鲫鲂的线粒体基因组全序列进行了测序,研究充分利用各种生物信息学软件,系统详细的阐明了这些不同倍性杂交鱼线粒体DNA的分子结构、碱基组成、基因组成和排列等特点。天然雌核发育红鲫、三倍体鲫鲂和四倍体鲫鲂线粒体基因组序列全长均为16580bp,与母本红鲫的线粒体基因组序列长度一致。通过与亲本红鲫和团头鲂线粒体基因组全序列的比较,我们发现无论是在线粒体基因组的结构还是全序列的同源性比较上,三种鲫鲂不同倍性杂交鱼的线粒体全基因组均与母本红鲫更相似,研究表明尽管经历了杂交和多倍化,不同倍性鱼的线粒体DNA仍然遵循母性遗传规律。同时结果也说明在线粒体基因组水平不能体现出不同倍性杂交鱼与父本团头鲂具有亲缘关系,这一点提示我们在利用线粒体基因组对鱼类特别是杂交鱼类进行系统关系研究时应该注意其有效性。
     2.以四倍体鲫鲂为母本以团头鲂为父本进行了四倍体鲫鲂的回交实验,在检测的三尾回交子代中有两尾三倍体鲫鲂和一尾五倍体鲫鲂。采用一对引物我们克隆了回交子代及母本四倍体鲫鲂的线粒体ND2基因,通过全序列比对和同源性分析,我们发现线粒体基因组的母性遗传方式在鲫鲂回交中仍然具有很强的稳定性,同时分别在一尾三倍体鲫鲂和五倍体鲫鲂中各发现两个A→G碱基替换,与其他16种鲤科鱼类相应位点的比较中我们发现这是两个容易发生碱基变异的位点,并且变异的形式多为A和G之间的替换。该研究进一步证实了雌性四倍体鲫鲂可以产生两种倍性的卵子,同时说明在杂交鱼线粒体DNA中不会发生大规模的变异,但是受杂交和多倍化的影响可能会在容易发生变异的位点发生少量的碱基变异。
     3.异源四倍体鲫鲤在线粒体DNA的遗传上遵循严格的母性遗传规律。本研究在四倍体鲫鲤及其亲本红鲫和鲤鱼的肝脏转录组数据库中,筛选出了四倍体鲫鲤94个contigs对应41个基因、红鲫136个contigs对应46个基因、鲤鱼86个contigs对应37个基因与线粒体呼吸链的四个蛋白复合物相关。将红鲫和鲤鱼的线粒体呼吸链蛋白相关基因建立数据库,在数据库中搜索四倍体鲫鲤的线粒体呼吸链蛋白相关基因,寻找与四倍体鲫鲤每个基因最匹配的亲本基因。结果表明,在搜索的最佳匹配基因中即有红鲫的基因又有鲤鱼的基因,说明两个亲本的核基因组都参与了线粒体复合物蛋白的合成,并根据所搜索到的各亲本基因的数目,初步判定红鲫基因组和鲤鱼基因组线粒体呼吸链相关核基因在四倍体鲫鲤中的表达没有明显的偏好性。采用相同的方法分析其他16种线粒体相关的蛋白和酶基因得到了相似的结果。以上分析表明红鲫线粒体基因组、红鲫核基因组和鲤鱼核基因组三个基因组都参与了线粒体功能的运作。同时,我们发现在筛选的所有四倍体鲫鲤的线粒体相关基因中与亲本红鲫和鲤鱼的线粒体相关核基因以及三种鱼与斑马鱼的线粒体相关核基因大部分并不是一对一的关系,基因树和氨基酸比对分析揭示这些基因很多都是多拷贝基因。此外,对10个基因的核苷酸分歧率分析和8个基因编码区的氨基酸序列同源性分析表明线粒体呼吸链相关核基因在红鲫、鲤鱼和斑马鱼之间都具有较高的同源性,说明和能量代谢相关的基因在鱼类中比较保守,这些基因的保守性可能是四倍体鲫鲤各基因组之间可以正常协调并相互适应的一个重要原因,从而确保其正常的生长发育,并能够稳定地繁殖后代。对四倍体鲫鲤、红鲫和鲤鱼肝脏转录组中线粒体相关基因的分析对杂交鱼类的核质互作和杂交衰败等研究具有重要的参考价值。
     4.通过PCR扩增测序获得了翘嘴鲌和黄尾鲴的线粒体基因组全序列,序列全长分别为16622bp和16630bp,翘嘴鲌和黄尾鲴的线粒体基因组的大部分区段与GenBank中现有的序列具有较高的同源性。其结构组成也与其他脊椎动物较为一致,包括13个蛋白编码基因,2个rRNA基因,22个tRNA基因和2个非编码区(1个控制区和1个轻链复制起始区)。在数据分析中我们对翘嘴鲌和黄尾鲴线粒体全基因组的碱基组成、蛋白质密码子利用情况以及tRNA和rRNA的二级结构进行了详细分析,并通过与其他几种鲌亚科和鲴亚科鱼类线粒体控制区的比较识别了翘嘴鲌和黄尾鲴线粒体控制区的3个保守区域。同时,基于翘嘴鲌和黄尾鲴连同另外40种鲤科鱼类的线粒体全基因组以虹鳟鱼为外群建立了NJ系统树,系统树初步显示了翘嘴鲌和黄尾鲴在鲤科鱼类中的分类地位。本文得到的翘嘴鲌和黄尾鲴的线粒体全基因组序列均是两种鱼类在GenBank中的第一条序列数据,为鲤科鱼类系统分类学研究增添了新的数据,为以两种鱼类为亲本的杂交子代的线粒体基因组研究及其线粒体相关基因的研究奠定了基础。
Mitochondria are double-layered membrane-bound organelles, which are found in nearly all eukaryotic cells. They act as cellular energy suppliers and carry their own genetic material, the mitochondrial genome (mtDNA). As a unique cytoplasmic genetic system, mitochondrial DNA (mtDNA) is a small, self-replicating and diverse genome. The study on mitochondrial genome is significant in many biological issues, such as gene structure and function, gene expression regulation on time and space, nucleo-cytoplasmic interaction, the dynamics of molecular evolution, the origin of mitochondria, the origin and evolution of species, and so on.
     Artificial polyploidy fish induced by hybridization has been used in aquaculture to produce sterility or improve production. Meanwhile, they are also useful for investigating mechanism of ploidy variation, sex determination, and mode of inheritance of mitochondrial genome as well. Previously, we obtained the allotetraploid crucian carp by hybridization of red crucian carp and common carp, and obtained diploid natural gynogenetic red crucian carps (2nGRCC), triploid hybrids (3nRB) and tetraploid hybrids (4nRB) by hybridization of red crucian carp (RCC) and blunt snout bream (BSB). The point of this work was to analyze the genetic information of the mtDNA sequences of2nGRCC,3nRB and4nRB, and to analyze the expression information of the mitochondria-related genes in transcriptome of the allotetraploid crucian carp liver. Meanwhile, we also obtained and analyzed the complete mitochondrial genomes of two wild fish, Culteral alburnus and Xdnocypris davidi. The major results in this paper were presented as follows:
     1. We firstly reported the genetic information of the complete mitochondrial genomes in2nGRCC,3nRB and4nRB and compared them with the mitochondrial genomes of RCC and BSB which represented the parental fish. The complete mitochondrial DNA (mtDNA) sequences of these three polyploid hybrids were all16580bp in length, as same as their female origin (RCC). Analysis of mtDNA structures and sequence comparison indicated that the complete mitochondrial genomes of2nGRCC,3nRB and4nRB were all quite similar to that of RCC rather than BSB. The similarity and divergence analysis also showed that the genetic relationship between these hybrids and RCC were closer than that between them and BSB. These results indicated that the mitochondrial genomes of2nGRCC,3nRB and4nRB were still strictly maternal inherited, although they experienced hybridization and polyploidization. Meanwhile, we found that it could not determine the relative relationship between these hybrids and BSB at the mtDNA sequences level, which implied that it should be cautious when using mtDNA as molecular marker in phylogenetic studies.
     2. The backcross of female tetraploid hybrids of red crucian carp (♀) xblunt snout bream ((?)) and male blunt snout bream generated two kinds of polyploidy hybrids:two triploid hybrids and one pentaploid hybrid. We sequenced the mitochondrial ND2genes of the maternal4nRB and three hybrid offspring including two triploid hybrids (3nRB1and3nRB2) and one pentaploid hybrid (5nRB). The ND2genes of4nRBs,3nRB1,3nRB2and5nRB were all1047bp in length, encoding348amino acids. The similarity and divergence analysis indicated that the mitochondrial ND2genes of backcross hybrid offspring still stringently subjected to the maternal inheritance rule. Additionally, we observed two substitution of A→G in the mitochondrial ND2genes of3nRB1and5nRB, respectively. By comparison, we also found A<>G substitutions in the same sites in other16fish. The results indicated that the mtDNA genes of hybrid offspring couldn't capture mutations at large degree, but they probably captured few mutations at hot mutation sites.
     3. The transcriptome of the allotetraploid crucian carp, red crucian carp and common carp liver obtained in the previous study gave us an opportunity to explore the coordination between the nuclear genome and the mitochondrial genome in hybrid offspring. In this work, we filtered94contigs including41respiratory-related genes of the allotetraploid crucian carp,136contigs including46respiratory-related genes of of red crucian carp and84contigs including37respiratory-related genes of common carp in their transcriptomes. By building respiratory-related gene database of red crucian carp and common carp transcriptomes and then performing balstn research of the allotetraploid crucian carp respiratory-related genes in the database, we found out39best matches in red crucian carp respiratory-related genes for allotetraploid crucian carp,40best matches in common carp respiratory-related genes. The results indicated that both nuclear genomes of red crucian carp and common carp involved the OXPHOS process of allotetraploid crucian carp. Beside the mitochondrial respiratory-related genes, we also detected some other mitochondria-related genes including some genes encoding proteins located in membrane of mitochondria and some genes encoding enzyme of mitochondria. The analysis of these genes showed the similar results to the previous results of respiratory-related genes.
     4. Culter alburnus and Xdnocypris davidi Bleeker are both popular fish in aquiculture. This study first reported complete mitochondrial genomes of these two fish. The entire mtDNA sequences of Culter alburnus and Xdnocypris davidi Bleeker were16622and16630bp in length, respectively. Similar to other cyprinidae fish, the complete mitochondrial genomes encoded the37genes consisting of13protein-coding genes, two rRNA genes,22tRNA genes and a non-coding control region. The characters of the molecular structure and gene organization of the mtDNA genomes in these two fish were described in detail including three conserved domains of D-loop regions. On the other hand, the NJ phylogenetic tree based on the complete mitochondrial genome of Culter alburnus, Xdnocypris davidi Bleeker and other40cyprinidae fish with oncorhynchus mykiss as outgroup were built, which showed that Culter alburnus and Xdnocypris davidi Bleeker had very close relationship. This work will provide genetic information for the breeding of these two fish, and will help to understand the further phylogenetic relationship of cultrinae and Xenocyprinae fish.
引文
[1]Ehrendorfer F., W. Lewis. Polyploidy:Biological Relevance[J]. Polyploidy: Biological Relevance,1980.
    [2]Dehal P., J.L. Boore. Two rounds of whole genome duplication in the ancestral vertebrate [J]. PLoS biology,2005,3(10):e314.
    [3]Hufton A.L., D. Groth, M. Vingron, H. Lehrach, A.J. Poustka, G. Panopoulou. Early vertebrate whole genome duplications were predated by a period of intense genome rearrangement [J]. Genome Res,2008,18(10):1582-1591.
    [4]Otto S.P. The evolutionary consequences of polyploidy[J]. Cell,2007,131(3): 452-462.
    [5]Volff J.N. Genome evolution and biodiversity in teleost fish[J]. Heredity (Edinb), 2005,94(3):280-294.
    [6]Wendel J.F. Genome evolution in polyploids[J]. Plant Mol Biol,2000,42(1): 225-249.
    [7]Hughes T., D.A. Liberles. Whole-genome duplications in the ancestral vertebrate are detectable in the distribution of gene family sizes of tetrapod species [J]. Journal of molecular evolution,2008,67(4):343-357.
    [8]Grant V. The origin of adaptations [M]. Columbia Univ Pr,1963.
    [9]Goldblatt P. Polyploidy in angiosperms:monocotyledons[M]. Polyploidy:biological relevance. New York, London, Plenum Press,1980.
    [10]Masterson J. Stomatal size in fossil plants:evidence for polyploidy in majority of angi-osperms [J]. Science,1994,264(5157):421-424.
    [11]Gerstein A.C., S.P. Otto. Ploidy and the causes of genomic evolution [J]. Journal of Heredity,2009,100(5):571-581.
    [12]Baatout S. Molecular basis to understand polyploidy [J]. Hematology and cell therapy,1999,41(4):169-170.
    [13]Leggatt R.A., G.K. Iwama. Occurrence of polyploidy in the fishes [J]. Reviews in Fish Biology and Fisheries,2003,13(3):237-246.
    [14]Van de Peer Y., J.S. Taylor, A. Meyer. Are all fishes ancient polyploids? [J]. Journal of structural and functional genomics,2003,3(1):65-73.
    [15]Zhou R., H. Cheng, T.R. Tiersch. Differential genome duplication and fish diversity [J]. Reviews in Fish Biology and Fisheries,2001,11(4):331-337.
    [16]Comai L. The advantages and disadvantages of being polyploid [J]. Nature Reviews Genetics,2005,6(11):836-846.
    [17]Allendorf F. Tetraploidy and the evolution of salmonid fishes [J]. Evolutionary genetics of fishes,1984.
    [18]Ferris S.D. Tetraploidy and the evolution of the catostomid fishes [J]. Evolutionary genetics of fishes,1984:55-93.
    [19]Berrebi P. Speciation of the genus Barbus in the north Mediterranean basin: recent advances from biochemical genetics [J]. Biological Conservation,1995, 72(2):237-249.
    [20]Muramoto J., S. Ohno, N.B. Atkin. On the diploid state of the fish order Ostariophysi [J]. Chromosoma,1968,24(1):59-66.
    [21]Wolf U., H. Ritter, N. Atkin, S. Ohno. Polyploidization in the fish family Cyprinidae, order Cypriniformes [J]. Human Genetics,1969,7(3):240-244.
    [22]Donaldson E.M., R.H. Devlin. Uses of biotechnology to enhance production [J]. Developments in Aquaculture and Fisheries Science,1996,29:969-1020.
    [23]Liu S.J., Y. Liu, G. Zhou, X. Zhang, C. Luo, H. Feng, X. He, G. Zhu, H. Yang. The formation of tetraploid stocks of red crucian carp x common carp hybrids as an effect of interspecific hybridization[J]. Aquaculture,2001,192(2-4): 171-186.
    [24]Liu S., Q. Qin, Y. Wang, H. Zhang, R. Zhao, C. Zhang, J. Wang, W. Li, L. Chen, J. Xiao, K. Luo, M. Tao, W. Duan, Y. Liu. Evidence for the Formation of the Male Gynogenetic Fish [J]. Marine Biotechnology,2010,12(2):160-172.
    [25]Lehninger A.L. The mitochondrion. Molecular basis of structure and function [J]. The mitochondrion Molecular basis of structure and function,1964.
    [26]Henze K., W. Martin. Essence of mitochondria [J]. Nature,2003,426(6963): 127-128.
    [27]Bereiter-Hahn J., M. Voth. Dynamics of mitochondria in living cells:shape changes, dislocations, fusion, and fission of mitochondria [J]. Microscopy research and technique,1994,27(3):198-219.
    [28]Chan D.C. Mitochondrial fusion and fission in mammals [J]. Annu Rev Cell Dev Biol,2006,22:79-99.
    [29]Karbowski M., R.J. Youle. Dynamics of mitochondrial morphology in healthy cells and during apoptosis [J]. Cell Death Differ,2003,10(8):870-880.
    [30]顾明亮,汪业军,陈姝,张永彪.线粒体基因与核基因协同表达的机制[J].兰命的化学,2009,(006):803-811.
    [31]Boore J.L. Animal mitochondrial genomes [J]. Nucleic Acids Research,1999, 27(8):1767-1780.
    [32]Jacobs H.T., S.K. Lehtinen, J.N. Spelbrink. No sex please, we're mitochondria:a hypothesis on the somatic unit of inheritance of mammalian mtDNA [J]. Bioessays,2000,22(6):564-572.
    [33]Andersson S.G., O. Karlberg, B. Canback, C.G. Kurland. On the origin of mitochondria:a genomics perspective [J]. Philos Trans R Soc Lond B Biol Sci, 2003,358(1429):165-177; discussion 177-169.
    [34]Dyall S.D., M.T. Brown, P.J. Johnson. Ancient invasions:from endosymbionts to organelles [J]. Science,2004,304(5668):253-257.
    [35]Gray M.W., G Burger, B.F. Lang. Mitochondrial evolution [J]. Science,1999, 283(5407):1476-1481.
    [36]Gabaldon T., M.A. Huynen. Reconstruction of the proto-mitochondrial metabolism [J]. Science,2003,301(5633):609.
    [37]Barrell B.G, A.T. Bankier, J. Drouin. A different genetic code in human mitochondria [J].Nature,1979,282(5735):189-194.
    [38]White D.J., J.N. Wolff, M. Pierson, N.J. Gemmell. Revealing the hidden complexities of mtDNA inheritance [J]. Mol Ecol,2008,17(23):4925-4942.
    [39]Williamson D. The curious history of yeast mitochondrial DNA [J]. Nature Reviews Genetics,2002,3(6):475-480.
    [40]Dawid I.B., A.W. Blackler. Maternal and cytoplasmic inheritance of mitochondrial DNA in Xenopus [J]. Dev Biol,1972,29(2):152-161.
    [41]Shoubridge E.A., T. Wai. Mitochondrial DNA and the mammalian oocyte [J]. Curr Top Dev Biol,2007,77:87-111.
    [42]Wolff J., N. Gemmell. Lost in the zygote:the dilution of paternal mtDNA upon fertilization [J]. Heredity,2008,101(5):429-434.
    [43]Ursprung H., E. Schabtach. Fertilization in tunicates:loss of the paternal mitochondrion prior to sperm entry [J]. J Exp Zool,1965,159(3):379-383.
    [44]Hiraoka J., Y. Hirao. Fate of sperm tail components after incorporation into the hamster egg [J]. Gamete Res,1988,19(4):369-380.
    [45]Kaneda H., J. Hayashi. S. Takahama, C. Taya, K.F. Lindahl, H. Yonekawa. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis [J]. Proc Natl Acad Sci USA,1995,92(10):4542-4546.
    [46]Sutovsky P., T.C. McCauley, M. Sutovsky, B.N. Day. Early degradation of paternal mitochondria in domestic pig (Sus scrofa) is prevented by selective proteasomal inhibitors lactacystin and MG132 [J]. Biology of reproduction, 2003,68(5):1793-1800.
    [47]Sutovsky P., R.D. Moreno, J. Ramalho-Santos, T. Dominko, C. Simerly, G. Schatten. Development:Ubiquitin tag for sperm mitochondria [J]. Nature,1999, 402(6760):371-372.
    [48]Sutovsky P., R.D. Moreno, J. Ramalho-Santos, T. Dominko, C. Simerly, G. Schatten. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos [J]. Biol Reprod, 2000,63(2):582-590.
    [49]Hurst L.D., W.D. Hamilton. Cytoplasmic fusion and the nature of sexes [J]. Proceedings of the Royal Society of London Series B:Biological Sciences,1992, 247(1320):189-194.
    [50]Allen J.F. Separate sexes and the mitochondrial theory of ageing [J]. Journal of theoretical biology,1996,180(2):135-140.
    [51]Birky C.W., Jr. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution [J]. Proc Natl Acad Sci U S A,1995,92(25): 11331-11338.
    [52]Gyllensten U., D. Wharton, A. Josefsson, A.C. Wilson. Paternal inheritance of mitochondrial DNA in mice [J]. Nature,1991,352(6332):255-257.
    [53]Kvist L., J. Martens, A.A. Nazarenko, M. Orell. Paternal leakage of mitochondrial DNA in the great tit (Parus major) [J]. Mol Biol Evol,2003,20(2): 243-247.
    [54]Ladoukakis E.D., E. Zouros. Recombination in animal mitochondrial DNA: evidence from published sequences [J]. Mol Biol Evol,2001,18(11): 2127-2131.
    [55]Saville B.J., Y. Kohli, J.B. Anderson. mtDNA recombination in a natural population [J]. Proc Natl Acad Sci USA,1998,95(3):1331-1335.
    [56]Awadalla P., A. Eyre-Walker, J.M. Smith. Linkage disequilibrium and recombination in hominid mitochondrial DNA [J]. Science,1999,286(5449): 2524-2525.
    [57]Eyre-Walker A., N.H. Smith, J.M. Smith. How clonal are human mitochondria? [J]. Proceedings of the Royal Society of London Series B:Biological Sciences, 1999,266(1418):477-483.
    [58]Hagelberg E., N. Goldman, P. Lio, S. Whelan, W. Schiefenhovel, J.B. Clegg, D.K. Bowden. Evidence for mitochondrial DNA recombination in a human population of island Melanesia [J]. Proc Biol Sci,1999,266(1418):485-492.
    [59]Parsons T.J., D.S. Muniec, K. Sullivan, N. Woodyatt, R. Alliston-Greiner, M.R. Wilson, D.L. Berry, K.A. Holland, V.W. Weedn, P. Gill, M.M. Holland. A high observed substitution rate in the human mitochondrial DNA control region [J]. Nat Genet,1997,15(4):363-368.
    [60]Moriyama E.N., J.R. Powell. Synonymous substitution rates in Drosophila: mitochondrial versus nuclear genes [J]. J Mol Evol,1997,45(4):378-391.
    [61]Denver D.R., K. Morris, M. Lynch, L.L. Vassilieva, W.K. Thomas. High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans [J]. Science,2000,289(5488):2342-2344.
    [62]Howell N.. I. Kubacka, D.A. Mackey. How rapidly does the human mitochondrial genome evolve? [J]. American journal of human genetics,1996, 59(3):501.
    [63]Hudson R.R., M. Turelli. Stochasticity overrules the "three-times rule":genetic drift, genetic draft, and coalescence times for nuclear loci versus mitochondrial DNA [J]. Evolution,2003,57(1):182-190.
    [64]Dalziel A.C., C.D. Moyes, E. Fredriksson, S.C. Lougheed. Molecular evolution of cytochrome c oxidase in high-performance fish (Teleostei:Scombroidei) [J]. Journal of molecular evolution,2006,62(3):319-31.
    [65]Garcia-Martinez J., J.A. Castro, M. Ramon, A. Latorre. A. Moya. Mitochondrial DNA haplotype frequencies in natural and experimental populations of Drosophila subobscura [J]. Genetics,1998,149(3):1377-1382.
    [66]Hutter C.M., D.M. Rand. Competition between mitochondrial haplotypes in distinct nuclear genetic environments:Drosophila pseudoobscura vs. D. persimilis [J]. Genetics,1995,140(2):537-548.
    [67]Nachman M.W. Deleterious mutations in animal mitochondrial DNA [J]. Genetica,1998,102:61-69.
    [68]Oliver P., J. Balanya, M.M. Ramon, A. Picornell, L. Serra, A. Moya, J.A. Castro. Population dynamics of the 2 major mitochondrial DNA haplotypes in experimental populations of Drosophila subobscura [J]. Genome,2005,48(6): 1010-1018.
    [69]Avise J.C. Ten unorthodox perspectives on evolution prompted by comparative population genetic findings on mitochondrial DNA [J]. Annual Review of Genetics,1991,25(1):45-69.
    [70]Avise J.C., J. Arnold, R.M. Ball, E. Bermingham, T. Lamb, J.E. Neigel, C.A. Reeb, N.C. Saunders. Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics [J]. Annual review of ecology and systematics,1987,18:489-522.
    [71]Bowen B.W., A.L. Bass, A. Muss, J. Carlin, D.R. Robertson. Phylogeography of two Atlantic squirrelfishes (Family Holocentridae):exploring links between pelagic larval duration and population connectivity [J]. Marine Biology,2006, 149(4):899-913.
    [72]Edwards S.V., W. Bryan Jennings, A.M. Shedlock. Phylogenetics of modern birds in the era of genomics [J]. Proceedings of the Royal Society B:Biological Sciences,2005,272(1567):979.
    [73]Moritz C., T. Dowling, W. Brown. Evolution of animal mitochondrial DNA: relevance for population biology and systematics [J]. Annual review of ecology and systematics,1987,18:269-292.
    [74]Rand D.M. Thermal habit, metabolic rate and the evolution of mitochondrial DNA [J]. Trends in Ecology & Evolution,1994,9(4):125-131.
    [75]Chinnery P., D. Turnbull. Mitochondrial DNA and disease [J]. The Lancet,1999, 354:S17-S21.
    [76]Attardi G. Animal mitochondrial DNA:an extreme example of genetic economy [J]. International review of cytology,1985,93:93-145.
    [77]Chomyn A., P. Mariottini, M. Cleeter, C.I. Ragan, A. Matsuno-Yagi, Y. Hatefi, R.F. Doolittle, G. Attardi. Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase [J]. Nature,1985,314(6012):592.
    [78]Das J. The role of mitochondrial respiration in physiological and evolutionary adaptation [J]. Bioessays,2006,28(9):890-901.
    [79]Margulies M., M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J. Berka, M.S. Braverman, Y.J. Chen, Z. Chen. Genome sequencing in microfabricated high-density picolitre reactors [J]. Nature.2005,437(7057): 376-380.
    [80]Shendure J., G.J. Porreca, N.B. Reppas, X. Lin, J.P. McCutcheon, A.M. Rosenbaum, M.D. Wang, K. Zhang, R.D. Mitra, G.M. Church. Accurate multiplex polony sequencing of an evolved bacterial genome [J]. Science,2005, 309(5741):1728-1732.
    [81]Turcatti G., A. Romieu, M. Fedurco, A.P. Tairi. A new class of cleavable fluorescent nucleotides:synthesis and optimization as reversible terminators for DNA sequencing by synthesis [J]. Nucleic Acids Research,2008,36(4): e25-e25.
    [82]Pop M., A. Phillippy, A.L. Delcher, S.L. Salzberg. Comparative genome assembly [J]. Briefings in bioinformatics,2004,5(3):237-248.
    [83]Ewing B., L.D. Hillier, M.C. Wendl, P. Green. Base-calling of automated sequencer traces usingPhred. Ⅰ. Accuracy assessment [J]. Genome research, 1998,8(3):175-185.
    [84]Zerbino D.R., E. Birney. Velvet:algorithms for de novo short read assembly using de Bruijn graphs [J]. Genome research,2008,18(5):821-829.
    [85]Delcher A.L., K.A. Bratke, E.C. Powers, S.L. Salzberg. Identifying bacterial genes and endosymbiont DNA with Glimmer [J]. Bioinformatics,2007,23(6): 673-679.
    [86]Besemer J., A. Lomsadze, M. Borodovsky. GeneMarkS:a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions [J]. Nucleic Acids Research,2001,29(12): 2607-2618.
    [87]Hyatt D., G.L. Chen, P.F. LoCascio, M.L. Land, F.W. Larimer. L.J. Hauser. Prodigal:prokaryotic gene recognition and translation initiation site identification [J]. BMC bioinformatics,2010,11(1):119.
    [88]Tatusov R.L., N.D. Fedorova, J.D. Jackson, A.R. Jacobs, B. Kiryutin, E.V. Koonin, D.M. Krylov, R. Mazumder, S.L. Mekhedov, A.N. Nikolskaya. The COG database:an updated version includes eukaryotes [J]. BMC bioinformatics, 2003,4(1):41.
    [89]Liu S., Q. Qin, J. Xiao, W. Lu, J. Shen, W. Li, J. Liu, W. Duan, C. Zhang, M. Tao. The formation of the polyploid hybrids from different subfamily fish crossings and its evolutionary significance [J]. Genetics,2007,176(2):1023-1034.
    [90]Gojobori J., H. Innan. Potential of fish opsin gene duplications to evolve new adaptive functions [J]. TRENDS in Genetics.,2009,25(5):198-202.
    [91]Liu L.G., C.P. You, S.J. Liu, H. Zhong, D. Liu, Z. Liu, M. Tao, Y. Liu. Cloning and evolutionary analysis of cyclin B gene introns in cyprinids with different ploidy levels [J]. Progress in Natural Science,2009,19(9):1103-1108.
    [92]Qin Q., W. He, S. Liu, J. Wang, J. Xiao, Y. Liu. Analysis of 5S rDNA organization and variation in polyploid hybrids from crosses of different fish subfamilies [J]. Journal of Experimental Zoology Part B:Molecular and Developmental Evolution,2010,314B(5):403-411.
    [93]Yan J., L. Liu, S. Liu, X. Guo, Y. Liu. Comparative analysis of mitochondrial control region in polyploid hybrids of red crucian carp (Carassius auratus) x blunt snout bream (Megalobrama amblycephala) [J]. Fish Physiology and Biochemistry,2010,36(2):263-272.
    [94]Yan J., X. Guo, S. Liu, J. Xiao, Z. Liu, Y. Chen. Y. Liu. Maternal inheritance in polyploid fish inferred from mitochondrial ATPase genes analysis [J]. Progress in Natural Science,2009,19(6):693-698.
    [95]Tamura K., J. Dudley, M. Nei, S. Kumar. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0 [J]. Molecular Biology and Evolution,2007,24(8):1596-1599.
    [96]Sutovsky P.. G. Schatten. Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion [J]. International review of cytology,1999, 195:1-65.
    [97]Ferris S.D., R.D. Sage, A.C. Wilson. Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female [J]. Nature.1982,295(5845):163-165.
    [98]Zinner D., L.F. Groeneveld, C. Keller, C. Roos. Mitochondrial phylogeography of baboons (Papio spp.):indication for introgressive hybridization? [J]. BMC Evol Biol 2009,9:83.
    [99]Yang J., S. He, J.r. Freyhof, K. Witte, H. Liu. The phylogenetic relationships of the Gobioninae (Teleostei:Cyprinidae) inferred from mitochondrial cytochrome b gene sequences [J]. Hydrobiologia,2006,553:255-266.
    [100]Vigilant L., M. Stoneking, H. Harpending, K. Hawkes, A.C. Wilson. African populations and the evolution of human mitochondrial DNA [J]. Science,1991, 253(5027):1503-1507.
    [101]Shen X., X. Ma, J. Ren, F. Zhao. A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascolosoma esculenta [J]. BMC Genomics,2009,10:11.
    [102]Kwok C.S., T.C. Quah, H. Ariffin, S.K. Tay, A.E. Yeoh. Mitochondrial D-loop polymorphisms and mitochondrial DNA content in childhood acute lymphoblastic leukemia [J]. JPediatr Hematol Oncol,2011,33(6):e239-244.
    [103]Prior S.L., A.P. Griffiths, P.D. Lewis. A study of mitochondrial DNA D-loop mutations and p53 status in nonmelanoma skin cancer [J]. Br J Dermatol,2009, 161(5):1067-1071.
    [104]Wei L., Y. Zhao, T.K. Guo, P.Q. Li, H. Wu, H.B. Xie, K.J. Ma, F. Gao, X.D. Xie. Association of mtDNA D-loop polymorphisms with risk of gastric cancer in Chinese population [J]. Pathol Oncol Res,2011,17(3):735-742.
    [105]Iguchi A., H. Ito, M. Ueno, T. Maeda, T. Minami, I. Hayashi. Molecular phylogeny of the deep-sea Buccinum species (Gastropoda:Buccinidae) around Japan:inter-and intraspecific relationships inferred from mitochondrial 16SrRNA sequences [J]. Mol Phylogenet Evol,2007,44(3):1342-1345.
    [106]Richert K., E. Brambilla, E. Stackebrandt. The phylogenetic significance of peptidoglycan types:Molecular analysis of the genera Microbacterium and Aureobacterium based upon sequence comparison of gyrB, rpoB, recA and ppk and 16SrRNA genes [J]. Syst Appl Microbiol,2007,30(2):102-108.
    [107]Al-Ashqar S.M., M.M. Mostafa. Synthesis of some novel CoⅡ and CoⅢ complexes by tribochemical reactions using KI with some derivatives of thiosemicarbazide complexes derived from Girard's T and P [J]. Spectrochim Acta A Mol Biomol Spectrosc,2008,71(4):1321-1326.
    [108]Banerjee S., M. Nandy, S. Sen, S. Mandal, G.M. Rosair, A.M. Slawin, C.J. Gomez Garcia, J.M. Clemente-Juan, E. Zangrando, N. Guidolin, S. Mitra. Isolation of four new CoⅡ/CoⅢ and Nill complexes with a pentadentate Schiff base ligand:syntheses, structural descriptions and magnetic studies [J]. Dalton Trans,2011,40(8):1652-1661.
    [109]Ruiz-Garcia M., M.I. Castillo, A. Ledezma, N. Leguizamon, R. Sanchez, M. Chinchilla, G.A. Gutierrez-Espeleta. Molecular systematics and phylogeography of Cebus capucinus (Cebidae, Primates) in Colombia and Costa Rica by means of the mitochondrial COII gene [J]. Am J Primatol,2011.
    [110]Cunha C., I. Doadrio, M.M. Coelho. Speciation towards tetraploidization after intermediate processes of non-sexual reproduction [J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2008,363(1505): 2921-2929.
    [111]Jacobs H.T., S.K. Lehtinen, J.N. Spelbrink. No sex please, we're mitochondria:a hypothesis on the somatic unit of inheritance of mammalian mtDNA [J]. Bioessays,2000,22:564-572.
    [112]Hecht N.B., H. Liem, K.C. Kleene, R.J. Distel, S. Ho. Maternal inheritance of the mouse mitochondrial genome is not mediated by a loss or gross alteration of the paternal mitochondrial DNA or by methylation of the oocyte mitochondrial DNA [J]. Developmental biology.1984.102(2):452-461.
    [113]Nishimura Y., T. Yoshinari, K. Naruse, T. Yamada, K. Sumi, H. Mitani, T. Higashiyama, T. Kuroiwa. Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers [J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(5): 1382-1387.
    [114]Kondo R., E.T. Matsuura, S.I. Chigusa. Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method [J]. Genetical research,1992,59(02):81-84.
    [115]Lansman R.A., J.C. Avise, M.D. Huettel. Critical experimental test of the possibility of paternal leakage" of mitochondrial DNA [J]. Proceedings of the National Academy of Sciences,1983,80(7):1969.
    [116]Meusel M.S., R.F.A. Moritz. Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs [J]. Current genetics,1993, 24(6):539-543.
    [117]Sutherland B., D. Stewart, E.R. Kenchington, E. Zouros. The fate of paternal mitochondrial DNA in developing female mussels, Mytilus edulis:implications for the mechanism of doubly uniparental inheritance of mitochondrial DNA [J]. Genetics,1998,148(1):341-348.
    [118]Danan C., D. Sternberg, A. Van Steirteghem, C. Cazeneuve, P. Duquesnoy, C. Besmond, M. Goossens, W. Lissens, S. Amselem. Evaluation of parental mitochondrial inheritance in neonates born after intracytoplasmic sperm injection [J]. The American Journal of Human Genetics,1999,65(2):463-473.
    [119]Hoarau G., S. Holla, R. Lescasse, W.T. Stam, J.L. Olsen. Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish Platichthys flesus [J]. Molecular Biology and Evolution,2002,19(12): 2261-2264.
    [120]Magoulas A., E. Zouros. Restriction-site heteroplasmy in anchovy (Engraulis encrasicolus) indicates incidental biparental inheritance of mitochondrial DNA [J]. Molecular Biology and Evolution,1993,10(2):319.
    [121]Shigenobu Y., K. Saitoh, K. Hayashizaki, H. Ida. Nonsynonymous site heteroplasmy in fish mitochondrial DNA [J]. Genes & genetic systems,2005, 80(4):297-301.
    [122]Starner H., C. Pahlsson, M. Linden. Tandem repeat polymorphism and heteroplasmy in the mitochondrial DNA control region of threespine stickleback (Gasterosteus aculeatus) [J]. Behaviour,141,2004,11(12): 1357-1369.
    [123]Clayton D.A. Replication of animal mitochondrial DNA [J]. Cell,1982,28(4): 693.
    [124]Rokas A., E. Ladoukakis, E. Zouros. Animal mitochondrial DNA recombination revisited [J]. Trends in Ecology & Evolution,2003,18(8):411-417.
    [125]Kondo R., Y. Satta, E. Matsuura, H. Ishiwa, N. Takahata, S. Chigusa. Incomplete maternal transmission of mitochondrial DNA in Drosophila [J]. Genetics,1990,126(3):657-663.
    [126]Shitara H., J.I. Hayashi, S. Takahama, H. Kaneda, H. Yonekawa. Maternal inheritance of mouse mtDNA in interspecific hybrids:segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage [J]. Genetics,1998,148(2):851-858.
    [127]Gyllensten U., D. Wharton, A. Josefsson, A.C. Wilson.Paternal inheritance of mitochondrial DNA in mice [J].1991.
    [128]Guo X.H., S.J. Liu, Y. Liu. Evidence for recombination of mitochondrial DNA in triploid crucian carp [J]. Genetics,2006,172(3):1745-1749.
    [129]凌去非.李思发.鲤科25种鱼类线粒体cOⅡ基因序列差异及其系统进化 关系[J].水产学报,2006,30(6):747-752.
    [130]Hurstl G.D.D., F.M. Jiggins. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies:the effects of inherited symbionts [J].Proc R Soc B,2005,272:1525-1534.
    [131]Awadalla P., A. Eyre-Walker, J.M. Smith. Linkage disequilibrium and recombination in hominid mitochondrial DNA [J]. Science,1999,286(5449): 2524-2525.
    [132]廖顺尧,刘运强,鲁成,周泽扬,向仲怀.家蚕线粒体ND2, CO I和若干tRNA基因的克隆及序列分析[J].动物学报,2002,48(3):375-383.
    [133]Brown M.D., A.S. Voljavec, M. Lott, A. Torroni, C.C. Yang, D.C. Wallace. Mitochondrial DNA complex I and III mutations associated with Leber's hereditary optic neuropathy [J]. Genetics,1992,130(1):163-173.
    [134]Johns D.R., J. Berman. Alternative, simultaneous complex I mitochondrial DNA mutations in Leber's hereditary optic neuropathy [J]. Biochemical and biophysical research communications,1991,174(3):1324.
    [135]Schwartz M., J. Vissing. Paternal inheritance of mitochondrial DNA [J]. New England Journal of Medicine,2002,347(8):576-580.
    [136]Brown W.M., M. George, A.C. Wilson. Rapid evolution of animal mitochondrial DNA [J]. Proceedings of the National Academy of Sciences, 1979,76(4):1967.
    [137]Lynch M., B. Koskella, S. Schaack. Mutation pressure and the evolution of organelle genomic architecture [J]. Science,2006,311(5768):1727-1730.
    [138]Haag-Liautard C., N. Coffey, D. Houle, M. Lynch, B. Charlesworth, P.D. Keightley. Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster [J]. PLoS biology,2008,6(8):e204.
    [139]Montooth K.L., D.M. Rand. The spectrum of mitochondrial mutation differs across species [J]. PLoS biology,2008,6(8):e213.
    [140]Nabholz B., S. Glemin, N. Galtier. Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis [J]. Molecular Biology and Evolution,2008,25(1):120-130.
    [141]Pesole G., C. Gissi, A. De Chirico, C. Saccone. Nucleotide substitution rate of mammalian mitochondrial genomes [J]. Journal of molecular evolution,1999, 48(4):427-434.
    [142]Stoneking M. Hypervariable sites in the mtDNA control region are mutational hotspots [J]. The American Journal of Human Genetics,2000,67(4): 1029-1032.
    [143]Bonne-Tamir B., M. Korostishevsky, A. Redd, Y. Pel-Or, M. Kaplan, M. Hammer. Maternal and paternal lineages of the Samaritan isolate:mutation rates and time to most recent common male ancestor [J]. Annals of human genetics,2003,67(2):153-164.
    [144]Parsons T.J., D.S. Muniec, K. Sullivan, N. Woodyatt, R. Alliston-Greiner, M.R. Wilson, D.L. Berry, K.A. Holland, V.W. Weedn, P. Gill. A high observed substitution rate in the human mitochondrial DNA control region [J]. Nature genetics,1997,15(4):363-368.
    [145]Lambert D., P. Ritchie, C. Millar, B. Holland, A. Drummond, C. Baroni. Rates of evolution in ancient DNA from Adelie penguins [J]. Science,2002, 295(5563):2270-2273.
    [146]刘季芳.异源四倍体鲫鲤Sox基因及黄鳝类固醇激素合成酶研究[D],2007.
    [147]Guo X.H., S.J. Liu, Y. Liu. Evidence for maternal inheritance of mitochondrial DNA in allotetraploid [J]. DNA Sequence,2007,18(4):247-256.
    [148]Gershoni M., A.R. Templeton, D. Mishmar. Mitochondrial bioenergetics as a major motive force of speciation [J]. Bioessays.2009,31(6):642-650.
    [149]Ryan M.T., N.J. Hoogenraad. Mitochondrial-nuclear communications [J]. Annu Rev Biochem,2007,76:701-722.
    [150]Pogozelski W.K., L.D. Fletcher, C.A. Cassar, D.A. Dunn, I.A. Trounce, C.A. Pinkert. The mitochondrial genome sequence of< i> Mus terricolor: Comparison with< i> Mus musculus domesticus and implications for xenomitochondrial mouse modeling [J]. Gene,2008,418(1):27-33.
    [151]Kanehisa M., S. Goto, M. Hattori, K.F. Aoki-Kinoshita, M. Itoh, S. Kawashima, T. Katayama, M. Araki, M. Hirakawa. From genomics to chemical genomics: new developments in KEGG [J]. Nucleic Acids Research,2006,34(suppl 1): D354-D357.
    [152]Dufayard J.F., L. Duret, S. Penel, M. Gouy, F. Rechenmann, G. Perriere. Tree pattern matching in phylogenetic trees:automatic search for orthologs or paralogs in homologous gene sequence databases [J]. Bio informatics,2005, 21(11):2596-2603.
    [153]Pryszcz L.P., J. Huerta-Cepas, T. Gabaldon. MetaPhOrs:orthology and paralogy predictions from multiple phylogenetic evidence using a consistency-based confidence score [J]. Nucleic Acids Research,2011,39(5):e32-e32.
    [154]van der Heijden R., B. Snel, V. Van Noort, M. Huynen. Orthology prediction at scalable resolution by phylogenetic tree analysis [J]. BMC bioinformatics, 2007,8(1):83.
    [155]Venter J.C., M.D. Adams, E.W. Myers, P.W. Li, R.J. Mural, G.G Sutton, H.O. Smith, M. Yandell, C.A. Evans, R.A.Holt. The sequence of the human genome [J]. Science's STKE,2001,291(5507):1304.
    [156]Andersson G., O. Karlberg, B. Canback, C.G. Kurland. On the origin of mitochondria:a genomics perspective [J]. Philosophical Transactions of the Royal Society of London Series B:Biological Sciences,2003,358(1429): 165-179.
    [157]Dyall S.D., M.T. Brown, P.J. Johnson. Ancient invasions:from endosymbionts to organelles [J]. Science,2004,304(5668):253-257.
    [158]Gabaldon T., M.A. Huynen. Reconstruction of the proto-mitochondrial metabolism [J]. Science,2003,301(5633):609-609.
    [159]Myers Jr M.G. CELL BIOLOGY:Moonlighting in Mitochondria [J]. Science's STKE,2009,323(5915):723.
    [160]Pagliarini D.J., S.E. Calvo, B. Chang, S.A. Sheth, S.B. Vafai, S.E. Ong, G.A. Walford. A mitochondrial protein compendium elucidates complex I disease biology [J]. Cell,2008,134(1):112-123.
    [161]Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer:a dawn for evolutionary medicine [J]. Annual Review of Genetics,2005,39:359.
    [162]Kelly D.P., R.C. Scarpulla. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function [J]. Genes & development,2004,18(4): 357-368.
    [163]Edmands S., R.S. Burton. Cytochrome c oxidase activity in interpopulation hybrids of a marine copepod:a test for nuclear-nuclear or nuclear-cytoplasmic coadaptation [J]. Evolution,1999:1972-1978.
    [164]Moya A., E. Barrio, D. Martinez, A. Latorre, F. Gonzalez-Candelas, M. Ramon, J.A. Castro. Molecular characterization and cytonuclear disequilibria of two Drosophila subobscura mitochondrial haplotypes [J]. Genome,1993,36(5): 890-898.
    [165]Christie J.. J. Castro, P. Oliver, A. Picornell, M. Ramon, A. Moya. Fitness and life-history traits of the two major mitochondrial DNA haplotypes of Drosophila subobscura [J]. Heredity,2004,93(4):371-378.
    [166]Fos M., M.A. Dominguez, A. Latorre, A. Moya. Mitochondrial DNA evolution in experimental populations of Drosophila subobscura [J]. Proceedings of the National Academy of Sciences,1990,87(11):4198.
    [167]Yamaoka M., K. Isobe, H. Shitara, H. Yonekawa, S. Miyabayashi, J.I. Hayashi. Complete repopulation of mouse mitochondrial DNA-less cells with rat mitochondrial DNA restores mitochondrial translation but not mitochondrial respiratory function [J]. Genetics,2000,155(1):301-307.
    [168]Wendel J.F. Genome evolution in polyploids [J]. Plant molecular biology,2000, 42(1):225-249.
    [169]Ye C., X.O. Shu, L. Pierce, W. Wen, R. Courtney, Y.T. Gao, W. Zheng, Q. Cai. Mutations in the mitochondrial DNA D-loop region and breast cancer risk [J]. Breast Cancer Res Treat,2010,119(2):431-436.
    [170]Matthews D.E., R.A. Hessler, N.D. Denslow, J.S. Edwards, T.W. O'Brien. Protein Composition of the Bovine Mitochondrial Ribosome [J]. THE JOURNAL OF BIOLOGICAI CHEMISTRY,1982,257(15):8788-8794.
    [171]陈国忠,李文均,徐丽华,姜成林.16S rRNA二级结构的研究进展及其在系统分类中的应用[J].微生物学杂志,2005,25(5):54-57.
    [172]Murakami H., R. Ajisaka, J.I. Hayashi, S. Kuno. The Influence of ATP Synthase 8,6 Gene Polymorphisms on the Individual Difference of Endurance Capacity or its Trainability [J]. International Journal of Sport and Health Science.2006, 4(Special_Issue_2_2006):472-479.
    [173]Kartavtsev Y., T.J. Park, K. Vinnikov, V. Ivankov, S. Sharina, J.S. Lee. Cytochrome b (Cyt-b) gene sequence analysis in six flatfish species (Teleostei, Pleuronectidae), with phylogenetic and taxonomic insights [J]. Marine Biology, 2007,152(4):757-773.
    [174]陈姝君,赫崇波,木云雷,刘卫东,周遵春,高祥刚,丛林林.硬骨鱼类线 粒体基因系统发育信息效率分析[J].中国水产科学,2008,15(1):12-21.
    [175]Zardoya R., M. Suarez. Sequencing and phylogenomic analysis of whole mitochondrial genomes of animals [J]. Methods Mol Biol,2008,422:185-200.
    [176]Saitoh K., T. Sado, R.L. Mayden, N. Hanzawa, K. Nakamura, M. Nishida, M. Miya. Mitogenomic Evolution and Interrelationships of the Cypriniformes (Actinopterygii:Ostariophysi):The First Evidence Toward Resolution of Higher-Level Relationships of the World's Largest Freshwater Fish Clade Based on 59 Whole Mitogenome Sequences [J]. J Mol Evol,2006,63: 826-841.
    [177]Shen Y.Y., P. Shi, Y.B. Sun, Y.P. Zhang. Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability [J]. Genome Res,2009,19(10):1760-1765.
    [178]王伟,陈立侨,禹娜,姜志强.应用COⅡ基因部分序列分析翘嘴鲌群体的遗传多样性[J].大连水产学院学报,2008,23(5):403-408.
    [179]彭居俐,王绪祯,王丁,何舜平.基于线粒体COl基因序列的DNA条形码在鲤科鲌属鱼类物种鉴定中的应用[J].水生生物学报,2009,33(002):271-276.
    [180]冯晓宇,谢.基于细胞色素b基因序列的鲌亚科鱼类系统发育研究[J].淡水渔业,2009,39(5):23-27.
    [181]王伟.翘嘴鲌(Culter alburnus)群体遗传多样性及鲌亚科鱼类系统发生的研究:[博士论文][J].华东师范大学,2007.
    [182]伊西庆.中国东部芍个大型湖泊翘嘴鲌(Culter alburnus)遗传多样性的线粒体ND2基因序列分析:[硕士论文][J].暨南大学,2009.
    [183]Xiao W., Y. Zhang, H. Liu. Molecular Systematics of Xenocyprinae (Teleostei: Cypr- inidae):Taxonomy, Biogeography, and Coevolution of a Special Group Restricted in East Asia [J]. Molecular Phylogenetics and Evolution,2001, 18(2):163-173.
    [184]Mathews D.H., M.D. Disney, J.L. Childs, S.J. Schroeder, M. Zuker, D.H. Turner. In-corporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(19): 7287.
    [185]Wong T.W., D.A. Clayton. In vitro replication of human mitochondrial DNA: accurate initiation at the origin of light-strand synthesis [J]. Cell,1985,42(3): 951-958.
    [186]Zardoya R., A. Garrido-Pertierra, J.M. Bautista. The Complete Nueleotide Sequence of the Mitochondrial DNA Genome of the Rainbow Trout, Oncorhynchus mykiss [J]. J Mol Evol,1995,41:942-951.
    [187]E S., T. F, R. F, P. G, S. C. Mammalian mitochondrial D-loop region structural analysis:identification of new conserved sequences and the functional and evolutionary implications [J]. Gene,1997,205(1-2):125-140.
    [188]Saccone C., M. Attimonelli, E. Sbisa. Structural elements highly preserved during the evolution of the D-loop-containing region in vertebrate mitochondrial DNA [J]. Journal of molecular evolution,1987,26(3):205-211.
    [189]刘焕章.鱼类线粒体DNA控制区的结构和进化:以鳑鱼类为例[J].自然科学进展,2002,12(3).
    [190]Guo X., S. Liu. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level [J]. Aquaculture,2003,224(1-4):25-38.
    [191]Chang D.D., D.A. Clayton. Identification of primary transcriptional start sites of mouse mitochondrial DNA:accurate in vitro initiation of both heavy-and light-strand transcripts [J]. Molecular and cellular biology,1986,6(5): 1446-1453.
    [192]Chen I.S., C.H. Hsu, C.F. Hui, K.T. Shao, P. Miller, L.S. Fang. Sequence length and variation in the mitochondrial control region of two freshwater gobiid fishes belonging to Rhinogobius (Teleostei:Gobioidei) [J]. Journal of fish biology,1998,53(1):179-191.
    [193]Harrison R.G. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology [J]. Trends in Ecology & Evolution,1989,4(1):6-11.
    [194]Sbisa E., F. Tanzariello, A. Reyes, G. Pesole. C. Saccone. Mammalian mitochondrial D-loop region structural analysis:identification of new conserved sequences and their functional and evolutionary implications [J]. Gene,1997,205(1):125-140.
    [195]Cavender T.M., M. Coburn. Phylogenetic relationships of North American cyprinidae [J]. Systematics, historical ecology and North American freshwater fishes,1992:293-327.
    [196]孔祥会,王绪祯,甘小妮,李俊兵,何舜平.基于S6K1基因部分序列的鲤科鱼类系统发育关系及内含子1 Indel位点分析[J].中国科学C辑,2007,37(4):427-434.
    [197]Winfield I.J., J.S. Nelson. Cyprinid fishes:systematics, biology, and exploitation [M]. Kluwer Academic Pub,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700